Skip to main content

Hip Cartilage Restoration: Overview

  • Reference work entry
  • First Online:
Hip Arthroscopy and Hip Joint Preservation Surgery

Abstract

Articular cartilage must resist mechanical loading modes that include compression, tension, and shear. The material characteristics of articular cartilage are optimized for these roles and are intricately related to structure and composition. When full-thickness chondral and osteochondral defects occur in the hip, they are painful, causing mechanical symptoms and inflammation as a result of cartilage breakdown. These defects often progress over time. The treatment goals for cartilage restoration surgery are the resolution of symptoms, return to activity, and prevention of progressive damage. To achieve this, a preoperative plan is essential, and the nature of the lesion including size, location, underlying etiology, or associated structural pathoanatomy must be known. Indications for treating a focal chondral defect in the hip include acute trauma with an unstable fragment, continued pain and symptoms despite conservative management, a visible chondral defect on preoperative imaging with a positive response to a diagnostic intra-articular injection, and intra-articular loose bodies. The objective of this chapter is to describe the current state of the art for restoration of focal articular cartilage defects in the hip. To support this objective, we review the basic structure and function of articular cartilage as well as the biomechanics of the hip and of focal defects. Subsequently, the clinical presentation, diagnosis, and suspected underlying causes of damage to articular surfaces in the hip are reviewed. Finally, we discuss the available treatment options, their relative indications, and their published outcomes to date.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Matheney T, Kim YJ, Zurakowski D, Matero C, Millis M. Intermediate to long-term results following the bernese periacetabular osteotomy and predictors of clinical outcome: surgical technique. J Bone Joint Surg Am. 2010;92(Suppl 1 Pt 2):115–29.

    PubMed  Google Scholar 

  2. Ng VY, Arora N, Best TM, Pan X, Ellis TJ. Efficacy of surgery for femoroacetabular impingement: a systematic review. Am J Sports Med. 2010;38(11):2337–45.

    Article  PubMed  Google Scholar 

  3. Ross JR, Nepple JJ, Baca G, Schoenecker PL, Clohisy JC. Intraarticular abnormalities in residual Perthes and Perthes-like hip deformities. Clin Orthop Relat Res. 2012;470(11):2968–77.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Zaltz I, Leunig M. Parafoveal chondral defects associated with femoroacetabular impingement. Clin Orthop Relat Res. 2012;470(12):3383–9.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Ross JR, Zaltz I, Nepple JJ, Schoenecker PL, Clohisy JC. Arthroscopic disease classification and interventions as an adjunct in the treatment of acetabular dysplasia. Am J Sports Med. 2011;39 Suppl:72S–8S.

    Article  PubMed  Google Scholar 

  6. Krych AJ, Thompson M, Larson CM, Byrd JW, Kelly BT. Is posterior hip instability associated with cam and pincer deformity? Clin Orthop Relat Res. 2012;470(12):3390–7.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Byrd JW. Lateral impact injury. A source of occult hip pathology. Clin Sports Med. 2001;20(4):801–15.

    Article  CAS  PubMed  Google Scholar 

  8. Mow VC, Gu WY, Chen FH. Structure and function of articular cartilage and meniscus. In: Mow VC, Huiskes R, editors. Basic orthopaedic biomechanics and mechano-biology. 3rd ed. Philadelphia: Lippincott; 2005. p. 181–258.

    Google Scholar 

  9. Guilak F, Mow VC. The mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions in articular cartilage. J Biomech. 2000;33(12):1663–73.

    Article  CAS  PubMed  Google Scholar 

  10. Buckley MR, Gleghorn JP, Bonassar LJ, Cohen I. Mapping the depth dependence of shear properties in articular cartilage. J Biomech. 2008;41(11):2430–7.

    Article  PubMed  Google Scholar 

  11. Chen AC, Bae WC, Schinagl RM, Sah RL. Depth- and strain-dependent mechanical and electromechanical properties of full-thickness bovine articular cartilage in confined compression. J Biomech. 2001;34(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  12. Schinagl RM, Gurskis D, Chen AC, Sah RL. Depth-dependent confined compression modulus of full-thickness bovine articular cartilage. J Orthop Res Off Publ Orthop Res Soc. 1997;15(4):499–506.

    Article  CAS  Google Scholar 

  13. Setton LA, Zhu W, Mow VC. The biphasic poroviscoelastic behavior of articular cartilage: role of the surface zone in governing the compressive behavior. J Biomech. 1993;26(4–5):581–92.

    Article  CAS  PubMed  Google Scholar 

  14. Athanasiou KA, Agarwal A, Dzida FJ. Comparative study of the intrinsic mechanical properties of the human acetabular and femoral head cartilage. J Orthop Res Off Publ Orthop Res Soc. 1994;12(3):340–9.

    Article  CAS  Google Scholar 

  15. Demarteau O, Pillet L, Inaebnit A, Borens O, Quinn TM. Biomechanical characterization and in vitro mechanical injury of elderly human femoral head cartilage: comparison to adult bovine humeral head cartilage. Osteoarthr Cartil/OARS Osteoarthr Res Soc. 2006;14(6):589–96.

    Article  CAS  Google Scholar 

  16. Huang CY, Stankiewicz A, Ateshian GA, Mow VC. Anisotropy, inhomogeneity, and tension-compression nonlinearity of human glenohumeral cartilage in finite deformation. J Biomech. 2005;38(4):799–809.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Huang CY, Soltz MA, Kopacz M, Mow VC, Ateshian GA. Experimental verification of the roles of intrinsic matrix viscoelasticity and tension-compression nonlinearity in the biphasic response of cartilage. J Biomech Eng. 2003;125(1):84–93.

    Article  PubMed  Google Scholar 

  18. Mak AF. The apparent viscoelastic behavior of articular cartilage–the contributions from the intrinsic matrix viscoelasticity and interstitial fluid flows. J Biomech Eng. 1986;108(2):123–30.

    Article  CAS  PubMed  Google Scholar 

  19. Mow VC, Kuei SC, Lai WM, Armstrong CG. Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. J Biomech Eng. 1980;102(1):73–84.

    Article  CAS  PubMed  Google Scholar 

  20. Setton LA, Tohyama H, Mow VC. Swelling and curling behaviors of articular cartilage. J Biomech Eng. 1998;120(3):355–61.

    Article  CAS  PubMed  Google Scholar 

  21. Burstein D, Gray ML, Hartman AL, Gipe R, Foy BD. Diffusion of small solutes in cartilage as measured by nuclear magnetic resonance (NMR) spectroscopy and imaging. J Orthop Res Off Publ Orthop Res Soc. 1993;11(4):465–78.

    Article  CAS  Google Scholar 

  22. Evans RC, Quinn TM. Solute diffusivity correlates with mechanical properties and matrix density of compressed articular cartilage. Arch Biochem Biophys. 2005;442(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  23. Mauck RL, Hung CT, Ateshian GA. Modeling of neutral solute transport in a dynamically loaded porous permeable gel: implications for articular cartilage biosynthesis and tissue engineering. J Biomech Eng. 2003;125(5):602–14.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, et al. Hip contact forces and gait patterns from routine activities. J Biomech. 2001;34(7):859–71.

    Article  CAS  PubMed  Google Scholar 

  25. Henak CR, Abraham CL, Anderson AE, Maas SA, Ellis BJ, Peters CL, et al. Patient-specific analysis of cartilage and labrum mechanics in human hips with acetabular dysplasia. J Osteoarthritis Cartilage 2014; 22(2):210–217.

    Google Scholar 

  26. Harris MD, Anderson AE, Henak CR, Ellis BJ, Peters CL, Weiss JA. Finite element prediction of cartilage contact stresses in normal human hips. J Orthop Res 2012;30(7):1133–1139.

    Google Scholar 

  27. Peelle MW, Della Rocca GJ, Maloney WJ, Curry MC, Clohisy JC. Acetabular and femoral radiographic abnormalities associated with labral tears. Clin Orthop Relat Res. 2005;441:327–33.

    Article  PubMed  Google Scholar 

  28. Fujii M, Nakashima Y, Jingushi S, Yamamoto T, Noguchi Y, Suenaga E, et al. Intraarticular findings in symptomatic developmental dysplasia of the hip. J Pediatr Orthop. 2009;29(1):9–13.

    Article  PubMed  Google Scholar 

  29. Leunig M, Podeszwa D, Beck M, Werlen S, Ganz R. Magnetic resonance arthrography of labral disorders in hips with dysplasia and impingement. Clin Orthop Relat Res. 2004;418:74–80.

    Article  PubMed  Google Scholar 

  30. Henak CR, Carruth ED, Anderson AE, Harris MD, Ellis BJ, Peters CL, et al. Finite element predictions of cartilage contact mechanics in hips with retroverted acetabula. Osteoarthr Cartil/OARS Osteoarthr Res Soc. 2013;21(10):1522–9.

    Article  CAS  Google Scholar 

  31. Atkinson TS, Haut RC, Altiero NJ. Impact-induced fissuring of articular cartilage: an investigation of failure criteria. J Biomech Eng. 1998;120(2):181–7.

    Article  CAS  PubMed  Google Scholar 

  32. Haut RC, Ide TM, De Camp CE. Mechanical responses of the rabbit patello-femoral joint to blunt impact. J Biomech Eng. 1995;117(4):402–8.

    Article  CAS  PubMed  Google Scholar 

  33. Henak CR, Ateshian GA, Weiss JA. Finite element prediction of transchondral stress and strain in the human hip. J Biomech Eng. 2014;136(2):021021

    Google Scholar 

  34. Schinhan M, Gruber M, Vavken P, Dorotka R, Samouh L, Chiari C, et al. Critical-size defect induces unicompartmental osteoarthritis in a stable ovine knee. J Orthop Res. 2012;30(2):214–20.

    Article  PubMed  Google Scholar 

  35. Kock L, van Donkelaar CC, Ito K. Tissue engineering of functional articular cartilage: the current status. Cell Tissue Res. 2012;347(3):613–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Neumann G, Mendicuti AD, Zou KH, Minas T, Coblyn J, Winalski CS, et al. Prevalence of labral tears and cartilage loss in patients with mechanical symptoms of the hip: evaluation using MR arthrography. Osteoarthr Cartil/OARS Osteoarthr Res Soc. 2007;15(8):909–17.

    Article  CAS  Google Scholar 

  37. Keeney JA, Peelle MW, Jackson J, Rubin D, Maloney WJ, Clohisy JC. Magnetic resonance arthrography versus arthroscopy in the evaluation of articular hip pathology. Clin Orthop Relat Res. 2004;429:163–9.

    Article  PubMed  Google Scholar 

  38. Benders KE, van Weeren PR, Badylak SF, Saris DB, Dhert WJ, Malda J. Extracellular matrix scaffolds for cartilage and bone regeneration. Trends Biotechnol. 2013;31(3):169–76.

    Article  CAS  PubMed  Google Scholar 

  39. Williams GM, Chan EF, Temple-Wong MM, Bae WC, Masuda K, Bugbee WD, et al. Shape, loading, and motion in the bioengineering design, fabrication, and testing of personalized synovial joints. J Biomech. 2010;43(1):156–65.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Leite DX, Vieira JMM, Carvalhais VOC, Araújo VL, Silva PLP, Fonseca ST. Relationship between joint passive stiffness and hip lateral rotator concentric torque. Rev Bras Fisioter. 2012;16:414–21.

    Article  PubMed  Google Scholar 

  41. Retchford TH, Crossley KM, Grimaldi A, Kemp JL, Cowan SM. Can local muscles augment stability in the hip? A narrative literature review. J Musculoskelet Neuronal Interact. 2013;13:1–12.

    CAS  PubMed  Google Scholar 

  42. Wandel S, Juni P, Tendal B, Nuesch E, Villiger PM, Welton NJ, et al. Effects of glucosamine, chondroitin, or placebo in patients with osteoarthritis of hip or knee: network meta-analysis. BMJ. 2010;341:c4675.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Nichols AW. Complications associated with the use of corticosteroids in the treatment of athletic injuries. Clin J Sport Med. 2005;15(5):370–5.

    Article  PubMed  Google Scholar 

  44. Kon E, Filardo G, Matteo BD, Marcacci M. PRP for the treatment of cartilage pathology. Open Orthop J. 2013;7:120–8.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Sanchez M, Guadilla J, Fiz N, Andia I. Ultrasound-guided platelet-rich plasma injections for the treatment of osteoarthritis of the hip. Rheumatology (Oxford). 2012;51(1):144–50.

    Article  CAS  Google Scholar 

  46. van den Bekerom MP, Lamme B, Sermon A, Mulier M. What is the evidence for viscosupplementation in the treatment of patients with hip osteoarthritis? Systematic review of the literature. Arch Orthop Trauma Surg. 2008;128(8):815–23.

    Article  PubMed  Google Scholar 

  47. Tzaveas AP, Villar RN. Arthroscopic repair of acetabular chondral delamination with fibrin adhesive. Hip Int. 2010;20(1):115–9.

    PubMed  Google Scholar 

  48. Fontana A. A novel technique for treating cartilage defects in the hip: a fully arthroscopic approach to using autologous matrix-induced chondrogenesis. Arthrosc Tech. 2012;1(1):e63–8.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Haviv B, Singh PJ, Takla A, O'Donnell J. Arthroscopic femoral osteochondroplasty for cam lesions with isolated acetabular chondral damage. J Bone Joint Surg (Br). 2010;92(5):629–33.

    Article  CAS  Google Scholar 

  50. Steadman JR, Briggs KK, Rodrigo JJ, Kocher MS, Gill TJ, Rodkey WG. Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy. 2003;19(5):477–84.

    Article  PubMed  Google Scholar 

  51. Erggelet C, Endres M, Neumann K, Morawietz L, Ringe J, Haberstroh K, et al. Formation of cartilage repair tissue in articular cartilage defects pretreated with microfracture and covered with cell-free polymer-based implants. J Orthop Res Off Publ Orthop Res Soc. 2009;27(10):1353–60.

    Article  Google Scholar 

  52. Payne KA, Didiano DM, Chu CR. Donor sex and age influence the chondrogenic potential of human femoral bone marrow stem cells. Osteoarthr Cartil/OARS Osteoarthr Res Soc. 2010;18(5):705–13.

    Article  CAS  Google Scholar 

  53. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331(14):889–95.

    Article  CAS  PubMed  Google Scholar 

  54. Pestka JM, Bode G, Salzmann G, Sudkamp NP, Niemeyer P. Clinical outcome of autologous chondrocyte implantation for failed microfracture treatment of full-thickness cartilage defects of the knee joint. Am J Sports Med. 2012;40(2):325–31.

    Article  PubMed  Google Scholar 

  55. Harris JD, Siston RA, Pan X, Flanigan DC. Autologous chondrocyte implantation: a systematic review. J Bone Joint Surg Am. 2010;92(12):2220–33.

    Article  PubMed  Google Scholar 

  56. Leunig M, Tibor LM, Naal FD, Ganz R, Steinwachs MR. Surgical technique: second-generation bone marrow stimulation via surgical dislocation to treat hip cartilage lesions. Clin Orthop Relat Res. 2012;470(12):3421–31.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Gille J, Schuseil E, Wimmer J, Gellissen J, Schulz AP, Behrens P. Mid-term results of Autologous Matrix-Induced Chondrogenesis for treatment of focal cartilage defects in the knee. Knee Surg Sports Traumatol Arthrosc Off J ESSKA. 2010;18(11):1456–64.

    Article  CAS  Google Scholar 

  58. Lane JG, Healey RM, Chen AC, Sah RL, Amiel D. Can osteochondral grafting be augmented with microfracture in an extended-size lesion of articular cartilage? Am J Sports Med. 2010;38(7):1316–23.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Gomoll AH, Filardo G, de Girolamo L, Espregueira-Mendes J, Marcacci M, Rodkey WG, et al. Surgical treatment for early osteoarthritis. Part I: cartilage repair procedures. Knee Surg Sports Traumatol Arthrosc Off J ESSKA. 2012;20(3):450–66.

    Article  CAS  Google Scholar 

  60. Rittmeister M, Hochmuth K, Kriener S, Richolt J. Five-year results following autogenous osteochondral transplantation to the femoral head. Orthopade. 2005;34(4):320, 322–6.

    Article  PubMed  Google Scholar 

  61. Nam D, Shindle MK, Buly RL, Kelly BT, Lorich DG. Traumatic osteochondral injury of the femoral head treated by mosaicplasty: a report of two cases. HSS J. 2010;6(2):228–34.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Anderson LA, Erickson JA, Severson EP, Peters CL. Sequelae of Perthes disease: treatment with surgical hip dislocation and relative femoral neck lengthening. J Pediatr Orthop. 2010;30(8):758–66.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Bugbee WD, Convery FR. Osteochondral allograft transplantation. Clin Sports Med. 1999;18(1):67–75.

    Article  CAS  PubMed  Google Scholar 

  64. Williams SK, Amiel D, Ball ST, Allen RT, Tontz Jr WL, Emmerson BC, et al. Analysis of cartilage tissue on a cellular level in fresh osteochondral allograft retrievals. Am J Sports Med. 2007;35(12):2022–32.

    Article  PubMed  Google Scholar 

  65. Kosashvili Y, Raz G, Backstein D, Lulu OB, Gross AE, Safir O. Fresh-stored osteochondral allografts for the treatment of femoral head defects: surgical technique and preliminary results. Int Orthop. 2013;37(6):1001–6.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Almqvist KF, Wang L, Wang J, Baeten D, Cornelissen M, Verdonk R, et al. Culture of chondrocytes in alginate surrounded by fibrin gel: characteristics of the cells over a period of eight weeks. Ann Rheum Dis. 2001;60(8):781–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Gomoll AH, Filardo G, Almqvist FK, Bugbee WD, Jelic M, Monllau JC, et al. Surgical treatment for early osteoarthritis. Part II: allografts and concurrent procedures. Knee Surg Sports Traumatol Arthrosc Off J ESSKA. 2012;20(3):468–86.

    Article  CAS  Google Scholar 

  68. Dhollander AA, Verdonk PC, Lambrecht S, Verdonk R, Elewaut D, Verbruggen G, et al. Midterm results of the treatment of cartilage defects in the knee using alginate beads containing human mature allogenic chondrocytes. Am J Sports Med. 2012;40(1):75–82.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa M. Tibor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Tibor, L.M., Weiss, J.A. (2015). Hip Cartilage Restoration: Overview. In: Nho, S., Leunig, M., Larson, C., Bedi, A., Kelly, B. (eds) Hip Arthroscopy and Hip Joint Preservation Surgery. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6965-0_96

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6965-0_96

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6964-3

  • Online ISBN: 978-1-4614-6965-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics