Skip to main content

Backscatter Communication for Biomedical Devices

  • Reference work entry
  • First Online:
Handbook of Biochips
  • 2647 Accesses

Abstract

This chapter presents an overview of backscatter communication (BackCom) technologies with a focus on their applications in biomedical devices. Basic principles from inductive coupling, different architectures, communication modes, frequency standards, and modulation schemes of BackCom, are reviewed along with basic signal coding and detection methods. Several considerations of BackCom technologies in biomedical applications including safety and data rates are discussed. Examples are given of state-of-the-art biomedical devices for implantable and wearable applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Durgin GD, Degnan BP (2017) Improved channel coding for next-generation RFID. IEEE J Radio Freq Identif 1(1):68–74

    Article  Google Scholar 

  • Ensworth JF, Hoang AT, Phu TQ, Reynolds MS (2017) Full-duplex Bluetooth Low Energy (BLE) compatible Backscatter communication system for mobile devices. In: Proceedings of the IEEE topical conference on wireless sensors and sensor networks, pp 45–48

    Google Scholar 

  • Fang Y, Hou W, Zhou W, Zhang H (2018) Advances in implantable medical device battery. Zhongguo Yi Liao Qi Xie Za Zhi = Chin J Med Instrum 42(4):272–275

    Google Scholar 

  • Fasarakis-Hilliard N, Alevizos PN, Bletsas A (2015) Coherent detection and channel coding for Bistatic scatter radio sensor networking. IEEE Trans Commun 63(5):1798–1810

    Article  Google Scholar 

  • Finkenzeller K (2010) RFID handbook: fundamentals and applications in contactless smart cards, radio frequency identification and near-field communication, 3rd edn. Wiley, Chichester

    Book  Google Scholar 

  • Gummeson J, Zhang P, Ganesan D (2012) Flit: a bulk transmission protocol for RFID-scale sensors. In: Proceedings of the 10th international conference on mobile systems, applications, and services, MobiSys’12, pp 71–84

    Google Scholar 

  • Ha S, Kim C, Park J, Joshi S, Cauwenberghs G (2016) Energy recycling telemetry IC with simultaneous 11.5 mW power and 6.78 Mb/s backward data delivery over a single 13.56 MHz inductive link. IEEE J Solid-State Circuits 51(11):2664–2678

    Article  Google Scholar 

  • Inanlou F, Kiani M, Ghovanloo M (2011) A 10.2 Mbps pulse harmonic modulation based transceiver for implantable medical devices. IEEE J Solid-State Circuits 46(6):1296–1306

    Article  Google Scholar 

  • Jiang D, Cirmirakis D, Schormans M, Perkins TA, Donaldson N, Demosthenous A (2017) An integrated passive phase-shift keying modulator for biomedical implants with power telemetry over a single inductive link. IEEE Trans Biomed Circuits Syst 11(1):64–77

    Article  Google Scholar 

  • Jiang H, Zhou X, Kulkarni S, Uranian M, Seenivasan R, Hall DA (2018) A sub-1 ÃŽijw multiparameter injectable biomote for continuous alcohol monitoring. In: Proceedings of the IEEE custom integrated circuits conference, pp 1–4

    Google Scholar 

  • Ju H, Zhang R (2014) Throughput maximization in wireless powered communication networks. IEEE Trans Wirel Commun 13(1):418–428

    Article  Google Scholar 

  • Kim J, Kim M, Lee M, Kim K, Ji S, Kim Y, Park J, Na K, Bae K, Kim H, Bien F, Lee C, Park JU (2017) Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat Commun 8:2–7

    Google Scholar 

  • Kimionis J, Bletsas A, Sahalos JN (2014) Increased range bistatic scatter radio. IEEE Trans Commun 62(3):1091–1104

    Article  Google Scholar 

  • Kuo N-C, Zhao B, Niknejad AM (2016) Near-field power transfer and backscattering communication to miniature RFID tag in 65 nm CMOS technology. In: 2016 IEEE MTT-S international microwave symposium (IMS), pp 1–4

    Google Scholar 

  • Leung VW, Cui L, Alluri S, Lee J, Huang J, Mok E, Shellhammer S, Rao R, Asbeck P, Mercier PP, Larson L, Nurmikko A, Laiwalla F (2019) Distributed microscale brain implants with wireless power transfer and Mbps bi-directional networked communications. In: Proceedings of the IEEE custom integrated circuits conference, pp 1–4

    Google Scholar 

  • Li YJ, Chang CK, Lin GM, Lu CC (2013) Radio frequency identification (RFID) inserted fixed prosthesis and its applications in clinical dentistry. Int J Autom Smart Technol 3(2):101–105

    Article  Google Scholar 

  • Liao Y, Yao H, Lingley A, Parviz B, Otis BP (2012) A 3-μWCMOS glucose sensor for wireless contact-lens tear glucose monitoring. IEEE J Solid State Circuits 47(1):335–344

    Article  Google Scholar 

  • Moradi E, Amendola S, Björninen T, Sydänheimo L, Carmena JM, Rabaey JM, Ukkonen L (2014) Backscattering neural tags for wireless brain-machine interface systems. IEEE Trans Antennas Propag 63(2):719–726

    Article  Google Scholar 

  • Simard G, Sawan M, Massicotte D (2010) High-speed OQPSK and efficient power transfer through inductive link for biomedical implants. IEEE Trans Biomed Circuits Syst 4(3):192–200

    Article  Google Scholar 

  • Trigui A, Ali M, Ammari AC, Savaria Y, Sawan M (2018) A 1.5-pJ/bit, 9.04-Mbit/s carrier-width demodulator for data transmission over an inductive link supporting power and data transfer. IEEE Trans Circuits Syst II Express Briefs 65(10):1420–1424

    Article  Google Scholar 

  • Troyk PR, Cogan SF (2005) Sensory neural prostheses. Springer, Boston, pp 1–48

    Google Scholar 

  • Troyk PR, Edgington M (2000) Inductive links and drivers for remotely-powered telemetry systems. In: Proceedings of the IEEE antennas and propagation society international symposium, vol 1, pp 60–62

    Google Scholar 

  • Wang J, Hassanieh H, Katabi D, Indyk P (2012) Efficient and reliable low-power backscatter networks. In: Proceedings of the ACM SIGCOMM 2012 conference on applications, technologies, architectures, and protocols for computer communication, pp 61–72. ACM, New York

    Google Scholar 

  • Wang A, Iyer V, Talla V, Smith JR, Gollakota S (2017) FM backscatter: enabling connected cities and smart fabrics. In: Proceedings of the USENIX conference on networked systems design and implementation, NSDI’17, pp 243–258. USENIX Association, Berkeley

    Google Scholar 

  • Xiao Z, Tan X, Chen X, Chen S, Zhang Z, Zhang H, Wang J, Huang Y, Zhang P, Zheng L, Min H (2015) An implantable RFID sensor tag toward continuous glucose monitoring. IEEE J Biomed Health Inform 19(3):910–919

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohmyung Ha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Aberra, A., Kim, YH., Je, M., Ha, S. (2022). Backscatter Communication for Biomedical Devices. In: Sawan, M. (eds) Handbook of Biochips. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3447-4_39

Download citation

Publish with us

Policies and ethics