Skip to main content

Biopotential Measurements and Electrodes

  • Chapter
  • First Online:
Neural Engineering

Abstract

Neural biopotentials are electrical signals generated by the cells of the nervous system. Recording and monitoring the aggregate or individual behavior of neurons yields information about the brain and the peripheral nervous system frequently used in clinical and research settings. Many different modalities of recording neural biopotentials have been developed. These differ in spatial scale, temporal resolution, and purpose. In order to faithfully record and make use of these neural signals, we must understand the signal properties, the specific kind of electrodes required for measurement, and the most appropriate circuit architecture needed to amplify and process these signals. Continued developments in electrode materials, interface circuits, and embedded systems for neural interfaces with tailored instrumentation solutions at a range of spatial and temporal scales are driving advances toward future unprecedented medical therapies and neuroscience discoveries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Hassibi, R. Navid, R.W. Dutton, T.H. Lee, Comprehensive study of noise processes in electrode electrolyte interfaces. J. Appl. Phys. 96(2), 1074–1082 (2004)

    Article  CAS  Google Scholar 

  2. S.F. Cogan, Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10, 275–309 (2008)

    Article  CAS  Google Scholar 

  3. P.L. Nunez, R. Srinivasan et al., Electric Fields of the Brain: The Neurophysics of EEG (Oxford University Press, New York, 2006)

    Book  Google Scholar 

  4. H. Lindén, E. Hagen, S. Leski et al., LFPy: a tool for biophysical simulation of extracellular potentials generated by detailed model neurons. Front. Neuroinform. 7, 41 (2014)

    Article  Google Scholar 

  5. G.R. Holt, C. Koch, Electrical interactions via the extracellular potential near cell bodies. J. Comput. Neurosci. 6(2), 169–184 (1999)

    Article  CAS  Google Scholar 

  6. D. Sterratt, B. Graham, A. Gillies, D. Willshaw, Principles of Computational Modelling in Neuroscience (Cambridge University Press, Cambridge/New York, 2011)

    Book  Google Scholar 

  7. F. Claudi, Pyramidal neuron. www.scidraw.io

  8. T.V. Ness, C. Chintaluri, J. Potworowski, S. Łeski, H. Gł ąbska, D.K. Wójcik, G.T. Einevoll, Modelling and analysis of electrical potentials recorded in microelectrode arrays (MEAs). Neuroinformatics 13(4), 403–426 (2015)

    Google Scholar 

  9. E. Hagen, S. Næss, T.V. Ness, G.T. Einevoll, Multimodal modeling of neural network activity: computing LFP, ECoG, EEG, and MEG signals with LFPy 2.0. Front. Neuroinform. 12, 92 (2018)

    Google Scholar 

  10. L. Berdondini, A. Bosca, T. Nieus, A. Maccione, Active pixel sensor multielectrode array for high spatiotemporal resolution, in Nanotechnology and Neuroscience: Nano-electronic, Photonic and Mechanical Neuronal Interfacing (Springer, New York, 2014), pp. 207–238

    Book  Google Scholar 

  11. U. Frey, U. Egert, F. Heer, S. Hafizovic, A. Hierlemann, Microelectronic system for high-resolution mapping of extracellular electric fields applied to brain slices. Biosens. Bioelectron. 24(7), 2191–2198 (2009)

    Article  CAS  Google Scholar 

  12. T. Goto, R. Hatanaka, T. Ogawa, A. Sumiyoshi, J. Riera, R. Kawashima, An evaluation of the conductivity profile in the somatosensory barrel cortex of Wistar rats. J. Neurophysiol. 104(6), 3388–3412 (2010)

    Article  Google Scholar 

  13. M. Capogrosso, N. Wenger, S. Raspopovic, P. Musienko, J. Beauparlant, L.B. Luciani, G. Courtine, S. Micera, A computational model for epidural electrical stimulation of spinal sensorimotor circuits. J. Neurosci. 33(49), 19326–19340 (2013)

    Article  CAS  Google Scholar 

  14. C.H. Lubba, Y. Le Guen, S. Jarvis, N.S. Jones, S.C. Cork, A. Eftekhar, S.R. Schultz, PyPNS: multiscale simulation of a peripheral nerve in python. Neuroinformatics. 17(1) 63–81 (2019) doi https://doi.org/10.1007/s12021-018-9383-z

  15. A.P. Buccino, M. Kuchta, K.H. Jæger, T.V. Ness, P. Berthet, K.-A. Mardal, G. Cauwenberghs, A. Tveito, How does the presence of neural probes affect extracellular potentials? J. Neural Eng. 16(2), 026030 (2019)

    Google Scholar 

  16. R.R. Harrison, C. Charles, A low-power low-noise CMOS amplifier for neural recording applications. IEEE J. Solid-State Circuits 38(6), 958–965 (2003)

    Article  Google Scholar 

  17. R. Sarpeshkar, T. Delbruck, C.A. Mead, White noise in MOS transistors and resistors. IEEE Circuits Devices Mag. 9(6), 23–29 (1993)

    Article  Google Scholar 

  18. A.L. Mcwhorter, 1∕fnoise and related surface effects in germanium. PhD thesis (1955)

    Google Scholar 

  19. A. van der Ziel, Unified presentation of 1∕f noise in electron devices: fundamental 1∕f noise sources. Proc. IEEE 76(3), 233–258 (1988)

    Article  Google Scholar 

  20. C.C. Enz, E.A. Vittoz, F. Krummenacher, A CMOS chopper amplifier. IEEE J. Solid-State Circuits 22(3), 335–342 (1987)

    Article  Google Scholar 

  21. C.C. Enz, G.C. Temes, Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization. Proc. IEEE 84(11), 1584–1614 (1996)

    Article  Google Scholar 

  22. Y.M. Chi, T.-P. Jung, G. Cauwenberghs, Dry-contact and noncontact biopotential electrodes: methodological review. IEEE Rev. Biomed. Eng. 3, 106–119 (2010)

    Article  Google Scholar 

  23. Y.M. Chi, C. Maier, G. Cauwenberghs, Ultra-high input impedance, low noise integrated amplifier for noncontact biopotential sensing. IEEE J. Emerging Sel. Top. Circuits Syst. 1(4), 526–535 (2011)

    Article  Google Scholar 

  24. S. Joshi, C. Kim, G. Cauwenberghs, A 6.5-μWMHz charge buffer with 7-ff input capacitance in 65-nm CMOS for noncontact electropotential sensing. IEEE Trans. Circuits Syst. II: Express Briefs 63(12), 1161–1165 (2016)

    Google Scholar 

  25. V. Goverdovsky, W. von Rosenberg, T. Nakamura, D. Looney, D.J. Sharp, C. Papavassiliou, M.J. Morrell, D.P. Mandic, Hearables: multimodal physiological in-ear sensing. Sci. Rep. 7(1), 6948 (2017)

    Google Scholar 

  26. D. Looney, C. Park, P. Kidmose, M.L. Rank, M. Ungstrup, K. Rosenkranz, D.P. Mandic, An in-the-ear platform for recording electroencephalogram, in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, pp. 6882–6885

    Google Scholar 

  27. A. Paul, A. Akinin, M.S. Lee, M. Kleffner, S.R. Deiss, G. Cauwenberghs, Integrated in-ear device for auditory health assessment, in 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019, pp. 56–59

    Google Scholar 

  28. X. Zhou, Q. Li, S. Kilsgaard, F. Moradi, S.L. Kappel, P. Kidmose, A wearable ear-EEG recording system based on dry-contact active electrodes, in 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits), 2016, pp. 1–2

    Google Scholar 

  29. A. Paul, S.R. Deiss, D. Tourtelotte, M. Kleffner, T. Zhang, G. Cauwenberghs, Electrode-skin impedance characterization of in-ear electrophysiology accounting for cerumen and electrodermal response, in 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER), 2019, pp 855–858

    Google Scholar 

  30. S. Ha, A. Akinin, J. Park, C. Kim, H. Wang, C. Maier, P.P. Mercier, G. Cauwenberghs, Silicon-integrated high-density electrocortical interfaces. Proc. IEEE 105(1), 11–33 (2017)

    Article  CAS  Google Scholar 

  31. E. Castagnola, L. Maiolo, E. Maggiolini, A. Minotti, M. Marrani, F. Maita, A. Pecora, G.N. Angotzi, A. Ansaldo, M. Boffini, L. Fadiga, G. Fortunato, D. Ricci, PEDOT-CNT-coated low-impedance, ultra-flexible, and brain-conformable micro-ECoG arrays. IEEE Trans. Neural Syst. Rehabil. Eng. 23(3), 342–350 (2014)

    Article  Google Scholar 

  32. E.C. Leuthardt, G. Schalk, J.R. Wolpaw, J.G. Ojemann, D.W. Moran, A brain–computer interface using electrocorticographic signals in humans. J. Neural Eng. 1(2), 63 (2004)

    Google Scholar 

  33. S. Ha, A. Akinin, J. Park, C. Kim, H. Wang, C. Maier, G. Cauwenberghs, P.P. Mercier, A 16-channel wireless neural interfacing SoC with RF-powered energy-replenishing adiabatic stimulation, in 2015 Symposium on VLSI Circuits (VLSI Circuits) (IEEE, 2015), pp. C106–C107

    Google Scholar 

  34. J. Park, C. Kim, A. Akinin, S. Ha, G. Cauwenberghs, P.P. Mercier, Wireless powering of mm-scale fully-on-chip neural interfaces, in 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS) (IEEE, 2017), pp. 1–4

    Google Scholar 

  35. B. Rubehn, C. Bosman, R. Oostenveld, P. Fries, T. Stieglitz, A MEMS-based flexible multichannel ECoG-electrode array. J. Neural Eng. 6(3), 036003 (2009)

    Google Scholar 

  36. E. Tolstosheeva, V. Gordillo-González, V. Biefeld, L. Kempen, S. Mandon, A. Kreiter, W. Lang, A multi-channel, flex-rigid ECoG microelectrode array for visual cortical interfacing. Sensors 15(1), 832–854 (2015)

    Article  Google Scholar 

  37. M.J. Cook, T.J. O’Brien, S.F. Berkovic, M. Murphy, A. Morokoff, G. Fabinyi, W. D’Souza, R. Yerra, J. Archer, L. Litewka et al., Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study. Lancet Neurol. 12(6), 563–571 (2013)

    Article  Google Scholar 

  38. F.T. Sun, M.J. Morrell, and R.E. Wharen Jr., Responsive cortical stimulation for the treatment of epilepsy. Neurotherapeutics 5(1), 68–74 (2008) http://dx.doi.org/10.1016/j.nurt.2007.10.069

    Article  Google Scholar 

  39. Ardiem Medical, Inc. photograph of standard spiral nerve cuff electrode with four electrodes arrayed radially around the cuff diameter http://www.ardiemmedical.com/neural-cuff/

  40. J.D. Fischer, The Braincon Platform Software-A Closed-Loop Brain-Computer Interface Software for Research and Medical Applications. PhD thesis, University of Freiburg (2015)

    Google Scholar 

  41. M. Schuettler, F. Kohler, J.S. Ordonez, T. Stieglitz, Hermetic electronic packaging of an implantable brain-machine-interface with transcutaneous optical data communication, in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2012), pp. 3886–3889

    Google Scholar 

  42. C.S. Mestais, G. Charvet, F. Sauter-Starace, M. Foerster, D. Ratel, A.L. Benabid, Wimagine: wireless 64-channel ECoG recording implant for long term clinical applications. IEEE Trans. Neural Syst. Rehabil. Eng. 23(1), 10–21 (2014)

    Article  Google Scholar 

  43. S. Ha, M.L. Khraiche, A. Akinin, Y. Jing, S. Damle, Y. Kuang, S. Bauchner, Y.-H. Lo, W.R. Freeman, G.A. Silva, G. Cauwenberghs, Towards high-resolution retinal prostheses with direct optical addressing and inductive telemetry. J. Neural Eng. 13(5), 056008 (2016)

    Google Scholar 

  44. B. Lee, M.K. Koripalli, Y. Jia, J. Acosta, M. Sendi, Y. Choi, M. Ghovanloo, An implantable peripheral nerve recording and stimulation system for experiments on freely moving animal subjects. Sci. Rep. 8(1), 6115 (2018)

    Google Scholar 

  45. C. Kim, S. Ha, J. Park, A. Akinin, P.P. Mercier, G. Cauwenberghs, A 144mhz integrated resonant regulating rectifier with hybrid pulse modulation, in 2015 Symposium on VLSI Circuits (VLSI Circuits) (IEEE, 2015), pp. C284–C285

    Google Scholar 

  46. E. Musk, Neuralink, An integrated brain-machine interface platform with thousands of channels. bioRxiv (2019)

    Google Scholar 

  47. A. Hess-Dunning, D. Tyler, Thin film, high-density peripheral nerve cuffs Advanced Platform Technology Center, US Department of Veteran Affairs. https://www.aptcenter.research.va.gov/programs/neural/peripheral-nerve-cuffs/

  48. S.-J. Kim, S.C. Manyam, D.J. Warren, R.A. Normann, Electrophysiological mapping of cat primary auditory cortex with multielectrode arrays. Ann. Biomed. Eng. 34(2), 300–309 (2006)

    Article  Google Scholar 

  49. F. Boi, N. Perentos, A. Lecomte, G. Schwesig, S. Zordan, A. Sirota, L. Berdondini, G.N. Angotzi, Multi-shanks SiNAPS active pixel sensor CMOSprobe: 1024 simultaneously recording channels for high-density intracortical brain mapping. bioRxiv (2019), p. 749911

    Google Scholar 

  50. L.R. Hochberg, D. Bacher, B. Jarosiewicz, N.Y. Masse, J.D. Simeral, J. Vogel, S. Haddadin, J. Liu, S.S. Cash, P. Van Der Smagt et al., Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485(7398), 372 (2012)

    Google Scholar 

  51. A.P. Buccino, M. Kordovan, T.V. Ness, B. Merkt, P.D. Häfliger, M. Fyhn, G. Cauwenberghs, S. Rotter, G.T. Einevoll, Combining biophysical modeling and deep learning for multielectrode array neuron localization and classification. J. Neurophysiol. 120(3), 1212–1232 (2018)

    Article  Google Scholar 

  52. J.J. Jun, N.A. Steinmetz, J.H. Siegle, D.J. Denman, M. Bauza, B. Barbarits, A.K. Lee, C.A. Anastassiou, A. Andrei, Ç. Aydın et al., Fully integrated silicon probes for high-density recording of neural activity. Nature 551(7679), 232 (2017)

    Google Scholar 

  53. G.N. Angotzi, F. Boi, A. Lecomte, E. Miele, M. Malerba, S. Zucca, A. Casile, L. Berdondini, SiNAPS: an implantable active pixel sensor CMOS-probe for simultaneous large-scale neural recordings. Biosens. Bioelectron. 126, 355–364 (2019)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akinin, A., Paul, A., Wang, J., Buccino, A., Cauwenberghs, G. (2020). Biopotential Measurements and Electrodes. In: He, B. (eds) Neural Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-43395-6_2

Download citation

Publish with us

Policies and ethics