Skip to main content

APC

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Cancer Therapeutic Targets

Abstract

The APC gene is located at chr5q21 and is expressed in many tissues throughout the human body. In the colorectal epithelium in particular, APC functions as a critical suppressor of cancer initiation. Individuals who inherit inactivating mutations in one allele of the APC gene exhibit familial adenomatous polyposis (FAP) coli, an autosomal dominant syndrome characterized by the formation of a variety of benign lesions, particularly numerous adenomatous polyps of the colorectal epithelium. In the absence of preventative surgery to remove the source of these precancerous adenomas, FAP patients are highly susceptible to the development of colorectal cancer at an early age. Adenomas from FAP patients exhibit somatic mutations in the second allele of APC. Sporadically occurring colorectal adenomas in the general population frequently harbor biallelic APC mutations as well. The APC protein protects against adenoma formation in the colorectal epithelium at least in part by negatively regulating the canonical WNT signaling pathway. APC loss activates canonical WNT signaling, which coordinates changes in gene expression that promote proliferation over differentiation and cell survival over apoptosis. Ongoing research is focused on improving the accuracy of genetic screens for APC mutations, determining the extent to which colorectal cancers with APC mutations can be effectively treated with agents that downregulate canonical WNT signaling and testing the value of APC promoter hypermethylation as a diagnostic, prognostic, or predictive marker for other forms of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anastas JN, Moon RT. WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer. 2013;13(1):11–26.

    Article  CAS  PubMed  Google Scholar 

  • Aretz S, et al. Frequency and parental origin of de novo APC mutations in familial adenomatous polyposis. Eur J Hum Genet. 2004;12(1):52–8.

    Article  CAS  PubMed  Google Scholar 

  • Aziz O, et al. Meta-analysis of observational studies of ileorectal versus ileal pouch-anal anastomosis for familial adenomatous polyposis. Br J Surg. 2006;93(4):407–17.

    Article  CAS  PubMed  Google Scholar 

  • Berrada N, et al. Epigenetic alterations of adenomatous polyposis coli (Apc), retinoic acid receptor beta (Rarbeta) and survivin genes in tumor tissues and voided urine of bladder cancer patients. Cell Mol Biol (Noisy-le-grand). 2012; Suppl 58:OL1744-51.

    Google Scholar 

  • Chandra SH, et al. A common role for various human truncated adenomatous polyposis coli isoforms in the control of beta-catenin activity and cell proliferation. PLoS One. 2012;7(4):e34479.

    Article  CAS  PubMed  Google Scholar 

  • Chen B, et al. Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat Chem Biol. 2009;5(2):100–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Church J, Simmang C. Practice parameters for the treatment of patients with dominantly inherited colorectal cancer (familial adenomatous polyposis and hereditary nonpolyposis colorectal cancer). Dis Colon Rectum. 2003;46(8):1001–12.

    Article  PubMed  Google Scholar 

  • da Luz Moreira A, Church JM, Burke CA. The evolution of prophylactic colorectal surgery for familial adenomatous polyposis. Dis Colon Rectum. 2009;52(8):1481–6.

    Article  PubMed  Google Scholar 

  • Davila RE, et al. ASGE guideline: colorectal cancer screening and surveillance. Gastrointest Endosc. 2006;63(4):546–57.

    Article  PubMed  Google Scholar 

  • Deka J, et al. The APC protein binds to A/T rich DNA sequences. Oncogene. 1999;18(41):5654–61.

    Article  CAS  PubMed  Google Scholar 

  • Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol. 2010;17(6):1471–4.

    Article  PubMed  Google Scholar 

  • Esteller M, et al. Analysis of adenomatous polyposis coli promoter hypermethylation in human cancer. Cancer Res. 2000;60(16):4366–71.

    CAS  PubMed  Google Scholar 

  • Fu X, et al. Hypermethylation of APC promoter 1A is associated with moderate activation of Wnt signalling pathway in a subset of colorectal serrated adenomas. Histopathology. 2009;55(5):554–63.

    Article  PubMed  Google Scholar 

  • Giardiello FM, et al. Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis. N Engl J Med. 1993;328(18):1313–6.

    Article  CAS  PubMed  Google Scholar 

  • Giles RH, van Es JH, Clevers H. Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta. 2003;1653(1):1–24.

    CAS  PubMed  Google Scholar 

  • Half E, Bercovich D, Rozen P. Familial adenomatous polyposis. Orphanet J Rare Dis. 2009;4:22.

    Article  PubMed  PubMed Central  Google Scholar 

  • Heinen CD. Genotype to phenotype: analyzing the effects of inherited mutations in colorectal cancer families. Mutat Res. 2010;693(1–2):32–45.

    Article  CAS  PubMed  Google Scholar 

  • Henrique R, et al. High promoter methylation levels of APC predict poor prognosis in sextant biopsies from prostate cancer patients. Clin Cancer Res. 2007;13(20):6122–9.

    Article  CAS  PubMed  Google Scholar 

  • Holleman A, et al. miR-135a contributes to paclitaxel resistance in tumor cells both in vitro and in vivo. Oncogene. 2011;30(43):4386–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubers AJ, et al. Prolonged sampling of spontaneous sputum improves sensitivity of hypermethylation analysis for lung cancer. J Clin Pathol. 2012;65(6):541–5.

    Article  PubMed  Google Scholar 

  • Klotz DM, et al. The microtubule poison vinorelbine kills cells independently of mitotic arrest and targets cells lacking the APC tumour suppressor more effectively. J Cell Sci. 2012;125(Pt 4):887–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lui C, et al. APC as a mobile scaffold: regulation and function at the nucleus, centrosomes, and mitochondria. IUBMB Life. 2012;64(3):209–14.

    Article  CAS  PubMed  Google Scholar 

  • Lynch HT, de la Chapelle A. Hereditary colorectal cancer. N Engl J Med. 2003;348(10):919–32.

    Article  CAS  PubMed  Google Scholar 

  • Lynch HT, et al. Who should be sent for genetic testing in hereditary colorectal cancer syndromes? J Clin Oncol. 2007;25(23):3534–42.

    Article  PubMed  Google Scholar 

  • Macnab SA, et al. Herpesvirus saimiri-mediated delivery of the adenomatous polyposis coli tumour suppressor gene reduces proliferation of colorectal cancer cells. Int J Oncol. 2011;39(5):1173–81.

    CAS  PubMed  Google Scholar 

  • Matuschek C, et al. Methylated APC and GSTP1 genes in serum DNA correlate with the presence of circulating blood tumor cells and are associated with a more aggressive and advanced breast cancer disease. Eur J Med Res. 2010;15:277–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCartney BM, Nathke IS. Cell regulation by the Apc protein Apc as master regulator of epithelia. Curr Opin Cell Biol. 2008;20(2):186–93.

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi Y, et al. Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum Mol Genet. 1992;1(4):229–33.

    Article  CAS  PubMed  Google Scholar 

  • Morton JP, Myant KB, Sansom OJ. A FAK-PI-3K-mTOR axis is required for Wnt-Myc driven intestinal regeneration and tumorigenesis. Cell Cycle. 2011;10(2):173–5.

    Article  CAS  PubMed  Google Scholar 

  • Neufeld KL, et al. APC-mediated downregulation of beta-catenin activity involves nuclear sequestration and nuclear export. EMBO Rep. 2000;1(6):519–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen M, et al. Germline mutations in APC and MUTYH are responsible for the majority of families with attenuated familial adenomatous polyposis. Clin Genet. 2007;71(5):427–33.

    Article  CAS  PubMed  Google Scholar 

  • Olsen KO, et al. Female fecundity before and after operation for familial adenomatous polyposis. Br J Surg. 2003;90(2):227–31.

    Article  CAS  PubMed  Google Scholar 

  • Pack SC, et al. Usefulness of plasma epigenetic changes of five major genes involved in the pathogenesis of colorectal cancer. Int J Colorectal Dis. 2013;28(1):139–47.

    Google Scholar 

  • Senda T, et al. Adenomatous polyposis coli (APC) plays multiple roles in the intestinal and colorectal epithelia. Med Mol Morphol. 2007;40(2):68–81.

    Article  PubMed  Google Scholar 

  • Spigelman AD, et al. Upper gastrointestinal cancer in patients with familial adenomatous polyposis. Lancet. 1989;2(8666):783–5.

    Article  CAS  PubMed  Google Scholar 

  • Steinbach G, et al. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med. 2000;342(26):1946–52.

    Article  CAS  PubMed  Google Scholar 

  • Tonelli F, et al. Long-term treatment with sulindac in familial adenomatous polyposis: is there an actual efficacy in prevention of rectal cancer? J Surg Oncol. 2000;74(1):15–20.

    Article  CAS  PubMed  Google Scholar 

  • Uesugi H, et al. Status of reduced expression and hypermethylation of the APC tumor suppressor gene in human oral squamous cell carcinoma. Int J Mol Med. 2005;15(4):597–602.

    CAS  PubMed  Google Scholar 

  • Van der Auwera I, et al. Aberrant methylation of the Adenomatous Polyposis Coli (APC) gene promoter is associated with the inflammatory breast cancer phenotype. Br J Cancer. 2008;99(10):1735–42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vasen HF, et al. Decision analysis in the surgical treatment of patients with familial adenomatous polyposis: a Dutch-Scandinavian collaborative study including 659 patients. Gut. 2001;49(2):231–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Virmani AK, et al. Aberrant methylation of the adenomatous polyposis coli (APC) gene promoter 1A in breast and lung carcinomas. Clin Cancer Res. 2001;7(7):1998–2004.

    CAS  PubMed  Google Scholar 

  • Voronkov A, Krauss S. Wnt/beta-catenin signaling and small molecule inhibitors. Curr Pharm Des. 2013;19(4):634–64.

    Article  CAS  PubMed  Google Scholar 

  • West NJ, et al. Eicosapentaenoic acid reduces rectal polyp number and size in familial adenomatous polyposis. Gut. 2010;59(7):918–25.

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, White RL, Neufeld KL. Phosphorylation near nuclear localization signal regulates nuclear import of adenomatous polyposis coli protein. Proc Natl Acad Sci U S A. 2000;97(23):12577–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zilberberg A, Lahav L, Rosin-Arbesfeld R. Restoration of APC gene function in colorectal cancer cells by aminoglycoside- and macrolide-induced read-through of premature termination codons. Gut. 2010;59(4):496–507.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Louise Groden .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this entry

Cite this entry

Groden, J.L., Hankey, W., Ebede, K. (2016). APC. In: Marshall, J. (eds) Cancer Therapeutic Targets. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6613-0_58-4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6613-0_58-4

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6613-0

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    APC
    Published:
    23 June 2016

    DOI: https://doi.org/10.1007/978-1-4614-6613-0_58-4

  2. Original

    APC
    Published:
    29 January 2016

    DOI: https://doi.org/10.1007/978-1-4614-6613-0_58-3