Skip to main content

Learning Control of Quantum Systems

  • Living reference work entry
  • First Online:
Encyclopedia of Systems and Control

Abstract

This chapter presents a brief introduction to learning control of quantum systems. Gradient-based learning methods, evolutionary computation algorithms, and reinforcement learning approaches are outlined for searching optimal or robust fields in quantum control problems. The state-of-the-art methods and future directions in learning control of quantum systems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Acín A, Bloch I, Buhrman H, Calarco T, Eichler C, Eisert J et al (2018) The quantum technologies roadmap: a European community view. New J Phys 20:080201

    Article  Google Scholar 

  • Altafini C, Ticozzi F (2012) Modeling and control of quantum systems: an introduction. IEEE Trans Autom Control 57(8):1898–1917

    Article  MathSciNet  Google Scholar 

  • Brif C, Chakrabarti R, Rabitz H (2010) Control of quantum phenomena: past, present and future. New J Phys 12:075008

    Article  Google Scholar 

  • Bukov M, Day AGR, Sels D, Weinberg P, Polkovnikov A, Mehta P (2018) Reinforcement learning in different phases of quantum control. Phys Rev X 8:031086

    Google Scholar 

  • Chakrabarti R, Rabitz H (2007) Quantum control landscapes. Int Rev Phys Chem 26(4):671–735

    Article  Google Scholar 

  • Chen C, Dong D, Long R, Petersen IR, Rabitz HA (2014a) Sampling-based learning control of inhomogeneous quantum ensembles. Phys Rev A 89(2):023402

    Article  Google Scholar 

  • Chen C, Dong D, Li HX, Chu J, Tarn TJ (2014b) Fidelity-based probabilistic Q-learning for control of quantum systems. IEEE Trans Neural Netw Learn Syst 25:920–933

    Article  Google Scholar 

  • D’Alessandro D (2007) Introduction to quantum control and dynamics. Chapman & Hall/CRC, Boca Raton

    Book  Google Scholar 

  • Dong D, Petersen IR (2010) Quantum control theory and applications: a survey. IET Control Theory Appl 4(12):2651–2671

    Article  MathSciNet  Google Scholar 

  • Dong D, Mabrok MA, Petersen IR, Qi B, Chen C, Rabitz H (2015a) Sampling-based learning control for quantum systems with uncertainties. IEEE Trans Control Syst Technol 23:2155–2166

    Article  Google Scholar 

  • Dong D, Chen C, Qi B, Petersen IR, Nori F (2015b) Robust manipulation of superconducting qubits in the presence of fluctuations. Sci Rep 5:7873

    Article  Google Scholar 

  • Dong D, Wu C, Chen C, Qi B, Petersen IR, Nori F (2016) Learning robust pulses for generating universal quantum gates. Sci Rep 6:36090

    Article  Google Scholar 

  • Dong D, Xing X, Ma H, Chen C, Liu Z, Rabitz H (2020) Learning-based quantum robust control: algorithm, applications and experiments. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2019.2921424, online: https://ieeexplore.ieee.org/abstract/document/8759071

  • Fösel T, Tighineanu P, Weiss T, Marquardt F (2018) Reinforcement learning with neural networks for quantum feedback. Phys Rev X 8:031084

    Google Scholar 

  • Glaser SJ, Boscain U, Calarco T, Koch CP, Köckenberger W, Kosloff R, Kuprov I, Luy B, Schirmer S, Schulte-Herbrüggen T, Sugny D, Wilhelm FK (2015) Training Schrödinger’s cat: quantum optimal control. Eur Phys J D 69:279

    Article  Google Scholar 

  • Guo Y, Shu CC, Dong D, Nori F (2019) Vanishing and revival of resonance Raman scattering. Phys Rev Lett 123:223202

    Article  Google Scholar 

  • Jäger G, Reich DM, Goerz MH, Koch CP, Hohenester U (2014) Optimal quantum control of Bose-Einstein condensates in magnetic microtraps: comparison of gradient-ascent-pulse-engineering and Krotov optimization schemes. Phys Rev A 90:033628

    Article  Google Scholar 

  • Judson RS, Rabitz H (1992) Teaching lasers to control molecules. Phys Rev Lett 68:1500–1503

    Article  Google Scholar 

  • Khaneja N, Reiss T, Kehlet C, Schulte-Herbrüggen T, Glaser SJ (2005) Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. J Magn Reson 172(2):296–305

    Article  Google Scholar 

  • Kuang S, Dong D, Petersen IR (2017) Rapid Lyapunov control of finite-dimensional quantum systems. Automatica 81:164–175

    Article  MathSciNet  Google Scholar 

  • Li JS, Khaneja N (2006) Control of inhomogeneous quantum ensembles. Phys Rev A 73(3):030302

    Article  Google Scholar 

  • Ma H, Dong D, Shu C-C, Zhu Z, Chen C (2017) Differential evolution with equally-mixed strategies for robust control of open quantum systems. Control Theory Technol 15:226–241

    Article  MathSciNet  Google Scholar 

  • Niu MY, Boixo S, Smelyanskiy VN, Neven H (2019) Universal quantum control through deep reinforcement learning. npj Quantum Inf 5:33

    Google Scholar 

  • Rabitz H, De Vivie-Riedle R, Motzkus M, Kompa K (2000) Whither the future of controlling quantum phenomena? Science 288(5467):824–828

    Article  Google Scholar 

  • Schulte-Herbrüggen T, Spörl A, Khaneja N, Glaser SJ (2011) Optimal control for generating quantum gates in open dissipative systems. J Phys B Atomic Mol Opt Phys 44:154013

    Article  Google Scholar 

  • Shu CC, Ho TS, Xing X, Rabitz H (2016) Frequency domain quantum optimal control under multiple constraints. Phys Rev A 93:033417

    Article  Google Scholar 

  • Sutton R, Barto AG (1998) Reinforcement learning: an introduction. MIT Press, Cambridge

    MATH  Google Scholar 

  • Wiseman HM, Milburn GJ (2010) Quantum measurement and control. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Wu C, Qi B, Chen C, Dong D (2017) Robust learning control design for quantum unitary transformations. IEEE Trans Cybern 47:4405–4417

    Article  Google Scholar 

  • Wu RB, Chu B, Owens DH, Rabitz H (2018) Data-driven gradient algorithm for high-precision quantum control. Phys Rev A 97:042122

    Article  Google Scholar 

  • Wu R, Ding H, Dong D, Wang X (2019) Learning robust and high-precision quantum controls. Phys Rev A 99:042327

    Article  Google Scholar 

  • Xing X, Rey-de-Castro R, Rabitz H (2014) Assessment of optimal control mechanism complexity by experimental landscape Hessian analysis: fragmentation of CH2BrI. New J Phys 16:125004

    Article  Google Scholar 

  • Zahedinejad E, Schirmer S, Sanders BC (2014) Evolutionary algorithms for hard quantum control. Phys Rev A 90(3):032310

    Article  Google Scholar 

  • Zahedinejad E, Ghosh J, Sanders BC (2015) High-fidelity single-shot Toffoli gate via quantum control. Phys Rev Lett 114(20):200502

    Article  Google Scholar 

  • Zahedinejad E, Ghosh J, Sanders BC (2016) Desgining high-fidelity single-shot three-qubit gates: a machine-learning approach. Phys Rev Appl 6:054005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daoyi Dong .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag London Ltd., part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dong, D. (2020). Learning Control of Quantum Systems. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, London. https://doi.org/10.1007/978-1-4471-5102-9_100161-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5102-9_100161-1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5102-9

  • Online ISBN: 978-1-4471-5102-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics