Skip to main content

Electrical Biosensors: Biopotential Amplifiers

  • Reference work entry
  • First Online:
Handbook of Biochips
  • 2576 Accesses

Abstract

Recent advances in semiconductor technology and microelectrode fabrication have made possible the development of implantable neural interfaces with large numbers of recording channels. Signal fidelity depends on the performance of the initial amplification stage. With many recording channels, the power efficiency of the amplifier also becomes critical. In this chapter, we discuss some of the requirements for biopotential amplifiers and the design tradeoffs. We also describe several example designs to give the reader a quantitative sense of the tradeoffs involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Chae MS, Yang Z, Yuce M, Hoang L, Liu W (2009) A 128-channel 6 mW wireless neural recording IC with spike feature extraction and UWB transmitter. Neural Syst Rehabil Eng IEEE Trans 17(4):312–321. https://doi.org/10.1109/TNSRE.2009.2021607

    Article  Google Scholar 

  • Chi YM, Jung TP, Cauwenberghs G (2010) Dry-contact and noncontact biopotential electrodes: methodological review. IEEE Rev Biomed Eng 3:106–119

    Article  Google Scholar 

  • Denison T, Consoer K, Santa W, Avestruz AT, Cooley J, Kelly A (2007) A 2 μw 100 nv/rthz chopper-stabilized instrumentation amplifier for chronic measurement of neural field potentials. IEEE J Solid State Circuits 42(12):2934–2945

    Article  Google Scholar 

  • Enz C, Krummenacher F, Vittoz E (1995) An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications. Analog Integr Circuits Sig Process 8(1):83–114

    Article  Google Scholar 

  • Gosselin B, Ayoub A, Roy JF, Sawan M, Lepore F, Chaudhuri A, Guitton D (2009) A mixed-signal multichip neural recording interface with bandwidth reduction. IEEE Trans Biomed Circuits Syst 3(3):129–141. https://doi.org/10.1109/TBCAS.2009.2013718

    Article  Google Scholar 

  • Harrison R (2008) The design of integrated circuits to observe brain activity. Proc IEEE 96(7):1203–1216

    Article  Google Scholar 

  • Harrison RR, Charles C (2003) A low-power low-noise cmos amplifier for neural recording applications. IEEE J Solid State Circuits 38(6):958–965

    Article  Google Scholar 

  • Holleman J, Otis B (2007) A sub-microwatt low-noise amplifier for neural recording. In: Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th annual international conference of the IEEE, Piscataway, NJ

    Google Scholar 

  • Jochum T, Denison T, Wolf P (2009) Integrated circuit amplifiers for multi-electrode intracortical recording. J Neural Eng 6(1) p 18

    Google Scholar 

  • Kandel E, Schwartz J, Jessell T (2000) Principles of neural science. McGraw-Hill, New York

    Google Scholar 

  • Kusuda Y (2010) Auto correction feedback for ripple suppression in a chopper amplifier. IEEE J Solid State Circuits 45(8):1436–1445

    Article  Google Scholar 

  • Levinzon FA (2008) Ultra-low-noise high-input impedance amplifier for low-frequency measurement applications. IEEE Trans Circuits Syst Part 1 Reg Papers 55(7):1815–1822

    Article  MathSciNet  Google Scholar 

  • Muller R, Gambini S, Rabaey JM (2012) A 0.013, 5, dc-coupled neural signal acquisition ic with 0.5 v supply. IEEE J Solid-State Circuits 47(1):232–243

    Article  Google Scholar 

  • Najafi K, Wise K (1986) An implantable multielectrode array with on-chip signal processing. IEEE J Solid-State Circuits 21(6):1035–1044

    Article  Google Scholar 

  • Nurmikko A, Donoghue J, Hochberg L, Patterson W, Song Y-K, Bull C, Borton D, Laiwalla F, Park S, Ming Y, Aceros J (2010) Listening to brain microcircuits for interfacing with external world–progress in wireless implantable microelectronic neuroengineering devices. Proc IEEE 98(3):375–388

    Article  Google Scholar 

  • Polikov VS, Tresco PA, Reichert WM (2005) Response of brain tissue to chronically implanted neural electrodes. J Neurosci Methods 148(1):1–18

    Article  Google Scholar 

  • Qian C, Parramon J, Sanchez-Sinencio E (2011) A micropower low-noise neural recording front-end circuit for epileptic seizure detection. IEEE J Solid-State Circuits 46(6):1392–1405

    Article  Google Scholar 

  • Rai S, Holleman J, Pandey J, Zhang F, Otis B (2009) A 500 μW neural tag with 2 μVrms AFE and frequency-multiplying MICS/ISM FSK transmitter. In: Solid-state circuits conference – digest of technical papers, 2009. ISSCC 2009. IEEE International, pp 212–213, 213a

    Google Scholar 

  • Razavi B (2000) Design of analog CMOS integrated circuits. Tata McGraw-Hill Edition, Boston

    Google Scholar 

  • Steyaert M, Sansen W (1987) A micropower low-noise monolithic instrumentation amplifier for medical purposes. IEEE J Solid State Circuits 22(6):1163–1168

    Article  Google Scholar 

  • Wattanapanitch W, Fee M, Sarpeshkar R (2007) An energy-efficient micropower neural recording amplifier. IEEE Trans Biomed Circuits Syst 1(2):136–147

    Article  Google Scholar 

  • Wu H, Xu YP (2006) A 1V 2.3μW biomedical signal acquisition IC. In: Solid-state circuits conference, 2006. ISSCC 2006. Digest of technical papers. IEEE International, pp 119–128

    Google Scholar 

  • Wu R, Makinwa KA, Huijsing JH (2009) A chopper current-feedback instrumentation amplifier with a 1 mhz 1/f noise corner and an ac-coupled ripple reduction loop. IEEE J Solid State Circuits 44(12):3232–3243

    Article  Google Scholar 

  • Yin M, Ghovanloo M (2007) A low-noise preamplifier with adjustable gain and bandwidth for biopotential recording applications. IEEE Int Symp Circuits Syst 42(9):1865–1872

    Google Scholar 

  • Zhang F, Holleman J, Otis BP (2012) Design of ultra-low power biopotential amplifiers for biosignal acquisition applications. IEEE Trans Biomed Circuits Syst 6(4):344–355

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy Holleman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zhang, F., Yang, T., Holleman, J., Otis, B. (2022). Electrical Biosensors: Biopotential Amplifiers. In: Sawan, M. (eds) Handbook of Biochips. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3447-4_24

Download citation

Publish with us

Policies and ethics