Skip to main content

Photoacoustic and Thermoacoustic Tomography: Image Formation Principles

  • Reference work entry
Handbook of Mathematical Methods in Imaging

Abstract

Photoacoustic tomography (PAT), also known as thermoacoustic or optoacoustic tomography, is a rapidly emerging imaging technique that holds great promise for biomedical imaging. PAT is a hybrid imaging technique, and can be viewed either as an ultrasound mediated electromagnetic modality or an ultrasound modality that exploits electromagnetic-enhanced image contrast. In this chapter, we provide a review of the underlying imaging physics and contrast mechanisms in PAT. Additionally, the imaging models that relate the measured photoacoustic wavefields to the sought-after optical absorption distribution are described in their continuous and discrete forms. The basic principles of image reconstruction from discrete measurement data are presented, which includes a review of methods for modeling the measurement system response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anastasio, M.A., Zhang, J.: Image reconstruction in photoacoustic tomography with truncated cylindrical measurement apertures. In: Proceedings of the SPIE Conference, vol. 6086, p. 36 (2006)

    Google Scholar 

  2. Anastasio, M.A., Zou, Y., Pan, X.: Reflectivity tomography using temporally truncated data. In: IEEE EMBS/BMES Conference Proceedings, Houston, vol. 2, pp. 921–922. IEEE (2002)

    Google Scholar 

  3. Anastasio, M.A., Zhang, J., Pan, X.: Image reconstruction in thermoacoustic tomography with compensation for acoustic heterogeneties. In: Proceedings of the SPIE Medical Imaging Conference, San Diego, vol. 5750, pp. 298–304 (2005)

    Google Scholar 

  4. Anastasio, M.A., Zhang, J., Pan, X., Zou, Y., Keng, G., Wang, L.V.: Half-time image reconstruction in thermoacoustic tomography. IEEE Trans. Med. Imaging 24, 199–210 (2005)

    Article  Google Scholar 

  5. Anastasio, M.A., Zhang, J., Sidky, E.Y., Zou, Y., Xia, D., Pan, X.: Feasibility of half-data image reconstruction in 3D reflectivity tomography with a spherical aperture. IEEE Trans. Med. Imaging 24, 1100–1112 (2005)

    Article  Google Scholar 

  6. Anastasio, M.A., Zhang, J., Modgil, D., La Riviere, P.J.: Application of inverse source concepts to photoacoustic tomography. Inverse Probl. 23(6), S21–S35 (2007)

    Article  MATH  Google Scholar 

  7. Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  8. Barrett, H., Myers, K.: Foundations of Image Science. Wiley Series in Pure and Applied Optics. Wiley, Hoboken (2004)

    Google Scholar 

  9. Beard, P.C., Laufer, J.G., Cox, B., Arridge, S.R.: Quantitative photoacoustic imaging: measurement of absolute chromophore concentrations for physiological and molecular imaging. In: Wang, L.V. (ed.) Photoacoustic Imaging and Spectroscopy. CRC, Boca Raton (2009)

    Google Scholar 

  10. Bertero, M., Boccacci, P.: Inverse Problems in Imaging. Institute of Physics Publishing, Bristol (1998)

    MATH  Google Scholar 

  11. Cheong, W., Prahl, S., Welch, A.: A review of the optical properties of biological tissues. IEEE J. Quantum Electron. 26, 2166–2185 (1990)

    Article  Google Scholar 

  12. Cox, B.T., Arridge, S.R., Kstli, K.P., Beard, P.C.: Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method. Appl. Opt. 45, 1866–1875 (2006)

    Article  Google Scholar 

  13. Devaney, A.J.: The inverse problem for random sources. J. Math. Phys. 20, 1687–1691 (1979)

    Article  Google Scholar 

  14. Devaney, A.J.: Inverse source and scattering problems in ultrasonics. IEEE Trans. Sonics Ultrason. 30, 355–364 (1983)

    Article  Google Scholar 

  15. Diebold, G.J.: Photoacoustic monopole radiation: waves from objects with symmetry in one, two, and three dimension. In: Wang, L.V. (ed.) Photoacoustic Imaging and Spectroscopy. CRC, Boca Raton (2009)

    Google Scholar 

  16. Diebold, G.J., Westervelt, P.J.: The photoacoustic effect generated by a spherical droplet in a fluid. J. Acoust. Soc. Am. 84(6), 2245–2251 (1988)

    Article  Google Scholar 

  17. Diebold, G.J., Sun, T., Khan, M.I.: Photoacoustic monopole radiation in one, two, and three dimensions. Phys. Rev. Lett. 67(24), 3384–3387 (1991)

    Article  Google Scholar 

  18. Ephrat, P., Keenliside, L., Seabrook, A., Prato, F.S., Carson, J.J.L.: Three-dimensional photoacoustic imaging by sparse-array detection and iterative image reconstruction. J. Biomed. Opt. 13(5), 054052 (2008)

    Article  Google Scholar 

  19. Esenaliev, R.O., Karabutov, A.A., Oraevsky, A.A.: Sensitivity of laser opto-acoustic imaging in detection of small deeply embedded tumors. IEEE J. Sel. Top. Quantum Electron. 5, 981–988 (1999)

    Article  Google Scholar 

  20. Fessler, J.A.: Penalized weighted least-squares reconstruction for positron emission tomography. IEEE Trans. Med. Imaging 13, 290–300 (1994)

    Article  Google Scholar 

  21. Fessler, J.A., Booth, S.D.: Conjugate-gradient preconditioning methods for shiftvariant PET image reconstruction. IEEE Trans. Image Process. 8(5), 688–699 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Finch, D., Patch, S., Rakesh, M.: Determining a function from its mean values over a family of spheres. SIAM J. Math. Anal. 35, 1213–1240 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Finch, D., Haltmeier, M., Rakesh, M.: Inversion of spherical means and the wave equation in even dimensions. SIAM J. Appl. Math. 68(2), 392–412 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Haltmeier, M., Scherzer, O., Burgholzer, P., Paltauf, G.: Thermoacoustic computed tomography with large planar receivers. Inverse Probl. 20(5), 1663–1673 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Jin, X., Wang, L.V.: Thermoacoustic tomography with correction for acoustic speed variations. Phys. Med. Biol. 51(24), 6437–6448 (2006)

    Article  Google Scholar 

  26. Joines, W., Jirtle, R., Rafal, M., Schaeffer, D.: Microwave power absorption differences between normal and malignant tissue. Radiat. Oncol. Biol. Phys. 6, 681–687 (1980)

    Article  Google Scholar 

  27. Khokhlova, T.D., Pelivanov, I.M., Kozhushko, V.V., Zharinov, A.N., Solomatin, V.S., Karabutov, A.A.: Optoacoustic imaging of absorbing objects in a turbid medium: ultimate sensitivity and application to breast cancer diagnostics. Appl. Opt. 46(2), 262–272 (2007)

    Article  Google Scholar 

  28. Köstli, K.P., Beard, P.C.: Two-dimensional photoacoustic imaging by use of fouriertransform image reconstruction and a detector with an anisotropic response. Appl. Opt. 42(10), 1899–1908 (2003)

    Article  Google Scholar 

  29. Köstli, K.P., Frenz, M., Bebie, H., Weber, H.P.: Temporal backward projection of optoacoustic pressure transients using Fourier transform methods. Phys. Med. Biol. 46(7), 1863–1872 (2001)

    Article  Google Scholar 

  30. Kruger, R.A., Liu, P., Fang, R., Appledorn, C.: Photoacoustic ultrasound (PAUS) reconstruction tomography. Med. Phys. 22, 1605–1609 (1995)

    Article  Google Scholar 

  31. Kruger, R., Reinecke, D., Kruger, G.: Thermoacoustic computed tomography-technical considerations. Med. Phys. 26, 1832–1837 (1999)

    Article  Google Scholar 

  32. Kruger, R.A., Kiser, W.L., Reinecke, D.R., Kruger, G.A., Miller, K.D.: Thermoacoustic optical molecular imaging of small animals. Mol. Imaging 2, 113–123 (2003)

    Article  Google Scholar 

  33. Ku, G., Fornage, B.D., Jin, X., Xu, M., Hunt, K.K., Wang, L.V.: Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging. Technol. Cancer Res. Treat. 4, 559–566 (2005)

    Article  Google Scholar 

  34. Kuchment, P., Kunyansky, L.: Mathematics of thermoacoustic tomography. Eur. J. Appl. Math. 19, 191–224 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  35. Kunyansky, L.A.: Explicit inversion formulae for the spherical mean radon transform. Inverse Probl. 23, 373–383 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  36. Langenberg, K.J.: Basic Methods of Tomography and Inverse Problems. Adam Hilger, Philadelphia (1987)

    MATH  Google Scholar 

  37. La Riviere, P.J., Zhang, J., Anastasio, M.A.: Image reconstruction in optoacoustic tomography for dispersive acoustic media. Opt. Lett. 31, 781–783 (2006)

    Article  Google Scholar 

  38. Lewitt, R.M.: Alternatives to voxels for image representation in iterative reconstruction algorithms. Phys. Med. Biol. 37(3), 705–716 (1992)

    Article  Google Scholar 

  39. Li, C., Wang, L.V.: Photoacoustic tomography and sensing in biomedicine. Phys. Med. Biol. 54(19), R59–R97 (2009)

    Article  Google Scholar 

  40. Li, C., Pramanik, M., Ku, G., Wang, L.V.: Image distortion in thermoacoustic tomography caused by microwave diffraction. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 77(3), 031923 (2008)

    Article  Google Scholar 

  41. Maslov, K., Wang, L.V.: Photoacoustic imaging of biological tissue with intensitymodulated continuous-wave laser. J. Biomed. Opt. 13(2), 024006 (2008)

    Article  Google Scholar 

  42. Modgil, D., Anastasio, M.A., Wang, K., LaRivière, P.J.: Image reconstruction in photoacoustic tomography with variable speed of sound using a higher order geometrical acoustics approximation. In: SPIE, vol. 7177, p. 71771A (2009)

    Google Scholar 

  43. Norton, S., Linzer, M.: Ultrasonic reflectivity imaging in three dimensions: exact inverse scattering solutions for plane, cylindrical, and spherical apertures. IEEE Trans. Biomed. Eng. 28, 202–220 (1981)

    Article  Google Scholar 

  44. Oraevsky, A.A., Karabutov, A.A.: Ultimate sensitivity of time-resolved optoacoustic detection. In: SPIE, vol. 3916, pp 228–239 (2000)

    Google Scholar 

  45. Oraevsky, A.A., Karabutov, A.A.: Optoacoustic tomography. In: Vo-Dinh, T. (ed.) Biomedical Photonics Handbook. CRC, Boca Raton (2003)

    Google Scholar 

  46. Oraevsky, A.A., Jacques, S.L., Tittel, F.K.: Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress. Appl. Opt. 36, 402–415 (1997)

    Article  Google Scholar 

  47. Paltauf, G., Schmidt-Kloiber, H., Guss, H.: Light distribution measurements in absorbing materials by optical detection of laser-induced stress waves. Appl. Phys. Lett. 69(11), 1526–1528 (1996)

    Article  Google Scholar 

  48. Paltauf, G., Viator, J., Prahl, S., Jacques, S.: Iterative reconstruction algorithm for optoacoustic imaging. J. Acoust. Soc. Am. 112, 1536–1544 (2002)

    Article  Google Scholar 

  49. Paltauf, G., Nuster, R., Burgholzer, P.: Characterization of integrating ultrasound detectors for photoacoustic tomography. J. Appl. Phys. 105(10), 102026 (2009)

    Article  Google Scholar 

  50. Pan, X., Zou, Y., Anastasio, M.A.: Data redundany and reduced-scan reconstruction in reflectivity tomography. IEEE Trans. Image Process. 12, 784–795 (2003)

    Article  Google Scholar 

  51. Patch, S.K.: Thermoacoustic tomography–consistency conditions and the partial scan problem. Phys. Med. Biol. 49(11), 2305–2315 (2004)

    Article  Google Scholar 

  52. Provost, J., Lesage, F.: The application of compressed sensing for photo-acoustic tomography. IEEE Trans. Med. Imaging 28, 585–594 (2009)

    Article  Google Scholar 

  53. Sushilov, N.V., Cobbold, S.C.: Frequency-domain wave equation and its timedomain solutions in attenuating media. J. Acoust. Soc. Am. 115(4), 1431–1436 (2004)

    Article  Google Scholar 

  54. Tam, A.C.: Application of photo-acoustic sensing techniques. Rev. Mod. Phys. 58, 381–431 (1986)

    Article  Google Scholar 

  55. Wang, L.V. (ed.): Photoacoustic Imaging and Spectroscopy. CRC, Boca Raton (2009)

    Google Scholar 

  56. Wang, L.V., Wu, H.-I.: Biomedical Optics, Principles and Imaging. Wiley, Hoboken (2007)

    Google Scholar 

  57. Wang, L.V., Zhao, X.M., Sun, H.T., Ku, G.: Microwave-induced acoustic imaging of biological tissues. Rev. Sci. Instrum. 70, 3744–3748 (1999)

    Article  Google Scholar 

  58. Wang, Y., Xie, X., Wang, X., Ku, G., Gill, K.L., ONeal, D.P., Stoica, G., Wang, L.V.: Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain. Nano Lett. 4, 1689–1692 (2004)

    Article  Google Scholar 

  59. Wang, X., Xie, X., Ku, G., Wang, L.V., Stoica, G.: Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography. J. Biomed. Opt. 11(2), 024015 (2006)

    Article  Google Scholar 

  60. Wernick, M.N., Aarsvold, J.N.: Emission Tomography, the Fundamentals of PET and SPECT. Elsevier, San Diego (2004)

    Google Scholar 

  61. Xu, M., Wang, L.V.: Time-domain reconstruction for thermoacoustic tomography in a spherical geometry. IEEE Trans. Med. Imaging 21, 814–822 (2002)

    Article  Google Scholar 

  62. Xu, M., Wang, L.V.: Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction. Phys. Rev. E 67, 056605 (2003)

    Article  Google Scholar 

  63. Xu, Y., Wang, L.V.: Effects of acoustic heterogeneity in breast thermoacoustic tomography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1134–1146 (2003)

    Article  Google Scholar 

  64. Xu, M., Wang, L.: Universal back-projection algorithm for photoacoustic computed tomography. Phys. Rev. E 71, 016706 (2005)

    Article  Google Scholar 

  65. Xu, M., Wang, L.V.: Biomedical photoacoustics. Rev. Sci. Instrum. 77, 041101 (2006)

    Article  Google Scholar 

  66. Xu, Y., Feng, D., Wang, L.V.: Exact frequency-domain reconstruction for thermoacoustic tomography i: planar geometry. IEEE Trans. Med. Imaging 21, 823–828 (2002)

    Article  Google Scholar 

  67. Xu, Y., Xu, M., Wang, L.V.: Exact frequency-domain reconstruction for thermoacoustic tomography-ii: cylindrical geometry. IEEE Trans. Med. Imaging 21, 829–833 (2002)

    Article  Google Scholar 

  68. Yuan, Z., Jiang, H.: Quantitative photoacoustic tomography: recovery of optical absorption coefficient maps of heterogeneous media. Appl. Phys. Lett. 88(23), 231101 (2006)

    Article  Google Scholar 

  69. Zhang, J., Anastasio, M.A., Pan, X., Wang, L.V.: Weighted expectation maximization reconstruction algorithms for thermoacoustic tomography. IEEE Trans. Med. Imaging 24, 817–820 (2005)

    Article  Google Scholar 

  70. Zou, Y., Pan, X., Anastasio, M.A.: Data truncation and the exterior reconstruction problem in reflection-mode tomography. In: IEEE Nuclear Science Symposium Conference Record, Norfolk, vol. 2, pp. 726–730. IEEE, (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Wang, K., Anastasio, M.A. (2015). Photoacoustic and Thermoacoustic Tomography: Image Formation Principles. In: Scherzer, O. (eds) Handbook of Mathematical Methods in Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0790-8_50

Download citation

Publish with us

Policies and ethics