Skip to main content

Bioenergetic Gain of Citrate-Anticoagulated Continuous Renal Replacement Therapy

  • Living reference work entry
  • First Online:
Diet and Nutrition in Critical Care

Abstract

The cumulative evidence indicating both efficacy and safety of regional citrate anticoagulation (RCA) has been reflected in recent KDIGO guidelines suggesting the use of citrate for prevention of filter clotting in preference to standard heparin, even in patients without an increased bleeding risk. In this chapter we discuss homeostatic consequences of various citrate modalities and bioenergetic gains of various forms of citrate-based continuous renal replacement therapy (CRRT). A systemic dosage of citrate depends on the balance between citrate flow related directly to blood flow and citrate elimination in the effluent which is related to a set RRT dosage. The citrate dosage and systemic energetic delivery is also influenced by the presence or absence of calcium in dialysis/substitution fluids which may be bicarbonate or lactate buffered. Associated homeostatic changes in acid-base regulation and ion changes develop parallely to energetic deliveries given by the loads of citrate, lactate, and glucose. In summary, the bioenergetic gain of CRRT comes from glucose (in acid-citrate-dextrose, ACD), lactate (buffer), and citrate (anticoagulant). The amount substantially differs between modalities despite a similar CRRT dose and is unacceptably high when using ACD with calcium-containing lactate-buffered solutions and a non-reduced ordinary blood flow. When calculating nutritional needs, we should account for the energy delivered by CRRT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ACD:

Acid-citrate-dextrose

CRRT:

Continuous renal replacement therapy

CVVH:

Continuous venovenous hemofiltration

CVVHDF:

Continuous venovenous hemodiafiltration

EDD:

Extended daily dialysis

KDIGO:

Kidney disease improving global outcomes

Qb:

Blood flow

Qc:

Citrate flow

Qd:

Dialysis flow

Qeff:

Effluent flow

Qpost:

Postfilter blood flow

Qpre:

Prefilter blood flow

TSC:

Trisodium citrate

UF:

Ultrafiltration

References

  • Ames WA, McDonnell N, Potter D. The effect of ionised magnesium on coagulation using thromboelastography. Anaesthesia. 1999;54:999–1001.

    Article  CAS  PubMed  Google Scholar 

  • Bakker AJ, Boerma EC, Keidel H, Kingma P, van der Voort PH. Detection of citrate overdose in critically ill patients on citrate-anticoagulated venovenous haemofiltration: use of ionised and total/ionised calcium. Clin Chem Lab Med. 2006;44:962–6.

    Article  CAS  PubMed  Google Scholar 

  • Balik M, Zakharchenko M, Leden P, et al. Novel lactate buffered dialysis and substitution fluid for citrate anticoagulated continuous renal replacement therapy. Intensive Care Med. 2012a;38.

    Google Scholar 

  • Balik M, Zakharchenko M, Otahal M, et al. Quantification of systemic delivery of substrates for intermediate metabolism during citrate anticoagulation of continuous renal replacement therapy. Blood Purif. 2012b;33:80–7.

    Article  CAS  PubMed  Google Scholar 

  • Balik M, Zakharchenko M, Leden P, et al. Bioenergetic gain of citrate anticoagulated continuous hemodiafiltration-a comparison between 2 citrate modalities and unfractionated heparin. J Crit Care. 2013;28:87–95.

    Article  CAS  PubMed  Google Scholar 

  • Balik M, Zakharchenko M, Leden P, et al. The effects of a novel calcium-free lactate buffered dialysis and substitution fluid for regional citrate anticoagulation - prospective feasibility study. Blood Purif. 2014, accepted, in press.

    Google Scholar 

  • Bellomo R, Cass A, Cole L, et al. Intensity of continuous renal-replacement therapy in critically ill patients. N Engl J Med. 2009;361:1627–38.

    Article  PubMed  Google Scholar 

  • Bollmann MD, Revelly JP, Tappy L, et al. Effect of bicarbonate and lactate buffer on glucose and lactate metabolism during hemodiafiltration in patients with multiple organ failure. Intensive Care Med. 2004;30:1103–10.

    Article  PubMed  Google Scholar 

  • Brain M, Parkes S, Fowler P, Robertson I, Brown A. Calcium flux in continuous venovenous haemodiafiltration with heparin and citrate anticoagulation. Crit Care Resusc. 2011;13:72–81.

    PubMed  Google Scholar 

  • Brunet S, Leblanc M, Geadah D, Parent D, Courteau S, Cardinal J. Diffusive and convective solute clearances during continuous renal replacement therapy at various dialysate and ultrafiltration flow rates. Am J Kidney Dis. 1999;34:486–92.

    Article  CAS  PubMed  Google Scholar 

  • Chadha V, Garg U, Warady BA, Alon US. Citrate clearance in children receiving continuous venovenous renal replacement therapy. Pediatr Nephrol. 2002;17:819–24.

    Article  PubMed  Google Scholar 

  • Demirjian S, Teo BW, Guzman JA, et al. Hypophosphatemia during continuous hemodialysis is associated with prolonged respiratory failure in patients with acute kidney injury. Nephrol Dial Transplant. 2011;26:3508–14.

    Article  CAS  PubMed  Google Scholar 

  • Dorval M, Madore F, Courteau S, Leblanc M. A novel citrate anticoagulation regimen for continuous venovenous hemodiafiltration. Intensive Care Med. 2003;29:1186–9.

    Article  PubMed  Google Scholar 

  • Escuela MP, Guerra M, Anon JM, et al. Total and ionized serum magnesium in critically ill patients. Intensive Care Med. 2005;31:151–6.

    Article  PubMed  Google Scholar 

  • Global KDI, Group OKAKIW. KDIGO clinical practice guideline for acute kidney injury. Kidney Int. 2012;2:1–138.

    Article  Google Scholar 

  • Gupta M, Wadhwa NK, Bukovsky R. Regional citrate anticoagulation for continuous venovenous hemodiafiltration using calcium-containing dialysate. Am J Kidney Dis. 2004;43:67–73.

    Article  CAS  PubMed  Google Scholar 

  • Hetzel GR, Taskaya G, Sucker C, Hennersdorf M, Grabensee B, Schmitz M. Citrate plasma levels in patients under regional anticoagulation in continuous venovenous hemofiltration. Am J Kidney Dis. 2006;48:806–11.

    Article  CAS  PubMed  Google Scholar 

  • Hetzel GR, Schmitz M, Wissing H, et al. Regional citrate versus systemic heparin for anticoagulation in critically ill patients on continuous venovenous haemofiltration: a prospective randomized multicentre trial. Nephrol Dial Transplant. 2011;26:232–9.

    Article  CAS  PubMed  Google Scholar 

  • Kielstein JT, Schiffer M, Hafer C. Back to the future: extended dialysis for treatment of acute kidney injury in the intensive care unit. J Nephrol. 2010;23:494–501.

    PubMed  Google Scholar 

  • Leverve X, Mustafa I, Novak I, et al. Lactate metabolism in acute uremia. J Ren Nutr. 2005;15:58–62.

    Article  PubMed  Google Scholar 

  • Mariano F, Tedeschi L, Morselli M, Stella M, Triolo G. Normal citratemia and metabolic tolerance of citrate anticoagulation for hemodiafiltration in severe septic shock burn patients. Intensive Care Med. 2010;36:1735–43.

    Article  CAS  PubMed  Google Scholar 

  • Mariano F, Morselli M, Bergamo D, et al. Blood and ultrafiltrate dosage of citrate as a useful and routine tool during continuous venovenous haemodiafiltration in septic shock patients. Nephrol Dial Transplant. 2011;26:3882–8.

    Article  CAS  PubMed  Google Scholar 

  • Marino PL, Sutin KM. The ICU book. 3rd ed. Philadelphia/London: Lippincott Williams & Wilkins; 2007. p. 194–208.

    Google Scholar 

  • Matejovic M, Radermacher P, Fontaine E. Lactate in shock: a high-octane fuel for the heart? Intensive Care Med. 2007;33:406–8.

    Article  CAS  PubMed  Google Scholar 

  • Meier-Kriesche HU, Gitomer J, Finkel K, DuBose T. Increased total to ionized calcium ratio during continuous venovenous hemodialysis with regional citrate anticoagulation. Crit Care Med. 2001;29:748–52.

    Article  CAS  PubMed  Google Scholar 

  • Monchi M, Berghmans D, Ledoux D, Canivet JL, Dubois B, Damas P. Citrate vs. heparin for anticoagulation in continuous venovenous hemofiltration: a prospective randomized study. Intensive Care Med. 2004;30:260–5.

    Article  PubMed  Google Scholar 

  • Morgera S, Scholle C, Voss G, et al. Metabolic complications during regional citrate anticoagulation in continuous venovenous hemodialysis: single-center experience. Nephron Clin Pract. 2004;97:c131–6.

    Article  PubMed  Google Scholar 

  • Morgera S, Haase M, Ruckert M, et al. Regional citrate anticoagulation in continuous hemodialysis–acid–base and electrolyte balance at an increased dose of dialysis. Nephron Clin Pract. 2005;101:c211–9.

    Article  CAS  PubMed  Google Scholar 

  • Morgera S, Schneider M, Slowinski T, et al. A safe citrate anticoagulation protocol with variable treatment efficacy and excellent control of the acid–base status. Crit Care Med. 2009;37:2018–24.

    Article  CAS  PubMed  Google Scholar 

  • Oudemans-van Straaten HM. Citrate anticoagulation for continuous renal replacement therapy in the critically ill. Blood Purif. 2010;29:191–6.

    Article  CAS  PubMed  Google Scholar 

  • Oudemans-van Straaten HM, Bosman RJ, Koopmans M, et al. Citrate anticoagulation for continuous venovenous hemofiltration. Crit Care Med. 2009;37:545–52.

    Article  CAS  PubMed  Google Scholar 

  • Oudemans-van Straaten HM, Kellum JA, Bellomo R. Clinical review: anticoagulation for continuous renal replacement therapy–heparin or citrate? Crit Care. 2011;15:202.

    Article  PubMed Central  PubMed  Google Scholar 

  • Palevsky PM, Zhang JH, O’Connor TZ, et al. Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med. 2008;359:7–20.

    Article  CAS  PubMed  Google Scholar 

  • Palsson R, Niles JL. Regional citrate anticoagulation in continuous venovenous hemofiltration in critically ill patients with a high risk of bleeding. Kidney Int. 1999;55:1991–7.

    Article  CAS  PubMed  Google Scholar 

  • Relton S, Greenberg A, Palevsky PM. Dialysate and blood flow dependence of diffusive solute clearance during CVVHD. ASAIO J. 1992;38:M691–6.

    Article  CAS  PubMed  Google Scholar 

  • Schiffl H, Lang SM, Fischer R. Daily hemodialysis and the outcome of acute renal failure. N Engl J Med. 2002;346:305–10.

    Article  PubMed  Google Scholar 

  • Schneider MLL, Slowinski T, Peters H, Neumayer HH, Morgera S. Citrate anticoagulation protocol for slow extended hemodialysis with the Genius dialysis system in acute renal failure. Int J Artif Organs. 2008;31:43–8.

    CAS  PubMed  Google Scholar 

  • Soliman HM, Mercan D, Lobo SS, Melot C, Vincent JL. Development of ionized hypomagnesemia is associated with higher mortality rates. Crit Care Med. 2003;31:1082–7.

    Article  CAS  PubMed  Google Scholar 

  • Swartz R, Pasko D, O’Toole J, Starmann B. Improving the delivery of continuous renal replacement therapy using regional citrate anticoagulation. Clin Nephrol. 2004;61:134–43.

    Article  CAS  PubMed  Google Scholar 

  • Uchino S, Fealy N, Baldwin I, Morimatsu H, Bellomo R. Continuous is not continuous: the incidence and impact of circuit “down-time” on uraemic control during continuous veno-venous haemofiltration. Intensive Care Med. 2003;29:575–8.

    Article  PubMed  Google Scholar 

  • Wu MY, Hsu YH, Bai CH, Lin YF, Wu CH, Tam KW. Regional citrate versus heparin anticoagulation for continuous renal replacement therapy: a meta-analysis of randomized controlled trials. Am J Kidney Dis. 2012;59:810–8.

    Article  CAS  PubMed  Google Scholar 

  • Zakharchenko MBM, Leden P. Citrate anticoagulated continuous haemodiafiltration: focus on ionised magnesium. Intensive Care Med. 2011;37:336.

    Google Scholar 

  • Zhang Z, Hongying N. Efficacy and safety of regional citrate anticoagulation in critically ill patients undergoing continuous renal replacement therapy. Intensive Care Med. 2012;38:20–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Balik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Balik, M., Zakharchenko, M. (2014). Bioenergetic Gain of Citrate-Anticoagulated Continuous Renal Replacement Therapy. In: Rajendram, R., Preedy, V., Patel, V. (eds) Diet and Nutrition in Critical Care. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8503-2_70-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8503-2_70-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-8503-2

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics