Skip to main content

CO2 Capture by Membrane

Handbook of Climate Change Mitigation and Adaptation

Abstract

Among various CO2-capture technologies, membrane separation is considered as one of the promising solutions because of its energy efficiency and operation simplicity. Many research and development are conducted for the (1) CO2/N2 (CO2 separation from flue gas), (2) CO2/CH4 (CO2 separation from natural gas), and (3) CO2/H2 (CO2 separation from integrated gasification combined cycle (IGCC) processes). In this section, recent research and development of various types of membranes (polymeric membranes, inorganic membranes, ionic liquid membranes, facilitated transport membranes) for these applications are reviewed, as well as future prospects of membrane separation technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aoki K, Kusakabe K, Morooka S (1998) Gas permeation properties of A-type zeolite membrane formed on porous substrate by hydrothermal synthesis. J Membr Sci 141:197–205

    Article  Google Scholar 

  • Bae T-H, Lee JS, Qiu W, Koros WJ, Jones CW, Nair S (2010) A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystal. Angew Chem Int Ed 49:9863–9866

    Article  Google Scholar 

  • Baker RW (2002) Reviews: future directions of membrane gas separation technology. Ind Eng Chem Res 41:1393–1411

    Article  Google Scholar 

  • Ban Y, Li Y, Peng Y, Jin H, Jiao W, Liu X, Yang W (2014) Metal-substituted zeolitic imidazolate framework ZIF-108: gas-sorption and membrane-separation properties. Chem Eur J 20:11402–11409

    Article  Google Scholar 

  • Bara JE, Lessmann S, Gabriel CJ, Hatakeyama ES, Noble RD, Gin DL (2007) Synthesis and performance of polymerizable room-temperature ionic liquids as gas separation membranes. Ind Eng Chem Res 46:5397–5404

    Article  Google Scholar 

  • Behave RR, Sirkar KK (1986) Gas permeation and separation by aqueous membranes immobilized across the whole thickness or in a thin section of hydrophobic microporous celgard films. J Membr Sci 27:41

    Article  Google Scholar 

  • Bernardo P, Clarizia G (2013) 30 years of membrane technology for gas separation. Chem Eng Trans 32:1999–2004

    Google Scholar 

  • Blinova NV, Svec F (2012) Functionalized polyaniline-based composite membranes with vastly improved performance for separation of carbon dioxide from methane. J Membr Sci 423–424:514–521

    Article  Google Scholar 

  • Borisov S, Khotimsky VS, Slovetsky AI, Pashunin YM (1997) Plasma fluorination of organosilicon polymeric films for gas separation applications. J Membr Sci 125:319–329

    Article  Google Scholar 

  • Calle M, Doherty CM, Hill AJ, Lee YM (2013) Cross-linked thermally rearranged poly(benzoxazole-co-imide) membranes for gas separation. Macromolecules 46:8179–8189

    Article  Google Scholar 

  • Car A, Stropnik C, Yave W, Peinemann K-V (2008) PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation. J Membr Sci 307:88–95

    Article  Google Scholar 

  • Coker DT, Freeman BD, Fleming GK (1998) Modeling multicomponent gas separation using hollow-fiber membrane contactors. AIChE J 44(6):1289–1302

    Article  Google Scholar 

  • Du N, Park HB, Robertson GP, Dal-Cin MM, Visser T, Scoles L, Guiver MD (2011) Polymer nanosieve membranes for CO2-capture applications. Nat Mater 10:372–375

    Article  Google Scholar 

  • Duan S, Kouketsu T, Kazama S, Yamada K (2006) Development of PAMAM dendrimer composite membranes for CO2 separation. J Membr Sci 283:2–6

    Article  Google Scholar 

  • Duan S, Taniguchi I, Kai T, Kazama S (2012) Poly(amidoamine) dendrimer/poly(vinyl alcohol) hybrid membranes for CO2 capture. J Membr Sci 423–424:107–112

    Article  Google Scholar 

  • Gin DL, Noble RD (2011) Designing the next generation of chemical separation membranes. Science 332:674–676

    Article  Google Scholar 

  • Guha AK, Majumdar S, Sirkar KK (1990) Facilitated transport of CO2 through an immobilized liquid membrane of aqueous diethanolamine. Ind Eng Chem Res 29:2093–2100

    Article  Google Scholar 

  • Hanioka S, Maruyama T, Sotani T, Teramoto M, Matsuyama H, Nakashima K, Hanaki M, Kubota F, Goto M (2008) CO2 separation facilitated by task-specific ionic liquids using a supported liquid membrane. J Membr Sci 314:1–4

    Article  Google Scholar 

  • Hao Jihao, Wang Shichang (1998) Development of membrane for separation of CO2/CH4. Huaxue Gongcheng (Xi’an, People’s Repub. China) 26(1):33–35, 38

    Google Scholar 

  • He X, Hagg M-B (2011) Optimization of carbonization process for preparation of high performance hollow fiber carbon membranes. Ind Eng Chem Res 50:8065–8072

    Article  Google Scholar 

  • Hernandez-Huesca R, Diaz L, Aguilar-Armenta G (1999) Adsorption equilibria and kinetics of CO2, CH4 and N2 in natural zeolites. Sep Purif Technol 15:163–173

    Article  Google Scholar 

  • Huang Y, Merkel TC, Baker RW (2014) Pressure ratio and its impact on membrane gas separation processes. J Membr Sci 463:33–40

    Article  Google Scholar 

  • Hudiono YC, Carlisle TK, La Frate AL, Gin DL, Noble RD (2011) Novel mixed matrix membranes based on polymerizable room-temperature ionic liquids and SAPO-34 particles to improve CO2 separation. J Membr Sci 370:141–148

    Article  Google Scholar 

  • Husken D, Visser T, Wessling M, Gaymans RJ (2010) CO2 permeation properties of poly(ethylene oxide)-based segmented block copolymers. J Membr Sci 346:194–201

    Article  Google Scholar 

  • Ismail AF, David LIB (2001) A review on the latest development of carbon membranes for gas separation. J Membr Sci 193:1–18

    Article  Google Scholar 

  • Ismail AF, Shilton SJ (1998) Polysulfone gas separation hollow fiber membranes with enhanced selectivity. J Membr Sci 139:285–286

    Article  Google Scholar 

  • Ito A, Sato M, Anma T (1997) Permeability of CO2 through chitosan membrane swollen by water vapor in feed gas. Angew Makromol Chem 248:85–94

    Article  Google Scholar 

  • Jung YW, Ihm SK (1984) Facilitated transport of carbon dioxide through alkaline solutions. Int Chem Eng 24:74

    Google Scholar 

  • Kai T, Kouketsu T, Duan S, Kazama S, Yamada K (2008) Development of commercial-sized dendrimer composite membrane modules for CO2 removal from flue gas. Sep Purif Technol 63:524–530

    Article  Google Scholar 

  • Kasahara S, Kamio E, Ishigami T, Matsuyama H (2012) Effect of water in ionic liquids on CO2 permeability in amino acid ionic liquid-based facilitated transport membranes. J Membr Sci 415–416:168–175

    Article  Google Scholar 

  • Kasahara S, Kamio E, Matsuyama H (2014a) Improvements in the CO2 permeation selectivities of amino acid ionic liquid-based facilitated transport membranes by controlling their gas absorption properties. J Membr Sci 454:155–162

    Article  Google Scholar 

  • Kasahara S, Kamio E, Otani A, Matsuyama H (2014b) Fundamental investigation of the factors controlling the CO2 permeability of facilitated Transport membranes containing amine-functionalized task-specific ionic liquids. Ind Eng Chem Res 53:2422–2431

    Article  Google Scholar 

  • Kemperman AJB, Damink B, Boomgaard TVD, Strathann H (1997) Stabilization of supported liquid membranes by gelation with PVC. J Appl Polym Sci 65(6):1205–1216

    Article  Google Scholar 

  • Kovvali AS, Chen H, Sirkar KK (2000) Dendrimer membranes: a CO2-selective molecular gate. J Am Chem Soc 122:7594–7595

    Article  Google Scholar 

  • Li K, Teo WK (1998) Use of permeation and absorption methods for CO2 removal in hollow fibre membrane modules. Sep Purif Technol 13:79–88

    Article  Google Scholar 

  • Li Y, Chena H, Liu J, Yang W (2006) Microwave synthesis of LTA zeolite membranes without seeding. J Membr Sci 277:230–239

    Article  Google Scholar 

  • Lin H, Wagner EV, Freeman BD, Toy LG, Gupta RP (2006) Plasticization-enhanced hydrogen purification using polymeric membranes. Science 311:639–642

    Article  Google Scholar 

  • Matsumiya N, Matsufuji S, Nakabayashi M, Okabe K, Mano H, Teramoto M (2004) Separation of CO2 from model flue gas by facilitated transport membrane with hydrogel. Membrane 29(1):66–72

    Article  Google Scholar 

  • Matsumiya N, Matsufuji S, Okabe K, Mano H, Matsuyama H, Teramoto M (2005) Facilitated transport of CO2 through Gel-coated liquid membranes using 2, 3-diaminopropionic acid as carrier. Membrane 30(1):46–51

    Article  Google Scholar 

  • Matsuyama H, Teramoto M, Sakakura H (1996) Selective permeation of CO2 through poly{2-(N, N-dimethyl)aminoethyl methacrylate} membrane prepared by plasma-graft polymerization technique. J Membr Sci 114:193–200

    Article  Google Scholar 

  • Merkel TC, Lin H, Wei X, Baker R (2010) Power plant post-combustion carbon dioxide capture: an opportunity for membranes. J Membr Sci 359:126–139

    Article  Google Scholar 

  • Mulder M (1996) Basic principles of membrane technology, 2nd edn. Kluwer, Academic Publishers, pp 1–16

    Book  Google Scholar 

  • Myers C, Pennline H, Luebke D, Ilconich J, Dixon JK, Maginn EJ, Brennecke JF (2008) High temperature separation of carbon dioxide/hydrogen mixtures using facilitated supported ionic liquid membranes. J Membr Sci 322:28–31

    Article  Google Scholar 

  • Nafisi V, Hagg M-B (2014) Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture. J Membr Sci 459:244–255

    Article  Google Scholar 

  • Nakagama T (1989) Current status of gas membrane separation. Recent chemical Engineering 41, Membrane separation engineering – the present situation and the application on engineering–, kagaku kogyo sha, p109

    Google Scholar 

  • Neplembroek AM, Bargeman D, Smolders CA (1992) Supported liquid membranes: stabilization by gelation. J Membr Sci 67:147–165

    Google Scholar 

  • Omole IC, Adams RT, Miller SJ, Koros WJ (2010) Effects of CO2 on a high performance hollow-fiber membrane for natural gas purification. Ind Eng Chem Res 49:4887–4896

    Article  Google Scholar 

  • Paranjape M, Clarke PF, Pruden BB, Parrillo DJ, Thaeron C, Sircar S (1998) Separation of bulk carbon dioxide-hydrogen mixtures by selective surface flow membrane. Adsorption 4:355–360

    Article  Google Scholar 

  • Park HB, Jung CH, Lee YM, Hill AJ, Pas SJ, Mudie ST, Van Wagner E, Freeman BD, Cookson DJ (2007) Polymers with cavities tuned for fast selective transport of small molecules and ions. Science 318:254–258

    Article  Google Scholar 

  • Poshusta JC, Noble RD, Falconer JL (1999) Temperature and pressure effects on CO2 and CH4 permeation through MFI zeolite membranes. J Membr Sci 160:115–125

    Article  Google Scholar 

  • Qiu W, Zhang K, Li FS, Zhang K, Koros WJ (2014) Gas separation performance of carbon molecular sieve membranes based on 6FDA-mPDA/DABA (3:2) polyimide. ChemSusChem 7:1186–1194

    Article  Google Scholar 

  • Quinn R, Laciak DV, Pez GP (1997) Polyelectrolyte-salt blend membranes for acid gas separations. J Membr Sci 131:49–60

    Google Scholar 

  • RITE today (annual report, 2015). http://www.rite.or.jp/en/results/today/pdf/rt2015_all_e.pdf

  • Robeson LM (2008) The upper bound revisited. J Membr Sci 320:390–400

    Article  Google Scholar 

  • Robeson LM (2012) Polymer membranes. In: Matyjaszewski K, Möller M (eds) Polymers for advanced functional materials. Polymer science: a comprehensive reference, vol 8. Elsevier, Amsterdam, pp 325–347

    Chapter  Google Scholar 

  • Sanders DF, Smith ZP, Guo R, Robeson LM, McGrath JE, Paul DR, Freeman BD (2013) Energy-efficient polymeric gas separation membranes for a sustainable future: a review. Polymer 54:4729–4761

    Article  Google Scholar 

  • Sandru M, Haukebo SH, Hagg M-B (2010) Composite hollow fiber membranes for CO2 capture. J Membr Sci 346:172–186

    Article  Google Scholar 

  • Schofield RW, Fane AG, Fell CJD (1990) Gas and vapor transport through microporous membranes. I. Knudsen-Poiseuille transition. J Membr Sci 53:159–172

    Article  Google Scholar 

  • Scholes CA, Ribeiro CP, Kentish SE, Freeman BD (2014a) Thermal rearranged poly(benzoxazole)/polyimide blended membranes for CO2 separation. Sep Purif Technol 124:134–140

    Article  Google Scholar 

  • Scholes CA, Ribeiro CP, Kentish SE, Freeman BD (2014b) Thermal rearranged poly(benzoxazole-co-imide)membranes for CO2 separation. J Membr Sci 450:72–80

    Article  Google Scholar 

  • Shindo R, Kishida M, Sawa H, Kidesaki T, Sato S, Kanehashi S, Nagai K (2014) Characterization and gas permeation properties of polyimide/ZSM-5 zeolite composite membranes containing ionic liquid. J Membr Sci 454:330–338

    Article  Google Scholar 

  • Simons K, Nijmeijer K, Bara JE, Noble RD, Wessling M (2010) How do polymerized room-temperature ionic liquid membranes plasticize during high pressure CO2 permeation? J Membr Sci 360:202–209

    Article  Google Scholar 

  • So MT, Eirich FR, Strathmann H, Baker RW (1973) Preparation of asymmetric loeb-sourirajan membranes (1973) Polym Lett Ed 11:201–205. Wiley

    Google Scholar 

  • Staudt-Bickel C, Koros WJ (1999) Improvement of CO2/CH4 separation characteristics of polyimides by chemical crosslinking. J Membr Sci 155:145–154

    Article  Google Scholar 

  • Swaidan R, Ma X, Litwiller E, Pinnau I (2013) High pressure pure-and mixed-gas separation of CO2/CH4 by thermally-rearranged and carbon molecular sieve membranes derived from a polyimide of intrinsic microporosity. J Membr Sci 447:387–394

    Article  Google Scholar 

  • Taniguchi I, Duan S, Kazama S, Fujioka Y (2008) Facile fabrication of a novel high performance CO2 separation membrane: immobilization of poly(amidoamine) dendrimers in poly(ethylene glycol) networks. J Membr Sci 322:277–280

    Article  Google Scholar 

  • Thundyil MJ, Jois YH, Koros WJ (1999) Effect of permeate pressure on the mixed gas permeation of carbon dioxide and methane in a glassy polyimide. J Membr Sci 152:29–40

    Google Scholar 

  • Wang D, Li K, Teo WK (1998) Preparation and characterization of polyetherimide asymmetric hollow fiber membranes for gas separation. J Membr Sci 138:193–201

    Article  Google Scholar 

  • Wang H, Chung T-S, Paul DR (2014) Physical aging and plasticization of thick and thin films of the thermally rearranged ortho-functional polyimide 6FDA–HAB. J Membr Sci 458:27–35

    Article  Google Scholar 

  • Ward WJ, Robb WL (1967) Carbon dioxide-oxygen separation: facilitated transport of carbon dioxide across a liquid film. Science 156:1481–1484

    Article  Google Scholar 

  • Xu C, Hedin N (2014) Microporous adsorbents for CO2 capture – a case for microporous polymers? Mater Today 17:397–403

    Article  Google Scholar 

  • Yamaguchi T, Koval CA, Noble RD, Bowman CN (1996) Transport mechanism of carbon dioxide through perfluorosulfonate ionomer membranes containing an amine carrier. Chem Eng Sci 51(21):4781–4789

    Article  Google Scholar 

  • Yan Feng (1996) A study on vapor permeability and pervaporation through polymer membranes, Doctor of philosophy thesis, Graduate School of Science and Technology Niigata University, pp 1–9

    Google Scholar 

  • Yegani R, Hirozawa H, Teramoto M, Himei H, Okada O, Takigawa T, Ohmura N, Matsumiya N, Matsuyama H (2007) Selective separation of CO2 by using novel facilitated transport membrane at elevated temperatures and pressures. J Membr Sci 291:157–164

    Article  Google Scholar 

  • Zhang Y, Tokay B, Funke HH, Falconer JL, Noble RD (2010) Template removal from SAPO-34 crystals and membranes. J Membr Sci 363:29–35

    Article  Google Scholar 

  • Zhou M, Korelskiy D, Ye P, Grahn M, Hedlund J (2014) A uniformly oriented MFI membrane for improved CO2 separation. Angew Chem Int Ed 53:3492–3495

    Article  Google Scholar 

  • Zou J, Ho WSW (2006) CO2-selective polymeric membranes containing amines in crosslinked poly(vinyl alcohol). J Membr Sci 286:310–321

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruhiko Kai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Kai, T., Duan, S. (2015). CO2 Capture by Membrane. In: Chen, WY., Suzuki, T., Lackner, M. (eds) Handbook of Climate Change Mitigation and Adaptation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6431-0_84-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6431-0_84-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6431-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Capture by Membrane
    Published:
    05 October 2021

    DOI: https://doi.org/10.1007/978-1-4614-6431-0_84-2

  2. Original

    Capture by Membrane
    Published:
    19 October 2015

    DOI: https://doi.org/10.1007/978-1-4614-6431-0_84-1