Skip to main content

High Temperature Oxygen Separation Using Dense Ceramic Membranes

Handbook of Climate Change Mitigation and Adaptation

Abstract

Mixed ionic–electronic conducting (MIEC) ceramic membrane has rapidly become an attractive alternative technology to conventional cryogenic distillation for oxygen separation from air. Given the heat integration opportunity in most energy generation processes, this technology offers lower cost and energy penalty due to its capability to produce pure oxygen at high temperature (>800 °C). Using pure oxygen for combustion in turn facilitates the production of concentrated carbon dioxide gas downstream which can be easily captured and handled to mitigate the greenhouse gas effect. This chapter overviews and discusses all essential aspects to understand oxygen selective MIEC ceramic technology. The basics behind the formation of defects responsible for high-temperature ionic transport are explained together with the transport theory. Two major family structures, e.g., fluorite and perovskite, which become the building blocks of most MIEC materials are discussed. Specific structure and properties as well as the advantages and the drawbacks of each family are explained. Some important structural considerations, e.g., crystal structure packing and Goldschmidt tolerance factor, are elaborated due to its strong relationship with the properties. Two additional concepts, e.g., dual-phase membrane and external short circuit, are given to address the drawbacks associated with fluorite and perovskite MIEC materials. Various geometries and types of MIEC membranes can be prepared, e.g., disk, tube, hollow fiber, or flat plate, each of which fits particular application. A short paragraph is presented at the end of the chapter on another possible application of this technology to facilitate a particular reaction to synthesize value-added products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aldebert P, Traverse J-P (1985) Structure and ionic mobility of zirconia at high temperature. J Am Ceram Soc 68:34–40

    Article  Google Scholar 

  • Araki S, Yamamoto H, Hoshi Y, Lu J, Hakuta Y, Hayashi H, Ohashi T, Sato K, Nishioka M, Inoue T, Hikazudani S, Hamakawa S (2012) Synthesis of Ca0.8Sr0.2Ti0.7Fe0.3O3-δ thin film membranes and its application to the partial oxidation of methane. Solid State Ion 221:43–49

    Article  Google Scholar 

  • Arnold M, Xu Q, Tichelaar FD, Feldhoff A (2009) Local charge disproportion in a high-performance perovskite. Chem Mater 21:635–640

    Article  Google Scholar 

  • Asadi AA, Behrouzifar A, Mohammadi T, Pak A (2012) Effects of nano powder synthesis methods, shaping and sintering conditions on microstructure and oxygen permeation properties of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) perovskite-type membranes. High Temp Mater Proc 31:47–59

    Article  Google Scholar 

  • Balachandran U, Dusek JT, Mieville RL, Poeppel RB, Kleefisch MS, Pei S, Kobylinski TP, Udovich CA, Bose AC (1995) Dense ceramic membranes for partial oxidation of methane to syngas. Appl Catal A 133:19–29

    Article  Google Scholar 

  • Balachandran U, Dusek JT, Maiya PS, Ma B, Mieville RL, Kleefisch MS, Udovich CA (1997) Ceramic membrane reactor for converting methane to syngas. Catal Today 36:265–272

    Article  Google Scholar 

  • Bhalla AS, Guo R, Roy R (2000) The perovskite structure – a review of its role in ceramic science and technology. Mater Res Innov 4:3–26

    Article  Google Scholar 

  • Bouwmeester HJM, Kruidhof H, Burggraaf AJ (1994) Importance of the surface exchange kinetics as rate limiting step in oxygen permeation through mixed-conducting oxides. Solid State Ion 72:185–194

    Article  Google Scholar 

  • Chen CS, Burggraaf AJ (1999) Stabilized bismuth oxide-noble metal mixed conducting composites as high temperature oxygen separation membranes. J Appl Electrochem 29:355–360

    Article  Google Scholar 

  • Chen W, Chen C-s, Winnubst L (2011) Ta-doped SrCo0.8Fe0.2O3-δ membranes: phase stability and oxygen permeation in CO2 atmosphere. Solid State Ion 196:30–33

    Article  Google Scholar 

  • Dyer PN, Richards RE, Russek SL, Taylor DM (2000) Ion transport membrane technology for oxygen separation and syngas production. Solid State Ion 134:21–33

    Article  Google Scholar 

  • Eguchi K, Setoguchi T, Inoue T, Arai H (1992) Electrical properties of ceria-based oxides and their application to solid oxide fuel cells. Solid State Ion 52:165–172

    Article  Google Scholar 

  • Feldhoff A, Martynczuk J, Arnold M, Myndyk M, Bergmann I, Šepelak V, Gruner W, Vogt U, Hähnel A, Woltersdorf J (2009) Spin state transition of iron in (Ba0.5Sr0.5)(Fe0.8Zn0.2)O3-δ perovskite. J Solid State Chem 182:2961–2971

    Article  Google Scholar 

  • Foster T (2008) Air products, air separation technology – ion transport membrane (ITM). Allentown, Air Products and Chemicals, Inc. http://www.google.co.id/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CBsQFjAAahUKEwjc3Nnr7LTIAhXCPo4KHTeeANU&url=http%3A%2F%2Fwww.airproducts.com%2F~%2Fmedia%2FFiles%2FPDF%2Fproducts%2FLiterature_Cryogenic-Air-Separation-ITM-28007017GLB.pdf&usg=AFQjCNFRV-JKBokHQHOTDJ_cT8y2qO1lIw&sig2=--imzHgHoQUQmghFVOhHew&bvm=bv.104615367,d.c2E

  • Imashuku S, Wang L, Mezghani K, Habib MA, Shao-Horn Y (2013) Oxygen permeation from oxygen ion-conducting membranes coated with porous metals or mixed ionic and electronic conducting oxides. J Electrochem Soc 160:E148–E153

    Article  Google Scholar 

  • Inaba H, Tagawa H (1996) Ceria-based solid electrolytes. Solid State Ion 83:1–16

    Article  Google Scholar 

  • Ishihara T, Takita Y (2000) Partial oxidation of methane into syngas with oxygen permeating ceramic membrane reactors. Catal Surv Jpn 4:125–133

    Article  Google Scholar 

  • Ishihara T, Matsuda H, Takita Y (1994) Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor. J Am Ceram Soc 116:3801–3803

    Google Scholar 

  • Itoh N, Kato T, Uchida K, Haraya K (1994) Preparation of pore-free disk of La1-xSrxCoO3 mixed conductor and its oxygen permeability. J Membr Sci 92:239–246

    Article  Google Scholar 

  • Jin W, Li S, Huang P, Xu N, Shi J, Lin YS (2000) Tubular lanthanum cobaltite perovskite-type membrane reactors for partial oxidation of methane to syngas. J Membr Sci 166:13–22

    Article  Google Scholar 

  • Kapteijn F, Nijhuis TA, Heiszwolf JJ, Moulijn JA (2001) New non-traditional multiphase catalytic reactors based on monolithic structures. Catal Today 66:133–144

    Article  Google Scholar 

  • Kim J, Lin YS (2000) Synthesis and oxygen permeation properties of ceramic-metal dual-phase membranes. J Membr Sci 167:123–133

    Article  Google Scholar 

  • Kim SK, Shin MJ, Rufner J, Van Benthem K, Yu JH, Kim S (2014) Sr0.95Fe0.5Co0.5O3-δ-Ce0.9Gd0.1O2-δ dual-phase membrane: oxygen permeability, phase stability, and chemical compatibility. J Membr Sci 462:153–159

    Article  Google Scholar 

  • Kingery WD, Bowen HK, Uhlmann DR (1976) Introduction to ceramics. Wiley, Toronto

    Google Scholar 

  • Klande T, Ravkina O, Feldhoff A (2013) Effect of A-site lanthanum doping on the CO2 tolerance of SrCo0.8Fe0.2O3-δ oxygen transporting membrane. J Membr Sci 437:122–130

    Article  Google Scholar 

  • Kovalevsky AV, Kharton VV, Tikhonovich VN, Naumovich EN, Tonoyan AA, Reut OP, Boginsky LS (1998) Oxygen permeation through Sr(Ln)CoO3-δ (Ln = La, Nd, Sm, Gd) ceramic membranes. Mater Sci Eng B 52:105–116

    Article  Google Scholar 

  • Kovalevsky AV, Yaremchenko AA, Kolotygin VA, Snijkers FMM, Kharton VV, Buekenhoudt A, Luyten JJ (2011) Oxygen permeability and stability of asymmetric multilayer Ba0.5Sr0.5Co0.8Fe0.2O3–δ ceramic membranes. Solid State Ion 192:677–681

    Article  Google Scholar 

  • Kruidhof H, Bouwmeester HJM, Van Doorn RHE, Burggraaf AJ (1993) Influence of order–disorder transitions on oxygen permeability through selected non-stoichiometric perovskite-type oxides. Solid State Ion 63–65:816–822

    Article  Google Scholar 

  • Kuharuangrong S (2007) Ionic conductivity of Sm, Gd, Dy and Er-doped ceria. J Power Sources 171:506–510

    Article  Google Scholar 

  • Lee TH, Yang YL, Jacobson AJ (2000) Electrical conductivity and oxygen permeation of Ag/BaBi8O13. Solid State Ion 134:331–339

    Article  Google Scholar 

  • Li W, Tian T-F, Shi F-Y, Wang Y-S, Chen C-S (2009a) Ce0.8Sm0.2O2-δ-La0.8Sr0.2MnO3-δ dual-phase composite hollow fiber membrane for oxygen separation. Ind Eng Chem Res 48:5789–5793

    Article  Google Scholar 

  • Li W, Liu J-J, Chen C-S (2009b) Hollow fiber membrane of yttrium-stabilized zirconia and strontium-doped lanthanum manganite dual-phase composite for oxygen separation. J Membr Sci 340:266–271

    Article  Google Scholar 

  • Li X, Kerstiens T, Markus T (2013) Oxygen permeability and phase stability of Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite at intermediate temperatures. J Membr Sci 438:83–89

    Article  Google Scholar 

  • Li H, Zhu X, Liu Y, Wang W, Yang W (2014) Comparative investigation of dual-phase membranes containing cobalt and iron-based mixed conducting perovskite for oxygen permeation. J Membr Sci 462:170–177

    Article  Google Scholar 

  • Liu S, Tan X, Li K, Hughes R (2001) Preparation and characterisation of SrCe0.95Yb0.05O2.975 hollow fibre membranes. J Membr Sci 193:249–260

    Article  Google Scholar 

  • Liu S, Tan X, Li K, Hughes R (2004) Preparation of SrCe0.95Yb0.05O2.975 perovskite for use as a membrane material in hollow fibre fabrication. Mater Res Bull 39:119–133

    Article  Google Scholar 

  • Luo H, Klande T, Cao Z, Liang F, Wang H, Caro J (2014) A CO2-stable reduction-tolerant Nd-containing dual phase membrane for oxyfuel CO2 capture. J Mater Chem A 2:7780–7787

    Article  Google Scholar 

  • Luyten J, Buekenhoudt A, Adriansens W, Cooymans J, Weyten H, Servaes F, Leysen R (2000) Preparation of LaSrCoFeO3-x membranes. Solid State Ion 135:637–642

    Article  Google Scholar 

  • Mazanec TJ, Cable TL, Frye JG Jr (1992) Electrocatalytic cells for chemical reaction. Solid State Ion 53–56:111–118

    Article  Google Scholar 

  • Megaw HD (1973) Crystal structures: a working approach. WB Saunders Company, Philadelphia

    Google Scholar 

  • Sammes NM, Tompsett GA, Näfe H, Aldinger F (1999) Bismuth based oxide electrolytes – structure and ionic conductivity. J Eur Ceram Soc 19:1801–1826

    Article  Google Scholar 

  • Samson AJ, Søgaard M, Hendriksen PV (2014) (Ce, Gd)O2-δ-based dual phase membranes for oxygen separation. J Membr Sci 470:178–188

    Article  Google Scholar 

  • Schlehuber D, Wessel E, Singheiser L, Markus T (2010) Long-term operation of a La0.58Sr0.4Co0.2Fe0.8O3-δ-membrane for oxygen separation. J Membr Sci 351:16–20

    Article  Google Scholar 

  • Serra JM, Garcia-Fayos J, Baumann S, Schulze-Küppers F, Meulenberg W (2013) Oxygen permeation through tape-cast asymmetric all-La0.6Sr0.4Co0.2Fe0.8O3-δ membranes. J Membr Sci 447:297–305

    Article  Google Scholar 

  • Shannon RD, Prewitt CT (1969) Effective ionic radii in oxides and fluorides. Acta Cryst B25:925–946

    Article  Google Scholar 

  • Shao Z, Yang W, Cong Y, Dong H, Tong J, Xiong G (2000a) Investigation of the permeation behavior and stability of Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen membrane. J Membr Sci 172:177–188

    Article  Google Scholar 

  • Shao Z, Xiong G, Cong Y, Yang W (2000b) Synthesis and oxygen permeation study of novel perovskite-type BaBixCo0.2Fe0.8-xO3-δ ceramic membranes. J Membr Sci 164:167–176

    Article  Google Scholar 

  • Sunarso J, Baumann S, Serra JM, Meulenberg WA, Liu S, Lin YS, Diniz da Costa JC (2008) Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation. J Membr Sci 320:13–41

    Article  Google Scholar 

  • Sunarso J, Liu S, Lin YS, Diniz da Costa JC (2009) Oxygen permeation performance of BaBiO3-δ ceramic membranes. J Membr Sci 344:281–287

    Article  Google Scholar 

  • Sunarso J, Liu S, Lin YS, Diniz da Costa JC (2011) High performance BaBiScCo hollow fibre membranes for oxygen transport. Energy Environ Sci 4:2516–2519

    Article  Google Scholar 

  • Švarcova S, Wiik K, Tolchard J, Bouwmeester HJM, Grande T (2008) Structural instability of cubic perovskite BaxSr1-xCo1-yFeyO3-δ. Solid State Ion 178:1787–1791

    Article  Google Scholar 

  • Tan X, Wang Z, Meng B, Meng X, Li K (2010) Pilot-scale production of oxygen from air using perovskite hollow fibre membranes. J Membr Sci 352:189–196

    Article  Google Scholar 

  • Ten Elshof JE, Bouwmeester HJM, Verweij H (1995) Oxygen transport through La1-xSrxFeO3-δ. I. Permeation in air/He gradients. Solid State Ion 81:97–109

    Article  Google Scholar 

  • Teraoka Y, Zhang H, Furukawa S, Yamazoe N (1985) Oxygen permeation through perovskite-type oxides. Chem Lett 14:1743–1746

    Article  Google Scholar 

  • Teraoka Y, Nobunaga T, Yamazoe N (1988) Effect of cation substitution on the oxygen semipermeability of perovskite-type oxides. Chem Lett 17:503–506

    Article  Google Scholar 

  • Tilley RJD (2013) Understanding solids – the science of materials. Wiley, Chichester

    Google Scholar 

  • Tsai C-Y, Dixon AG, Moser WR, Ma YH (1997) Dense perovskite membrane reactors for partial oxidation of methane to syngas. AIChE J 43:2741–2750

    Article  Google Scholar 

  • Tsai CY, Dixon AG, Ma YH, Moser WR, Pascucci MR (1998) Dense perovskite, La1-xAxFe1-yCoyO3-δ (A = Ba, Sr, Ca), membrane synthesis, applications, and characterizations. J Am Ceram Soc 81:1437–1444

    Article  Google Scholar 

  • Wagner C (1975) Equations for transport in solid oxides and sulfides of transition metals. Prog Solid State Chem 10:3–16

    Article  Google Scholar 

  • Wang H, Cong Y, Yang W (2002) Oxygen permeation study in a tubular Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen permeable membrane. J Membr Sci 210:259–271

    Article  Google Scholar 

  • Wang L, Imashuku S, Grimaud A, Lee D, Mezghani K, Habib MA, Shao-Horn Y (2013) Enhancing oxygen permeation of electronically short-circuited oxygen-ion conductors by decorating with mixed ionic-electronic conducting oxides. ECS Electrochem Lett 2:F77–F81

    Article  Google Scholar 

  • Watanabe K, Yuasa M, Kida T, Shimanoe K, Teraoka Y, Yamazoe N (2008a) Preparation of oxygen evolution layer/La0.6Ca0.4CoO3 dense membrane/porous support asymmetric structure for high-performance oxygen permeation. Solid State Ion 179:1377–1381

    Article  Google Scholar 

  • Watanabe K, Yuasa M, Kida T, Shimanoe K, Teraoka Y, Yamazoe N (2008b) Dense/porous asymmetric-structured oxygen permeable membranes based on La0.6Ca0.4CoO3 perovskite-type oxide. Chem Mater 20:6965–6973

    Article  Google Scholar 

  • Wu K, Xie S, Jiang GS, Liu W, Chen CS (2001) Oxygen permeation through (Bi2O3)0.74(SrO)0.26-Ag (40% v/o) composite. J Membr Sci 188:189–193

    Article  Google Scholar 

  • Zhang K, Sunarso J, Shao Z, Zhou W, Sun C, Wang S, Liu S (2011) Research progress and materials selection guidelines on mixed conducting perovskite-type ceramic membranes for oxygen production. RSC Adv 1:1661–1676

    Article  Google Scholar 

  • Zhang K, Shao Z, Li C, Liu S (2012) Novel CO2-tolerant ion-transporting ceramic membranes with an external short circuit for oxygen separation at intermediate temperatures. Energy Environ Sci 2:5257–5264

    Article  Google Scholar 

  • Zhang K, Liu L, Shao Z, Xu R, Diniz da Costa JC, Wang S, Liu S (2013) Robust ion-transporting ceramic membrane with an internal short circuit for oxygen production. J Mater Chem A 1:9150–9156

    Article  Google Scholar 

  • Zhang K, Liu L, Sunarso J, Yu H, Pareek V, Liu S (2014) Highly stable external short-circuit-assisted oxygen ionic transport membrane reactor for carbon dioxide reduction coupled with methane partial oxidation. Energy Fuels 28:349–355

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the research funding provided by the Australian Research Council (FT120100178).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jaka Sunarso or Shaomin Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Sunarso, J., Zhang, K., Liu, S. (2015). High Temperature Oxygen Separation Using Dense Ceramic Membranes. In: Chen, WY., Suzuki, T., Lackner, M. (eds) Handbook of Climate Change Mitigation and Adaptation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6431-0_94-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6431-0_94-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6431-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    High-Temperature Oxygen Separation Using Dense Ceramic Membranes
    Published:
    31 July 2021

    DOI: https://doi.org/10.1007/978-1-4614-6431-0_94-2

  2. Original

    High Temperature Oxygen Separation Using Dense Ceramic Membranes
    Published:
    05 October 2015

    DOI: https://doi.org/10.1007/978-1-4614-6431-0_94-1