Encyclopedia of Database Systems

Living Edition
| Editors: Ling Liu, M. Tamer Özsu

Integrated DB and IR Approaches

Living reference work entry

Latest version View entry history

DOI: https://doi.org/10.1007/978-1-4899-7993-3_206-3



Integrated DB&IR semi-structured text retrieval combines IR-style scoring and ranking methods for effective search with indexing techniques and processing algorithms from the database world for efficient query evaluation.

Historical Background

Database research has traditionally focused on semi-structured documents that represent structured data with a well-defined schema and only little unstructured, textual content (aka. “data-centric” XML). Typical examples for such documents are invoices, purchase orders, or even complete bibliographies.

Early work in the field concentrated on “classical” data management problems for XML: storing XML data in relational or native XML systems, defining query languages that integrate conditions on the structure and the content of results (like SQL for relational data), efficiently processing these queries on huge collections of...


Information Retrieval Query Processing Query Language Structure Query Language Document Type Definition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Abiteboul S, Quass D, McHugh J, Widom J, Wiener JL. The lorel query language for semistructured data. Int J Digit Libr. 1997;1(1):68–88.CrossRefGoogle Scholar
  2. 2.
    Amer-Yahia S, Botev C, Shanmugasundaram J. TeXQuery: a full-text search extension to XQuery. In: Proceedings of 12th international world wide web conference. 2004. p. 583–94.Google Scholar
  3. 3.
    Amer-Yahia S, Cho S, Srivastava D. Tree pattern relaxation. In: Advances in database technology, proceedings of 8th international conference on extending database technology. 2002. p. 496–513.Google Scholar
  4. 4.
    Amer-Yahia S, Lakshmanan LVS, Pandit S. FleXPath: flexible structure and full-text querying for XML. In: Proceedings of ACM SIGMOD international conference on management of data. 2004. p. 83–94.Google Scholar
  5. 5.
    Cohen S, Mamou J, Kanza Y, Sagiv Y. XSEarch: a semantic search engine for XML. In: Proceedings of 29th international conference on very large data bases. 2003. p. 45–56.Google Scholar
  6. 6.
    Fuhr N, Großjohann K. XIRQL: a query language for information retrieval in XML documents. In: Proceedings of 24th annual international ACM SIGIR conference on research and development in information retrieval. 2001. p. 172–80.Google Scholar
  7. 7.
    Guo L, Shao F, Botev C, Shanmugasundaram J. XRANK: ranked keyword search over XML documents. In: Proceedings of ACM SIGMOD international conference on management of data. 2003. p. 16–27.Google Scholar
  8. 8.
    Hiemstra D, Rode H, Van Os R, Flokstra J PF/Tijah: text search in an XML database system. In: Proceedings of 2nd international workshop on open source information retrieval. 2006.Google Scholar
  9. 9.
    Hristidis V, Papakonstantinou Y, and Balmin A. Keyword proximity search on XML graphs. In: Proceeings of 19th internatonal conference on data engineering. 2003. p. 367–78.Google Scholar
  10. 10.
    Marian A, Amer-Yahia S, Koudas N, Srivastava D. Adaptive processing of Top-k queries in XML. In: Proceedings of 21st international conference on data engineering. 2005. p. 162–73.Google Scholar
  11. 11.
    Schlieder T, Meuss H. Querying and ranking XML documents. J Am Soc Inf Sci Tech. 2002;53(6):489–503.CrossRefGoogle Scholar
  12. 12.
    Theobald M, Bast H, Majumdar D, Schenkel R, Weikum G. TopX: efficient and versatile top-k query processing for semistructured data. VLDB J. 2008;17(1):81–115.CrossRefGoogle Scholar
  13. 13.
    Theobald A, Weikum G. Adding relevance to XML. In: Proceedings of 3rd international workshop on the world wide web and databases. 2000. p. 105–124.Google Scholar
  14. 14.
    Xu Y, Papakonstantinou Y. Efficient keyword search for smallest LCAs in XML databases. In: Proceedings of ACM SIGMOD international confernce on management of data. 2005. p. 537–8.Google Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.University of TrierTrierGermany
  2. 2.Stanford UniversityStanfordUSA