Methamphetamine and MDMA Neurotoxicity: Biochemical and Molecular Mechanisms

  • Verónica Bisagno
  • Jean Lud CadetEmail author
Reference work entry


Methamphetamine (METH) and its analogs, methylenedioxymethamphetamine (MDMA), are psychostimulant drugs with high abuse liability. The two drugs are also very neurotoxic. In the case of METH, the behavioral and neurotoxic effects of the drug occur because it alters dopamine terminal physiology and causes massive release of dopamine (DA) in the synaptic cleft in brain regions that receive dopaminergic projections from the midbrain. The increase of synaptic DA is compounded by the ability of METH to block DA reuptake into DA terminals. METH toxicity is not only accompanied by terminal dysfunction but also by causing dysfunction of complex networks that subserve cognitive and emotional processes. MDMA is a ring-substituted derivative of phenylisopropylamine which is structurally similar to METH. MDMA is a substrate of the serotonin transporter (SERT) via which it enters monoaminergic neurons and causes release of serotonin (5-HT) from storage vesicles. This is followed by 5-HT release into the synaptic cleft by reversal of normal SERT function. MDMA is selectively neurotoxic to serotonergic nerve terminals in rats, guinea pigs, and nonhuman primates. MDMA users consistently show reduced SERT radionuclide ligand binding across multiple brain regions. There is also evidence that MDMA users can suffer from cognitive deficits. However, the relation of DA and/or 5-HT depletion to cognitive impairments remains to be clarified in METH and MDMA users. Results from these studies are likely to impact the therapeutic approaches to the treatment of patients who suffer from METH and MDMA addiction.


Tyrosine Hydroxylase Mdma User Incentive Salience MDMA Administration SERT Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations


5-hydroxyindoleacetic acid






Central nervous system




Copper–zinc superoxide dismutase




Dopamine transporter


Endoplasmic reticulum-


















Metal-responsive transcription factor 1




Norepinephrine transporter


NF-E2-Related factor 2


Poly(ADP-ribose) polymerase


Reactive oxygen species


Serotonin transporter


Tyrosine hydroxylase


Tryptophan hydroxylase


Vesicular monoamine transporter 2


  1. Adori, C., Low, P., Andó, R. D., Gutknecht, L., Pap, D., Truszka, F., Takács, J., Kovács, G. G., Lesch, K. P., & Bagdy, G. (2011). Ultrastructural characterization of tryptophan hydroxylase 2-specific cortical serotonergic fibers and dorsal raphe neuronal cell bodies after MDMA treatment in rat. Psychopharmacology, 213(2–3), 377–391.PubMedCrossRefGoogle Scholar
  2. Angulo, J. A., Angulo, N., & Yu, J. (2004). Antagonists of the neurokinin-1 or dopamine D1 receptors confer protection from methamphetamine on dopamine terminals of the mouse striatum. Annals of the New York Academy of Sciences, 1025, 171–180.PubMedCentralPubMedCrossRefGoogle Scholar
  3. Ares-Santos, S., Granado, N., Oliva, I., O’Shea, E., Martin, E. D., Colado, M. I., & Moratalla, R. (2012). Dopamine D(1) receptor deletion strongly reduces neurotoxic effects of methamphetamine. Neurobiology of Disease, 45(2), 810–820.PubMedCrossRefGoogle Scholar
  4. Asanuma, M., Tsuji, T., Miyazaki, I., Miyoshi, K., & Ogawa, N. (2003). Methamphetamine-induced neurotoxicity in mouse brain is attenuated by ketoprofen, a non-steroidal anti-inflammatory drug. Neuroscience Letters, 352, 13–16.PubMedCrossRefGoogle Scholar
  5. Asanuma, M., Miyazaki, I., Higashi, Y., Tsuji, T., & Ogawa, N. (2004). Specific gene expression and possible involvement of inflammation in methamphetamine-induced neurotoxicity. Annals of the New York Academy of Sciences, 1025, 69–75.PubMedCrossRefGoogle Scholar
  6. Baucum, A. J., 2nd, Rau, K. S., Riddle, E. L., Hanson, G. R., & Fleckenstein, A. E. (2004). Methamphetamine increases dopamine transporter higher molecular weight complex formation via a dopamine- and hyperthermia-associated mechanism. Journal of Neuroscience, 24(13), 3436–3443.PubMedCrossRefGoogle Scholar
  7. Baumann, M. H., & Rothman, R. B. (2009). Neural and cardiac toxicities associated with 3,4- methylenedioxymethamphetamine (MDMA). International Review of Neurobiology, 88, 257–296.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Beauvais, G., Atwell, K., Jayanthi, S., Ladenheim, B., & Cadet, J. L. (2011). Involvement of dopamine receptors in binge methamphetamine-induced activation of endoplasmic reticulum and mitochondrial stress pathways. PLoS One, 6(12), e28946.PubMedCentralPubMedCrossRefGoogle Scholar
  9. Berridge, K. C. (2007). The debate over dopamine’s role in reward: The case for incentive salience. Psychopharmacology, 191(3), 391–431.PubMedCrossRefGoogle Scholar
  10. Bhide, N. S., Lipton, J. W., Cunningham, J. I., Yamamoto, B. K., & Gudelsky, G. A. (2009). Repeated exposure to MDMA provides neuroprotection against subsequent MDMA-induced serotonin depletion in brain. Brain Research, 1286, 32–41.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Blakely, R. D., De Felice, L. J., & Hartzell, H. C. (1994). Molecular physiology of norepinephrine and serotonin transporters. Journal of Experimental Biology, 196, 263–281.PubMedGoogle Scholar
  12. Bowyer, J. F., Davies, D. L., Schmued, L., Broening, H. W., Newport, G. D., Slikker, W., Jr., & Holson, R. R. (1994). Further studies of the role of hyperthermia in methamphetamine neurotoxicity. Journal of Pharmacology and Experimental Therapeutics, 268, 1571–1580.PubMedGoogle Scholar
  13. Bowyer, J. F., Robinson, B., Ali, S., & Schmued, L. C. (2008). Neurotoxic-related changes in tyrosine hydroxylase, microglia, myelin, and the blood–brain barrier in the caudate-putamen from acute methamphetamine exposure. Synapse, 62(3), 193–204.PubMedCrossRefGoogle Scholar
  14. Cadet, J. L. (1988). A unifying theory of movement and madness: Involvement of free radicals in disorders of the isodendritic core of the brainstem. Medical Hypotheses, 27(1), 59–63.PubMedCrossRefGoogle Scholar
  15. Cadet, J. L., & Brannock, C. (1998). Free radicals and the pathobiology of brain dopamine systems. Neurochemistry International, 32(2), 117–131.PubMedCrossRefGoogle Scholar
  16. Cadet, J. L., Ali, S., & Epstein, C. (1994a). Involvement of oxygen-based radicals in methamphetamine-induced neurotoxicity: Evidence from the use of CuZnSOD transgenic mice. Annals of the New York Academy of Sciences, 738, 388–391.PubMedCrossRefGoogle Scholar
  17. Cadet, J. L., Sheng, P., Ali, S., Rothman, R., Carlson, E., & Epstein, C. (1994b). Attenuation of methamphetamine-induced neurotoxicity in copper/zinc superoxide dismutase transgenic mice. Journal of Neurochemistry, 62, 380–383.PubMedCrossRefGoogle Scholar
  18. Cadet, J. L., Ladenheim, B., Hirata, H., Rothman, R. B., Ali, S., Carlson, E., Epstein, C., & Moran, T. H. (1995). Superoxide radicals mediate the biochemical effects of methylenedioxymethamphetamine (MDMA): Evidence from using CuZn-superoxide dismutase transgenic mice. Synapse, 21, 169–176.PubMedCrossRefGoogle Scholar
  19. Cadet, J. L., McCoy, M. T., & Ladenheim, B. (2002). Distinct gene expression signatures in the striata of wild-type and heterozygous c-fos knockout mice following methamphetamine administration: Evidence from cDNA array analyses. Synapse, 44, 211–226.PubMedCrossRefGoogle Scholar
  20. Cadet, J. L., Krasnova, I. N., Ladenheim, B., Cai, N. S., McCoy, M. T., & Atianjoh, F. E. (2009). Methamphetamine preconditioning: Differential protective effects on monoaminergic systems in the rat brain. Neurotoxicity Research, 15(3), 252–259.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Cadet, J. L., Brannock, C., Ladenheim, B., McCoy, M. T., Beauvais, G., Hodges, A. B., Lehrmann, E., Wood, W. H., 3rd, Becker, K. G., & Krasnova, I. N. (2011). Methamphetamine preconditioning causes differential changes in striatal transcriptional responses to large doses of the drug. Dose–response, 9(2), 165–181.PubMedCentralPubMedGoogle Scholar
  22. Callahan, B. T., Cord, B. J., & Ricaurte, G. A. (2001). Long-term impairment of anterograde axonal transport along fiber projections originating in the rostral raphe nuclei after treatment with fenfluramine or methylenedioxymethamphetamine. Synapse, 40(2), 113–121.PubMedCrossRefGoogle Scholar
  23. Chipana, C., Torres, I., Camarasa, J., Pubill, D., & Escubedo, E. (2008). Memantine protects against amphetamine derivatives-induced neurotoxic damage in rodents. Neuropharmacology, 54(8), 1254–1263.PubMedCrossRefGoogle Scholar
  24. Commins, D. L., Vosmer, G., Virus, R. M., Woolverton, W. L., Schuster, C. R., & Seiden, L. S. (1987). Biochemical and histological evidence that methylenedioxymethylamphetamine (MDMA) is toxic to neurons in the rat brain. Journal of Pharmacology and Experimental Therapeutics, 241, 338–345.PubMedGoogle Scholar
  25. Danaceau, J. P., Deering, C. E., Day, J. E., Smeal, S. J., Johnson-Davis, K. L., Fleckenstein, A. E., & Wilkins, D. G. (2007). Persistence of tolerance to methamphetamine-induced monoamine deficits. European Journal of Pharmacology, 559(1), 46–54.PubMedCrossRefGoogle Scholar
  26. Darke, S., Kaye, S., McKetin, R., & Duflou, J. (2008). Major physical and psychological harms of methamphetamine use. Drug and Alcohol Review, 27(3), 253–262.PubMedCrossRefGoogle Scholar
  27. De Souza, E. B., Battaglia, G., & Insel, T. R. (1990). Neurotoxic effect of MDMA on brain serotonin neurons: Evidence from neurochemical and radioligand binding studies. Annals of the New York Academy of Sciences, 600, 682–697.PubMedCrossRefGoogle Scholar
  28. Deng, X., & Cadet, J. L. (2000). Methamphetamine-induced apoptosis is attenuated in the striata of copper-zinc superoxide dismutase transgenic mice. Brain Research. Molecular Brain Research, 83, 121–124.PubMedCrossRefGoogle Scholar
  29. Deng, X., Ladenheim, B., Tsao, L. I., & Cadet, J. L. (1999). Null mutation of c-fos causes exacerbation of methamphetamine-induced neurotoxicity. Journal of Neuroscience, 19(22), 10107–10115.PubMedGoogle Scholar
  30. Deng, X., Wang, Y., Chou, J., & Cadet, J. L. (2001). Methamphetamine causes widespread apoptosis in the mouse brain: Evidence from using an improved TUNEL histochemical method. Brain Research. Molecular Brain Research, 93, 64–69.PubMedCrossRefGoogle Scholar
  31. Deng, X., Ladenheim, B., Jayanthi, S., & Cadet, J. L. (2007). Methamphetamine administration causes death of dopaminergic neurons in the mouse olfactory bulb. Biological Psychiatry, 61(11), 1235–1243.PubMedCrossRefGoogle Scholar
  32. El Ayadi, A., & Zigmond, M. J. (2011). Low concentrations of methamphetamine can protect dopaminergic cells against a larger oxidative stress injury: Mechanistic study. PLoS One, 6(10), e24722.PubMedCentralPubMedCrossRefGoogle Scholar
  33. Erritzoe, D., Frokjaer, V. G., Holst, K. K., Christoffersen, M., Johansen, S. S., Svarer, C., Madsen, J., Rasmussen, P. M., Ramsøy, T., Jernigan, T. L., & Knudsen, G. M. (2011). In vivo imaging of cerebral serotonin transporter and serotonin2A receptor binding in 3,4-methylenedioxymethamphetamine (MDMA or “ecstasy”) and hallucinogen users. Archives of General Psychiatry, 68(6), 562–576.PubMedCrossRefGoogle Scholar
  34. Eyerman, D. J., & Yamamoto, B. K. (2005). Lobeline attenuates methamphetamine-induced changes in vesicular monoamine transporter 2 immunoreactivity and monoamine depletions in the striatum. Journal of Pharmacology and Experimental Therapeutics, 312, 160–169.PubMedCrossRefGoogle Scholar
  35. Fumagalli, F., Gainetdinov, R. R., Valenzano, K. J., & Caron, M. G. (1998). Role of dopamine transporter in methamphetamine-induced neurotoxicity: Evidence from mice lacking the transporter. Journal of Neuroscience, 18, 4861–4869.PubMedGoogle Scholar
  36. Gerra, G., Zaimovic, A., Ferri, M., Zambelli, U., Timpano, M., Neri, E., Marzocchi, G. F., Delsignore, R., & Brambilla, F. (2000). Long-lasting effects of (+/−)3,4- methylenedioxymethamphetamine (ecstasy) on serotonin system function in humans. Biological Psychiatry, 47(2), 127–136.PubMedCrossRefGoogle Scholar
  37. Gonzalez, R., Rippeth, J. D., Carey, C. L., Heaton, R. K., Moore, D. J., Schweinsburg, B. C., Cherner, M., & Grant, I. (2004). Neurocognitive performance of methamphetamine users discordant for history of marijuana exposure. Drug and Alcohol Dependence, 76(2), 181–190.PubMedCrossRefGoogle Scholar
  38. Graham, D. L., Noailles, P. A., & Cadet, J. L. (2008). Differential neurochemical consequences of an escalating dose-binge regimen followed by single-day multiple-dose methamphetamine challenges. Journal of Neurochemistry, 105(5), 1873–1885.PubMedCrossRefGoogle Scholar
  39. Granado, N., Ares-Santos, S., Oliva, I., O’Shea, E., Martin, E. D., Colado, M. I., & Moratalla, R. (2011a). Dopamine D2-receptor knockout mice are protected against dopaminergic neurotoxicity induced by methamphetamine or MDMA. Neurobiology of Disease, 42(3), 391–403.PubMedCrossRefGoogle Scholar
  40. Granado, N., Lastres-Becker, I., Ares-Santos, S., Oliva, I., Martin, E., Cuadrado, A., & Moratalla, R. (2011b). Nrf2 Deficiency potentiates methamphetamine-induced dopaminergic axonal damage and gliosis in the striatum. Glia, 59, 1.CrossRefGoogle Scholar
  41. Green, A. R., Cross, A. J., & Goodwin, G. M. (1995). Review of the pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA or ‘Ecstasy’). Psychopharmacology, 119, 247–260.PubMedCrossRefGoogle Scholar
  42. Green, A. R., Mechan, A. O., Elliott, J. M., O’Shea, E., & Colado, M. I. (2003). The pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”). Pharmacological Reviews, 55(3), 463–508.PubMedCrossRefGoogle Scholar
  43. Hadlock, G. C., Baucum, A. J., II, King, J. L., Horner, K. A., Cook, G. A., Gibb, J. W., Wilkins, D. G., Hanson, G. R., & Fleckenstein, A. E. (2009). Mechanisms underlying methamphetamine-induced dopamine transporter complex formation. Journal of Pharmacology and Experimental Therapeutics, 329(1), 169–174.850–1863.PubMedCentralPubMedCrossRefGoogle Scholar
  44. Hodges, A. B., Ladenheim, B., McCoy, M. T., Beauvais, G., Cai, N., Krasnova, I. N., & Cadet, J. L. (2011). Long-term protective effects of methamphetamine preconditioning against single-day methamphetamine toxic challenges. Current Neuropharmacology, 9, 35–39.PubMedCentralPubMedCrossRefGoogle Scholar
  45. Homer, B. D., Solomon, T. M., Moeller, R. W., Mascia, A., DeRaleau, L., & Halkitis, P. N. (2008). Methamphetamine abuse and impairment of social functioning: A review of the underlying neurophysiological causes and behavioral implications. Psychological Bulletin, 134(2), 301–310.PubMedCrossRefGoogle Scholar
  46. Jayanthi, S., Ladenheim, B., & Cadet, J. L. (1998). Methamphetamine-induced changes in antioxidant enzymes and lipid peroxidation in copper/zinc-superoxide dismutase transgenic mice. Annals of the New York Academy of Sciences, 844, 92–102.PubMedCrossRefGoogle Scholar
  47. Jayanthi, S., Deng, X., Ladenheim, B., McCoy, M. T., Cluster, A., Cai, N. S., & Cadet, J. L. (2005). Calcineurin/NFAT-induced up-regulation of the Fas ligand/Fas death pathway is involved in methamphetamine-induced neuronal apoptosis. Proceeding of the National Academy of Sciences USA, 102, 868–873.CrossRefGoogle Scholar
  48. Jayanthi, S., McCoy, M. T., Beauvais, G., Ladenheim, B., Gilmore, K., Wood, W., III, Becker, K., & Cadet, J. L. (2009). Methamphetamine induces dopamine D1 receptor-dependent endoplasmic reticulum stress-related molecular events in the rat striatum. PLoS One, 4(6), e6092.PubMedCentralPubMedCrossRefGoogle Scholar
  49. Kish, S. J., Lerch, J., Furukawa, Y., Tong, J., McCluskey, T., Wilkins, D., Houle, S., Meyer, J., Mundo, E., Wilson, A. A., Rusjan, P. M., Saint-Cyr, J. A., Guttman, M., Collins, D. L., Shapiro, C., Warsh, J. J., & Boileau, I. (2010). Decreased cerebral cortical serotonin transporter binding in ecstasy users: A positron emission tomography/[11C]DASB and structural brain imaging study. Brain, 133, 1779–1797.PubMedCentralPubMedCrossRefGoogle Scholar
  50. Kivell, B., Day, D., Bosch, P., Schenk, S., & Miller, J. (2010). MDMA causes a redistribution of serotonin transporter from the cell surface to the intracellular compartment by a mechanism independent of phospho-p38-mitogen activated protein kinase activation. Neuroscience, 168(1), 82–95.PubMedCrossRefGoogle Scholar
  51. Krasnova, I. N., & Cadet, J. L. (2009). Methamphetamine toxicity and messengers of death. Brain Research Reviews, 60(2), 379–407.PubMedCentralPubMedCrossRefGoogle Scholar
  52. Krasnova, I. N., Justinova, Z., Ladenheim, B., Jayanthi, S., McCoy, M. T., Barnes, C., Warner, J. E., Goldberg, S. R., & Cadet, J. L. (2010). Methamphetamine self-administration is associated with persistent biochemical alterations in striatal and cortical dopaminergic terminals in the rat. PLoS One, 5(1), e8790.PubMedCentralPubMedCrossRefGoogle Scholar
  53. Krasnova, I. N., Ladenheim, B., Hodges, A. B., Volkow, N. D., & Cadet, J. L. (2011). Chronic methamphetamine administration causes differential regulation of transcription factors in the rat midbrain. PLoS One, 6(4), E19179.PubMedCentralPubMedCrossRefGoogle Scholar
  54. Kuhn, D. M., Francescutti-Verbeem, D. M., & Thomas, D. M. (2008). Dopamine disposition in the presynaptic process regulates the severity of methamphetamine-induced neurotoxicity. Annals of the New York Academy of Sciences, 1139, 118–126.PubMedCentralPubMedCrossRefGoogle Scholar
  55. Ladenheim, B., Krasnova, I. N., Deng, X., Oyler, J. M., Polettini, A., Moran, T. H., Huestis, M. A., & Cadet, J. L. (2000). Methamphetamine-induced neurotoxicity is attenuated in transgenic mice with a null mutation for interleukin-6. Molecular Pharmacology, 58, 1247–1256.PubMedGoogle Scholar
  56. Le Moal, M., & Koob, G. F. (2007). Drug addiction: Pathways to the disease and pathophysiological perspectives. European Neuropsychopharmacology, 6–7, 377–393.CrossRefGoogle Scholar
  57. Li, Y., & Trush, M. A. (1993). DNA damage resulting from the oxidation of hydroquinone by copper: Role for a Cu(II)/Cu(I) redox cycle and reactive oxygen generation. Carcinogenesis, 14, 1303–1311.PubMedCrossRefGoogle Scholar
  58. Li, I. H., Huang, W. S., Shiue, C. Y., Huang, Y. Y., Liu, R. S., Chyueh, S. C., Hu, S. H., Liao, M. H., Shen, L. H., Liu, J. C., & Ma, K. H. (2010). Study on the neuroprotective effect of fluoxetine against MDMA-induced neurotoxicity on the serotonin transporter in rat brain using micro-PET. NeuroImage, 49(2), 1259–1270.PubMedCrossRefGoogle Scholar
  59. Lyles, J., & Cadet, J. L. (2003). Methylenedioxymethamphetamine (MDMA, ecstasy) neurotoxicity: Cellular and molecular mechanisms. Brain Research. Brain Research Reviews, 42(2), 155–168.PubMedCrossRefGoogle Scholar
  60. McCann, U. D., & Ricaurte, G. A. (2004). Amphetamine neurotoxicity: Accomplishments and remaining challenges. Neuroscience and Biobehavioral Reviews, 27(8), 821–826.PubMedCrossRefGoogle Scholar
  61. McCann, U. D., Wong, D. F., Yokoi, F., Villemagne, V., Dannals, R. F., & Ricaurte, G. A. (1998). Reduced striatal dopamine transporter density in abstinent methamphetamine and methcathinone users: Evidence from positron emission tomography studies with [11C]WIN-35,428. Journal of Neuroscience, 18(20), 8417–8422.PubMedGoogle Scholar
  62. McFadden, L. M., Hadlock, G. C., Allen, S. C., Vieira-Brock, P. L., Stout, K. A., Ellis, J. D., Hoonakker, A. J., Andrenyak, D. M., Nielsen, S. M., Wilkins, D. G., Hanson, G. R., & Fleckenstein, A. E. (2012). Methamphetamine self-administration causes persistent striatal dopaminergic alterations and mitigates the deficits caused by a subsequent methamphetamine exposure. Journal of Pharmacology and Experimental Therapeutics, 340(2), 295–303.PubMedCentralPubMedCrossRefGoogle Scholar
  63. Miyazaki, I., Asanuma, M., Kikkawa, Y., Takeshima, M., Murakami, S., Miyoshi, K., Sogawa, N., & Kita, T. (2010). Astrocyte-derived metallothionein protects dopaminergic neurons from dopamine quinone toxicity. Glia, 59(3), 435–451.PubMedCrossRefGoogle Scholar
  64. O’Callaghan, J. P., & Miller, D. B. (1994). Neurotoxicity profiles of substituted amphetamines in the C57BL/6 J mouse. Journal of Pharmacology and Experimental Therapeutics, 270, 741–751.PubMedGoogle Scholar
  65. Parrott, A. C. (2006). MDMA in humans: Factors which affect the neuropsychobiological profiles of recreational ecstasy users, the integrative role of bio-energetic stress. Journal of Psychopharmacology, 20, 147–163.PubMedCrossRefGoogle Scholar
  66. Pubill, D., Verdaguer, E., Sureda, F. X., Camins, A., Pallas, M., Camarasa, J., & Escubedo, E. (2002). Carnosine prevents methamphetamine-induced gliosis but not dopamine terminal loss in rats. European Journal of Pharmacology, 448, 165–168.PubMedCrossRefGoogle Scholar
  67. Raineri, M., Peskin, V., Goitia, B., Taravini, I. R., Giorgeri, S., Urbano, F. J., & Bisagno, V. (2011). Attenuated methamphetamine induced neurotoxicity by modafinil administration in mice. Synapse, 65(10), 1087–1098.PubMedCrossRefGoogle Scholar
  68. Raivich, G. (2005). Like cops on the beat: The active role of resting microglia. Trends in Neurosciences, 11, 571–573.CrossRefGoogle Scholar
  69. Reneman, L., Endert, E., de Bruin, K., Lavalaye, J., Feenstra, M. G., de Wolff, F. A., & Booij, J. (2002). The acute and chronic effects of MDMA (“ecstasy”) on cortical 5-HT2A receptors in rat and human brain. Neuropsychopharmacology, 26, 387–396.PubMedCrossRefGoogle Scholar
  70. Reneman, L., de Win, M. M., van den Brink, W., Booij, J., & den Heeten, G. J. (2006). Neuroimaging findings with MDMA/ecstasy: Technical aspects, conceptual issues and future prospects. Journal of Psychopharmacology, 20, 164–175.PubMedCrossRefGoogle Scholar
  71. Ricaurte, G. A., Guillery, R. W., Seiden, L. S., Schuster, C. R., & Moore, R. Y. (1982). Dopamine nerve terminal degeneration produced by high doses of methylamphetamine in the rat brain. Brain Research, 235(1), 93–103.PubMedCrossRefGoogle Scholar
  72. Ricaurte, G. A., Yuan, J., & McCann, U. D. (2000). (+/−)3,4-Methylenedioxymethamphetamine (‘Ecstasy’)-induced serotonin neurotoxicity: Studies in animals. Neuropsychobiology, 42(1), 5–10.PubMedCrossRefGoogle Scholar
  73. Sandoval, V., Riddle, E. L., Hanson, G. R., & Fleckenstein, A. E. (2003). Methylphenidate alters vesicular monoamine transport and prevents methamphetamine-induced dopaminergic deficits. Journal of Pharmacology and Experimental Therapeutics, 304(3), 1181–1187.PubMedGoogle Scholar
  74. Sekine, Y., Minabe, Y., Ouchi, Y., Takei, N., Iyo, M., Nakamura, K., Suzuki, K., Tsukada, H., Okada, H., Yoshikawa, E., Futatsubashi, M., & Mori, N. (2003). Association of dopamine transporter loss in the orbitofrontal and dorsolateral prefrontal cortices with methamphetamine-related psychiatric symptoms. The American Journal of Psychiatry, 160, 1699–1701.PubMedCrossRefGoogle Scholar
  75. Sekine, Y., Ouchi, Y., Sugihara, G., Takei, N., Yoshikawa, E., Nakamura, K., Iwata, Y., Tsuchiya, K. J., Suda, S., Suzuki, K., Kawai, M., Takebayashi, K., Yamamoto, S., Matsuzaki, H., Ueki, T., Mori, N., Gold, M. S., & Cadet, J. L. (2008). Methamphetamine causes microglial activation in the brains of human abusers. Journal of Neuroscience, 28, 5756–5761.PubMedCentralPubMedCrossRefGoogle Scholar
  76. Shioda, K., Nisijima, K., Yoshino, T., Kuboshima, K., Iwamura, T., Yui, K., & Kato, S. (2008). Risperidone attenuates and reverses hyperthermia induced by 3,4- methylenedioxymethamphetamine (MDMA) in rats. Neurotoxicology, 29(6), 1030–1036.PubMedCrossRefGoogle Scholar
  77. Sonsalla, P. K., Gibb, J. W., & Hanson, G. R. (1986). Roles of D1 and D2 dopamine receptor subtypes in mediating the methamphetamine-induced changes in monoamine systems. Journal of Pharmacology and Experimental Therapeutics, 238, 932–937.PubMedGoogle Scholar
  78. Sulzer, D., & Rayport, S. (1990). Amphetamine and other psychostimulants reduce pH gradients in midbrain dopaminergic neurons and chromaffin granules: A mechanism of action. Neuron, 5(6), 797–808.PubMedCrossRefGoogle Scholar
  79. Sulzer, D., Sonders, M. S., Poulsen, N. W., & Galli, A. (2005). Mechanisms of neurotransmitter release by amphetamines: A review. Progress in Neurobiology, 75(6), 406–433.PubMedCrossRefGoogle Scholar
  80. Thomas, D. M., & Kuhn, D. M. (2005a). Attenuated microglial activation mediates tolerance to the neurotoxic effects of methamphetamine. Journal of Neurochemistry, 92, 790–797.PubMedCrossRefGoogle Scholar
  81. Thomas, D. M., & Kuhn, D. M. (2005b). MK-801 and dextromethorphan block microglial activation and protect against methamphetamine-induced neurotoxicity. Brain Research, 1050, 190–198.PubMedCrossRefGoogle Scholar
  82. Thomas, D. M., Dowgiert, J., Geddes, T. J., Francescutti-Verbeem, D., Liu, X., & Kuhn, D. M. (2004a). Microglial activation is a pharmacologically specific marker for the neurotoxic amphetamines. Neuroscience Letters, 367, 349–354.PubMedCrossRefGoogle Scholar
  83. Thomas, D. M., Walker, P. D., Benjamins, J. A., Geddes, T. J., & Kuhn, D. M. (2004b). Methamphetamine neurotoxicity in dopamine nerve endings of the striatum is associated with microglial activation. Journal of Pharmacology and Experimental Therapeutics, 311, 1–7.PubMedCrossRefGoogle Scholar
  84. Thomas, D. M., Francescutti-Verbeem, D. M., & Kuhn, D. M. (2008). The newly synthesized pool of dopamine determines the severity of methamphetamine-induced neurotoxicity. Journal of Neurochemistry, 105(3), 605–616.PubMedCentralPubMedCrossRefGoogle Scholar
  85. Verdejo-García, A., Bechara, A., Recknor, E. C., & Pérez-García, M. (2006). Executive dysfunction in substance dependent individuals during drug use and abstinence: An examination of the behavioral, cognitive and emotional correlates of addiction. Journal of International Neuropsychological Society, 12(3), 405–415.CrossRefGoogle Scholar
  86. Volkow, N. D., Chang, L., Wang, G. J., Fowler, J. S., Franceschi, D., Sedler, M., Gatley, S. J., Miller, E., Hitzemann, R., Ding, Y. S., & Logan, J. (2001a). Loss of dopamine transporters in methamphetamine abusers recovers with protracted abstinence. Journal of Neuroscience, 21, 9414–9418.PubMedGoogle Scholar
  87. Volkow, N. D., Chang, L., Wang, G. J., Fowler, J. S., Franceschi, D., Sedler, M. J., Gatley, S. J., Hitzemann, R., Ding, Y. S., Wong, C., & Logan, J. (2001b). Higher cortical and lower subcortical metabolism in detoxified methamphetamine abusers. The American Journal of Psychiatry, 58, 383–389.CrossRefGoogle Scholar
  88. Volkow, N. D., Chang, L., Wang, G. J., Fowler, J. S., Leonido-Yee, M., Franceschi, D., Sedler, M. J., Gatley, S. J., Hitzemann, R., Ding, Y. S., Logan, J., Wong, C., & Miller, E. N. (2001c). Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. The American Journal of Psychiatry, 158, 377–382.PubMedCrossRefGoogle Scholar
  89. Wang, G. J., Volkow, N. D., Chang, L., Miller, E., Sedler, M., Hitzemann, R., Zhu, W., Logan, J., Ma, Y., & Fowler, J. S. (2004). Partial recovery of brain metabolism in methamphetamine abusers after protracted abstinence. The American Journal of Psychiatry, 161(2), 242–248.PubMedCrossRefGoogle Scholar
  90. Xu, W., Zhu, J. P., & Angulo, J. A. (2005). Induction of striatal pre- and postsynaptic damage by methamphetamine requires the dopamine receptors. Synapse, 58, 110–121.PubMedCentralPubMedCrossRefGoogle Scholar
  91. Zhang, L., Kitaichi, K., Fujimoto, Y., Nakayama, H., Shimizu, E., Iyo, M., & Hashimoto, K. (2006). Protective effects of minocycline on behavioral changes and neurotoxicity in mice after administration of methamphetamine. Progress in Neuropsychopharmacology and Biological Psychiatry, 30, 1381–1393.CrossRefGoogle Scholar
  92. Zolkowska, D., Jain, R., Rothman, R. B., Partilla, J. S., Roth, B. L., Setola, V., Prisinzano, T. E., & Baumann, M. H. (2009). Evidence for the involvement of dopamine transporters in behavioral stimulant effects of modafinil. Journal of Pharmacology and Experimental Therapeutics, 329, 738–746.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET)Buenos AiresArgentina
  2. 2.NIDA Intramural Program, Molecular Neuropsychiatry Research BranchNIDA/NIH/DHHSBaltimoreUSA

Personalised recommendations