Skip to main content

Wireless Circuits and Systems

Healthy Radios

Handbook of Biochips

Abstract

The growing demand for portable healthcare instruments results in the rapid development of implantable and wearable medical devices. These devices can be arranged in a wireless body area network (WBAN) to monitor multiple vital signs. The physiological signals of the sensors are managed by the network, and the data communication is realized by the radios in the sensor nodes. In this way, the healthy radios play an important role in configuring the WBAN, while the power consumption of the radio part dominates the overall life time. Therefore, low power is the main design requirement in healthy radios, which can also minimize the battery size of each sensor node. In this chapter, we will briefly discuss three main kinds of healthy radios, operating in the schemes of narrowband, UWB, and HBC. The features of the transceivers will be summarized, and recent design examples will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Body Area Networks, IEEE 802.15.6 Standard (2012) [Online]. Available: www.ieee.org

  • Bohorquez JL, Chandrakasan AP, Dawson JL (2009) A 350μW CMOS MSK transmitter and 400μW OOK super-regenerative receiver for medical implant communications. IEEE J Solid State Circuits 44(4):1248–1259

    Article  Google Scholar 

  • Chen F et al (2014) A 1mW 1Mb/s 7.75-to-8.25 GHz chirp-UWB transceiver with low peak-power transmission and fast synchronization capability. In: IEEE international solid-state circuits conference digest of technical papers (ISSCC). San Francisco, pp 162–163

    Google Scholar 

  • FCC Code of Federal Register (CFR), Title 47, Part 15. United States

    Google Scholar 

  • Huang X, Ba A, Harpe P, Dolmans G, de Groot H, Long JR (2012) A 915 MHz, ultra-low power 2-tone transceiver with enhanced interference resilience. IEEE J Solid State Circuits 47(12):3197–3207

    Article  Google Scholar 

  • IEEE Standard for Local and Metropolitan Area Networks—Part 15.6: Wireless Body Area Networks, Standard 802.15.6–2012 (2013) [Online]. Available: http://www.IEEE802.org/15/pub/TG6.html

  • Iphone-11 (2019) [online]. Available: www.apple.com/iphone-11

  • ITU-R, Radio Regulations (2012) [online]. Available: www.itu.int/en/publications/ITU-R/pages/publications.aspx?parent=R-REG-RR-2012&media=electronic

  • Jeon Y et al (2019) A 100Mb/s Galvanically-coupled body-channel-communication transceiver with 4.75 pJ/b TX and 26.8 pJ/b RX for Bionic Arms. In: 2019 symposium on VLSI circuits. Kyoto, pp C292–C293

    Google Scholar 

  • Kopta V, Enz CC (2019) A 4-GHz low-power, multi-user approximate zero-IF FM-UWB transceiver for IoT. IEEE J Solid State Circuits 54(9):2462–2474

    Article  Google Scholar 

  • Lee G, Park J, Jang J, Jung T, Kim TW (2019) An IR-UWB CMOS transceiver for high-data-rate, low-power, and short-range communication. IEEE J Solid State Circuits 54(8):2163–2174

    Article  Google Scholar 

  • Leenaerts D et al (2009) A 65 nm CMOS inductor less triple band group WiMedia UWB PHY. IEEE J Solid State Circuits 44(12):3499–3510

    Article  Google Scholar 

  • Maity S, Chatterjee B, Chang G, Sen S (2019) BodyWire: a 6.3-pJ/b 30-Mb/s− 30-dB SIR-tolerant broadband interference-robust human body communication transceiver using time domain interference rejection. IEEE J Solid State Circuits 54(10):2892–2906

    Article  Google Scholar 

  • Mao J, Yang H, Lian Y, Zhao B (2017) A self-adaptive capacitive compensation technique for body channel communication. IEEE TBioCAS 11(5):1001–1012

    Google Scholar 

  • Medical device radio communications service-medradio (1999) [online]. Available: https://www.fcc.gov/encyclopedia/medical-device-radiocommunications-service-medradio

  • MICS Band Plan Federal Commun. Comm., Part 95, FCC Rules and Regulations, Jan. 2003

    Google Scholar 

  • Park J, Mercier PP (2015) Magnetic human body communication. In: 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC). Milan, pp 1841–1844

    Google Scholar 

  • Park J, Mercier PP (2019) A sub-10-pJ/bit 5-Mb/s magnetic human body communication transceiver. IEEE J Solid State Circuits 54(11):3031–3042

    Article  Google Scholar 

  • Rahman M, Elbadry M, Harjani R (2015) An IEEE 802.15. 6 standard compliant 2.5 nJ/bit multiband WBAN transmitter using phase multiplexing and injection locking. IEEE J Solid State Circuits 50(5):1126–1136

    Article  Google Scholar 

  • Vidojkovic M et al (2014) A 0.33 nJ/b IEEE802. 15.6/proprietary-MICS/ISM-band transceiver with scalable data-rate from 11kb/s to 4.5 Mb/s for medical applications. In: IEEE international solid-state circuits conference digest of technical papers (ISSCC). San Francisco, pp 170–171

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key R&D Program of China under grant 2019YFB2204500 and the National Natural Science Foundation of China under Grant 61974130.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chang, Z., Zhao, B. (2020). Wireless Circuits and Systems. In: Sawan, M. (eds) Handbook of Biochips. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6623-9_46-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6623-9_46-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6623-9

  • Online ISBN: 978-1-4614-6623-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Wireless Circuits and Systems: Healthy Radios
    Published:
    24 July 2020

    DOI: https://doi.org/10.1007/978-1-4614-6623-9_46-2

  2. Original

    Wireless Circuits and Systems
    Published:
    07 July 2020

    DOI: https://doi.org/10.1007/978-1-4614-6623-9_46-1