Skip to main content

Force Control in Robotics

Abstract

Force control is used to handle the physical interaction between a robot and the environment and also to ensure safe and dependable operation in the presence of humans. The control goal may be that to keep the interaction forces limited or that to guarantee a desired force along the directions where interaction occurs while a desired motion is ensured in the other directions. This entry presents the basic control schemes, focusing on robot manipulators.

Keywords

  • Force control
  • Force/torque sensor
  • Stiffness control
  • Compliance control
  • Impedance control
  • Constrained motion
  • Hybrid force/motion control

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Bibliography

  • Caccavale F, Natale C, Siciliano B, Villani L (1999) Six-DOF impedance control based on angle/axis representations. IEEE Trans Robot Autom 15:289–300

    CrossRef  Google Scholar 

  • Chiaverini S, Sciavicco L (1993) The parallel approach to force/position control of robotic manipulators, IEEE Trans Robot Autom 9:361–373

    CrossRef  Google Scholar 

  • Chiaverini S, Siciliano B, Villani L (1994) Force/position regulation of compliant robot manipulators. IEEE Trans Autom Control 39:647–652

    CrossRef  MATH  Google Scholar 

  • De Schutter J, Van Brussel H (1988) Compliant robot motion I. A formalism for specifying compliant motion tasks. Int J Robot Res 7(4):3–17

    CrossRef  Google Scholar 

  • De Schutter J, De Laet T, Rutgeerts J, Decré W, Smits R, Aerbeliën E, Claes K, Bruyninckx H (2007) Constraint-based task specification and estimation for sensor-based robot systems in the presence of geometric uncertainty. Int J Robot Res 26(5):433–455

    CrossRef  Google Scholar 

  • Hogan N (1985) Impedance control: an approach to manipulation: parts I–III. ASME J Dyn Syst Meas Control 107:1–24

    CrossRef  MATH  Google Scholar 

  • Khatib O (1987) A unified approach for motion and force control of robot manipulators: the operational space formulation. IEEE J Robot Autom 3:43–53

    CrossRef  Google Scholar 

  • Mason MT(1981) Compliance and force control for computer controlled manipulators. IEEE Trans Syst Man Cybern 11:418–432

    CrossRef  Google Scholar 

  • Ott C, Albu-Schaeffer A, Kugi A, Hirzinger G (2008) On the passivity based impedance control of flexible joint robots. IEEE Trans Robot 24:416–429

    CrossRef  Google Scholar 

  • Raibert MH, Craig JJ (1981) Hybrid position/force control of manipulators. ASME J Dyn Syst Meas Control 103:126–133

    CrossRef  Google Scholar 

  • Salisbury JK (1980) Active stiffness control of a manipulator in Cartesian coordinates. In: 19th IEEE conference on decision and control, Albuquerque, pp 95–100

    Google Scholar 

  • Siciliano B, Villani L (1999) Robot force control. Kluwer, Boston

    CrossRef  MATH  Google Scholar 

  • Villani L, De Schutter J (2008) Robot force control. In: Siciliano B, Khatib O (eds) Springer handbook of robotics. Springer, Berlin, pp 161–185

    CrossRef  Google Scholar 

  • Whitney DE (1977) Force feedback control of manipulator fine motions. ASME J Dyn Syst Meas Control 99:91–97

    CrossRef  Google Scholar 

  • Yoshikawa T (1987) Dynamic hybrid position/force control of robot manipulators – description of hand constraints and calculation of joint driving force. IEEE J Robot Autom 3:386–392

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Villani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag London

About this entry

Cite this entry

Villani, L. (2013). Force Control in Robotics. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, London. https://doi.org/10.1007/978-1-4471-5102-9_169-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5102-9_169-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, London

  • Online ISBN: 978-1-4471-5102-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering