Skip to main content

Abstract

This chapter discusses imaging methods related to wave phenomena, and in particular, inverse problems for the wave equation will be considered. The first part of the chapter explains the boundary control method for determining a wave speed of a medium from the response operator, which models boundary measurements. The second part discusses the scattering relation and travel times, which are different types of boundary data contained in the response operator. The third part gives a brief introduction to curvelets in wave imaging for media with nonsmooth wave speeds. The focus will be on theoretical results and methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, M., Katsuda, A., Kurylev, Y., Lassas, M., Taylor, M.: Boundary regularity for the Ricci equation, geometric convergence, and Gel’fand’s inverse boundary problem. Invent. Math. 158, 261–321 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Andersson, F., de Hoop, M.V., Smith, H.F., Uhlmann, G.: A multi-scale approach to hyperbolic evolution equations with limited smoothness. Commun. Part. Differ. Equ. 33(4–6), 988–1017 (2008)

    Article  MATH  Google Scholar 

  3. Babich, V.M., Ulin, V.V.: The complex space-time ray method and “quasiphotons” (Russian). Zap. Nauchn. Sem. LOMI 117, 5–12 (1981)

    MATH  MathSciNet  Google Scholar 

  4. Belishev, M.: An approach to multidimensional inverse problems for the wave equation (Russian). Dokl. Akad. Nauk SSSR 297(3), 524–527 (1987)

    MathSciNet  Google Scholar 

  5. Belishev, M.: Boundary control in reconstruction of manifolds and metrics (the BC method). Inverse Probl. 13, R1–R45 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Belishev, M., Kachalov, A.: Boundary control and quasiphotons in a problem of the reconstruction of a Riemannian manifold from dynamic data (Russian). Zap. Nauchn. Sem. POMI 203, 21–50 (1992)

    MATH  Google Scholar 

  7. Belishev, M., Kurylev, Y.: To the reconstruction of a Riemannian manifold via its spectral data (BC-method). Commun. Part. Differ. Equ. 17, 767–804 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bernstein, I.N., Gerver, M.L.: Conditions on Distinguishability of Metrics by Hodographs, Methods and Algorithms of Interpretation of Seismological Information. Computerized Seismology, vol. 13, pp. 50–73. Nauka, Moscow (1980) (in Russian)

    Google Scholar 

  9. Besson, G., Courtois, G., Gallot, S.: Entropies et rigidités des espaces localement symétriques de courbure strictment négative. Geom. Funct. Anal. 5, 731–799 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Beylkin, G.: Stability and uniqueness of the solution of the inverse kinematic problem in the multidimensional case. J. Sov. Math. 21, 251–254 (1983)

    Article  Google Scholar 

  11. Bingham, K., Kurylev, Y., Lassas, M., Siltanen, S.: Iterative time reversal control for inverse problems. Inverse Probl. Imaging 2, 63–81 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Blagoveščenskii, A.: A one-dimensional inverse boundary value problem for a second order hyperbolic equation (Russian). Zap. Nauchn. Sem. LOMI 15, 85–90 (1969)

    Google Scholar 

  13. Blagoveščenskii, A.: Inverse boundary problem for the wave propagation in an anisotropic medium (Russian). Trudy Mat. Inst. Steklova 65, 39–56 (1971)

    Google Scholar 

  14. Brytik, V., de Hoop, M.V., Salo, M.: Sensitivity analysis of wave-equation tomography: a multi-scale approach. J. Fourier Anal. Appl. 16(4), 544–589 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Burago, D., Ivanov, S.: Boundary rigidity and filling volume minimality of metrics close to a flat one. Ann. Math. 171(2), 1183–1211 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Burago, D., Ivanov, S.: Area minimizers and boundary rigidity of almost hyperbolic metrics (in preparation)

    Google Scholar 

  17. Candès, E.J., Demanet, L.: Curvelets and Fourier integral operators. C. R. Math. Acad. Sci. Paris 336, 395–398 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Candès, E.J., Demanet, L.: The curvelet representation of wave propagators is optimally sparse. Commun. Pure Appl. Math. 58, 1472–1528 (2005)

    Article  MATH  Google Scholar 

  19. Candès, E.J., Donoho, D.L.: Curvelets – a surprisingly effective nonadaptive representation for objects with edges. In: Schumaker, L.L., et al. (eds.) Curves and Surfaces, pp. 105–120. Vanderbilt University Press, Nashville (2000)

    Google Scholar 

  20. Candès, E.J., Donoho, D.L.: New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities. Commun. Pure Appl. Math. 57, 219–266 (2004)

    Article  MATH  Google Scholar 

  21. Candès, E.J., Demanet, L., Ying, L.: Fast computation of Fourier integral operators. SIAM J. Sci. Comput. 29, 2464–2493 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Chavel, I.: Riemannian Geometry. A Modern Introduction, pp. xvi+471. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  23. Córdoba, A., Fefferman, C.: Wave packets and Fourier integral operators. Commun. Part. Differ. Equ. 3, 979–1005 (1978)

    Article  MATH  Google Scholar 

  24. Creager, K.C.: Anisotropy of the inner core from differential travel times of the phases PKP and PKIPK. Nature 356, 309–314 (1992)

    Article  Google Scholar 

  25. Croke, C.: Rigidity for surfaces of non-positive curvature. Comment. Math. Helv. 65, 150–169 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  26. Croke, C.: Rigidity and the distance between boundary points. J. Differ. Geom. 33(2), 445–464 (1991)

    MATH  MathSciNet  Google Scholar 

  27. Dahl, M., Kirpichnikova, A., Lassas, M.: Focusing waves in unknown media by modified time reversal iteration. SIAM J. Control Optim. 48, 839–858 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. de Hoop, M.V.: Microlocal analysis of seismic inverse scattering: inside out. In: Uhlmann, G. (ed.) Inverse Problems and Applications, pp. 219–296. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  29. de Hoop, M.V., Smith, H., Uhlmann, G., van der Hilst, R.D.: Seismic imaging with the generalized Radon transform: a curvelet transform perspective. Inverse Probl. 25(2), 25005–25025 (2009)

    Article  Google Scholar 

  30. Demanet, L., Ying, L.: Wave atoms and time upscaling of wave equations. Numer. Math. 113(1), 1–71 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  31. Duchkov, A.A., Andersson, F., de Hoop, M.V.: Discrete, almost symmetric wave packets and multiscale geometric representation of (seismic) waves. IEEE Trans. Geosci. Remote Sens. 48(9), 3408–3423 (2010)

    Article  Google Scholar 

  32. Duistermaat, J.J.: Fourier Integral Operators. Birkhäuser, Boston (2009)

    Google Scholar 

  33. Greenleaf, A., Kurylev, Y., Lassas, M., Uhlmann, G.: Invisibility and inverse problems. Bull. Am. Math. 46, 55–97 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  34. Gromov, M.: Filling Riemannian manifolds. J. Differ. Geom. 18(1), 1–148 (1983)

    MATH  MathSciNet  Google Scholar 

  35. Guillemin, V.: Sojourn times and asymptotic properties of the scattering Matrix. In: Proceedings of the Oji Seminar on Algebraic Analysis and the RIMS Symposium on Algebraic Analysis, Kyoto. Kyoto University, Kyoto (1976). Publ. Res. Inst. Math. Sci. 12(1976/77, Suppl), 69–88

    Google Scholar 

  36. Hansen, S., Uhlmann, G.: Propagation of polarization for the equations in elastodynamics with residual stress and travel times. Math. Ann. 326, 536–587 (2003)

    MathSciNet  Google Scholar 

  37. Herglotz, G.: Uber die Elastizitaet der Erde bei Beruecksichtigung ihrer variablen Dichte. Zeitschr. fur Math. Phys. 52, 275–299 (1905)

    MATH  Google Scholar 

  38. Hörmander, L.: The Analysis of Linear Partial Differential Operators III. Pseudodifferential Operators, pp. viii+525. Springer, Berlin (1985)

    Google Scholar 

  39. Isozaki, H., Kurylev, Y., Lassas, M.: Forward and Inverse scattering on manifolds with asymptotically cylindrical ends. J. Funct. Anal. 258, 2060–2118 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  40. Ivanov, S.: Volume comparison via boundary distances. arXiv:1004–2505

    Google Scholar 

  41. Katchalov, A., Kurylev, Y.: Multidimensional inverse problem with incomplete boundary spectral data. Commun. Part. Differ. Equ. 23, 55–95 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  42. Katchalov, A., Kurylev, Y., Lassas, M.: Inverse Boundary Spectral Problems, pp. xx+290. Chapman & Hall/CRC, Boca Raton (2001)

    Google Scholar 

  43. Katchalov, A., Kurylev, Y., Lassas, M.: Energy measurements and equivalence of boundary data for inverse problems on non-compact manifolds. In: Croke, C., Lasiecka, I., Uhlmann, G., Vogelius, M. (eds.) Geometric Methods in Inverse Problems and PDE Control. IMA Volumes in Mathematics and Applications, vol. 137, pp. 183–213. Springer, New York (2004)

    Chapter  Google Scholar 

  44. Katchalov, A., Kurylev, Y., Lassas, M., Mandache, N.: Equivalence of time-domain inverse problems and boundary spectral problem. Inverse Probl. 20, 419–436 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  45. Katsuda, A., Kurylev, Y., Lassas, M.: Stability of boundary distance representation and reconstruction of Riemannian manifolds. Inverse Probl. Imaging 1, 135–157 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  46. Krein, M.G.: Determination of the density of an inhomogeneous string from its spectrum (in Russian). Dokl. Akad. Nauk SSSR 76(3), 345–348 (1951)

    MathSciNet  Google Scholar 

  47. Kurylev, Y.: Multidimensional Gel’fand inverse problem and boundary distance map. In: Soga, H. (ed.) Inverse Problems Related to Geometry, pp. 1–15. Ibaraki University Press, Mito (1997)

    Google Scholar 

  48. Kurylev, Y., Lassas, M.: Hyperbolic inverse problem with data on a part of the boundary. In: Differential Equations and Mathematical Physics, Birmingham, 1999. AMS/IP Studies in Advanced Mathematics, vol. 16, pp. 259–272. AMS (2000)

    Google Scholar 

  49. Kurylev, Y., Lassas, M.: Hyperbolic inverse boundary-value problem and time-continuation of the non-stationary Dirichlet-to-Neumann map. Proc. R. Soc. Edinb. Sect. A 132, 931–949 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  50. Kurylev, Y., Lassas, M.: Inverse problems and index formulae for Dirac operators. Adv. Math. 221, 170–216 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  51. Kurylev, Y., Lassas, M., Somersalo, E.: Maxwell’s equations with a polarization independent wave velocity: direct and inverse problems. J. Math. Pures Appl. 86, 237–270 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  52. Lasiecka, I., Triggiani, R.: Regularity theory of hyperbolic equations with nonhomogeneous Neumann boundary conditions. II. General boundary data. J. Differ. Equ. 94, 112–164 (1991)

    MATH  MathSciNet  Google Scholar 

  53. Lassas, M., Uhlmann, G.: On determining a Riemannian manifold from the Dirichlet-to-Neumann map. Ann. Sci. Ecole Norm. Super. 34, 771–787 (2001)

    MATH  MathSciNet  Google Scholar 

  54. Lassas, M., Sharafutdinov, V., Uhlmann, G.: Semiglobal boundary rigidity for Riemannian metrics. Math. Ann. 325, 767–793 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  55. Michel, R.: Sur la rigidité imposée par la longueur des géodésiques. Invent. Math. 65, 71–83 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  56. Mukhometov, R.G.: The reconstruction problem of a two-dimensional Riemannian metric, and integral geometry (Russian). Dokl. Akad. Nauk SSSR 232(1), 32–35 (1977)

    MathSciNet  Google Scholar 

  57. Mukhometov, R.G.: A problem of reconstructing a Riemannian metric. Sib. Math. J. 22, 420–433 (1982)

    Article  Google Scholar 

  58. Mukhometov, R.G., Romanov, V.G.: On the problem of finding an isotropic Riemannian metric in an n-dimensional space (Russian). Dokl. Akad. Nauk SSSR 243(1), 41–44 (1978)

    MathSciNet  Google Scholar 

  59. Otal, J.P.: Sur les longuer des géodésiques d’une métrique a courbure négative dans le disque. Comment. Math. Helv. 65, 334–347 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  60. Pestov, L., Uhlmann, G.: Two dimensional simple compact manifolds with boundary are boundary rigid. Ann. Math. 161, 1089–1106 (2005)

    Article  MathSciNet  Google Scholar 

  61. Rachele, L.: An inverse problem in elastodynamics: determination of the wave speeds in the interior. J. Differ. Equ. 162, 300–325 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  62. Rachele, L.: Uniqueness of the density in an inverse problem for isotropic elastodynamics. Trans. Am. Math. Soc. 355(12), 4781–4806 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  63. Ralston, J.: Gaussian beams and propagation of singularities. In: Littman, W., Caffarelli, L.A. (eds.) Studies in Partial Differential Equations. MAA Studies in Mathematics, vol. 23, pp. 206–248. Mathematical Association of America, Washington, DC (1982)

    Google Scholar 

  64. Salo, M.: Stability for solutions of wave equations with C1,1 coefficients. Inverse Probl. Imaging 1(3), 537–556 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  65. Seeger, A., Sogge, C.D., Stein, E.M.: Regularity properties of Fourier integral operators. Ann. Math. 134, 231–251 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  66. Sharafutdinov, V.: Integral Geometry of Tensor Fields. VSP, Utrech (1994)

    Book  Google Scholar 

  67. Smith, H.F.: A parametrix construction for wave equations with C1, 1 coefficients. Ann. Inst. Fourier Grenoble 48(3), 797–835 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  68. Smith, H.F.: Spectral cluster estimates for C1, 1 metrics. Am. J. Math. 128(5), 1069–1103 (2006)

    Article  MATH  Google Scholar 

  69. Smith, H.F., Sogge, C.D.: On the Lp norm of spectral clusters for compact manifolds with boundary. Acta Math. 198, 107–153 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  70. Stefanov, P., Uhlmann, G.: Rigidity for metrics with the same lengths of geodesics. Math. Res. Lett. 5, 83–96 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  71. Stefanov, P., Uhlmann, G.: Boundary rigidity and stability for generic simple metrics. J. Am. Math. Soc. 18, 975–1003 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  72. Stefanov, P., Uhlmann, G.: Local lens rigidity with incomplete data for a class of non-simple Riemannian manifolds. J. Differ. Geom. 82, 383–409 (2009)

    MATH  MathSciNet  Google Scholar 

  73. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series, vol. 43. Monographs in Harmonic Analysis, III. Princeton University Press, Princeton (1993)

    Google Scholar 

  74. Sylvester, J.: An anisotropic inverse boundary value problem. Commun. Pure Appl. Math. 43(2), 201–232 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  75. Sylvester, J., Uhlmann, G.: A global uniqueness theorem for an inverse boundary value problem. Ann. Math. 125, 153–169 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  76. Sylvester, J., Uhlmann, G.: Inverse problems in anisotropic media. Contemp. Math. 122, 105–117 (1991)

    MathSciNet  Google Scholar 

  77. Tataru, D.: Unique continuation for solutions to PDEs, between Hörmander’s theorem and Holmgren’s theorem. Commun. Part. Differ. Equ. 20, 855–884 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  78. Tataru, D.: On the regularity of boundary traces for the wave equation. Ann. Scuola Norm. Sup. Pisa CL Sci. 26, 185–206 (1998)

    MATH  MathSciNet  Google Scholar 

  79. Tataru, D.: Unique continuation for operators with partially analytic coefficients. J. Math. Pures Appl. 78, 505–521 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  80. Tataru, D.: Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation. Am. J. Math. 122(2), 349–376 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  81. Tataru, D.: Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. II. Am. J. Math. 123(3), 385–423 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  82. Tataru, D.: Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. III. J. Am. Math. Soc. 15, 419–442 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  83. Uhlmann, G.: Developments in inverse problems since Calderón’s foundational paper. In: Christ, M., Kenig, C., Sadosky, C. (eds.) Essays in Harmonic Analysis and Partial Differential Equations, Chap. 19. University of Chicago Press, Chicago (1999)

    Google Scholar 

  84. Wiechert, E., Zoeppritz, K.: Uber Erdbebenwellen. Nachr. Koenigl. Geselschaft Wiss. Goettingen 4, 415–549 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matti Lassas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Lassas, M., Salo, M., Uhlmann, G. (2015). Wave Phenomena. In: Scherzer, O. (eds) Handbook of Mathematical Methods in Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0790-8_52

Download citation

Publish with us

Policies and ethics