Imaging of Interventional Therapies in Oncology: Image Guidance, Robotics, and Fusion Systems

  • Helmut Schoellnast
  • Stephen B. Solomon
Reference work entry


Image-guided therapies play an increasingly important role in oncology. Several imaging tools for interventional oncology procedures are available or in development which influence the success of the procedures and, therefore, influence the implementation of the procedures into oncologic treatment strategies. In this chapter, a detailed review of medical imaging strategies during an interventional oncology procedure is provided including use of contrast agents for improved tumor visualization, real-time imaging, three-dimensional imaging, fusion of images of different imaging modalities, navigation of devices during interventions, movement of devices by robots, and intraprocedural imaging monitoring. Furthermore, problems of image guidance such as physician access to the patient and radiation exposure are discussed.


Contrast Agent Reduce Radiation Exposure Johns Hopkins Medical Institution Proton Resonance Frequency Acceptable Image Quality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Nawfel RD, Judy PF, Silverman SG, Hooton S, Tuncali K, Adams DF. Patient and personnel exposure during CT fluoroscopy-guided interventional procedures. Radiology. 2000;216:180–4.PubMedCrossRefGoogle Scholar
  2. 2.
    Silverman SG, Tuncali K, Adams DF, Nawfel RD, Zou KH, Judy PF. CT fluoroscopy-guided abdominal interventions: techniques, results, and radiation exposure. Radiology. 1999;212:673–81.PubMedCrossRefGoogle Scholar
  3. 3.
    Lewin JS, Nour SG, Connell CF, et al. Phase II clinical trial of interactive MR imaging-guided interstitial radiofrequency thermal ablation of primary kidney tumors: initial experience. Radiology. 2004;232:835–45.PubMedCrossRefGoogle Scholar
  4. 4.
    Tatli S, Morrison PR, Tuncali K, Silverman SG. Interventional MRI for oncologic applications. Tech Vasc Interv Radiol. 2007;10:159–70.PubMedCrossRefGoogle Scholar
  5. 5.
    Gedroyc WM. Magnetic resonance guidance of thermal ablation. Top Magn Reson Imaging. 2005;16:339–53.PubMedCrossRefGoogle Scholar
  6. 6.
    Mougenot C, Quesson B, de Senneville BD, et al. Three-dimensional spatial and temporal temperature control with MR thermometry-guided focused ultrasound (MRgHIFU). Magn Reson Med. 2009;61:603–14.PubMedCrossRefGoogle Scholar
  7. 7.
    Pech M, Wieners G, Freund T, et al. MR-guided interstitial laser thermotherapy of colorectal liver metastases: efficiency, safety and patient survival. Eur J Med Res. 2007;12:161–8.PubMedGoogle Scholar
  8. 8.
    Puls R, Langner S, Rosenberg C, et al. Laser ablation of liver metastases from colorectal cancer with MR thermometry: 5-year survival. J Vasc Interv Radiol. 2009;20:225–34.PubMedCrossRefGoogle Scholar
  9. 9.
    Silverman SG, Tuncali K, Adams DF, et al. MR imaging-guided percutaneous cryotherapy of liver tumors: initial experience. Radiology. 2000;217:657–64.PubMedCrossRefGoogle Scholar
  10. 10.
    Silverman SG, Tuncali K, Morrison PR. MR Imaging-guided percutaneous tumor ablation. Acad Radiol. 2005;12:1100–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Boss A, Clasen S, Kuczyk M, et al. Magnetic resonance-guided percutaneous radiofrequency ablation of renal cell carcinomas: a pilot clinical study. Invest Radiol. 2005;40:583–90.PubMedCrossRefGoogle Scholar
  12. 12.
    Morrison PR, Silverman SG, Tuncali K, Tatli S. MRI-guided cryotherapy. J Magn Reson Imaging. 2008;27:410–20.PubMedCrossRefGoogle Scholar
  13. 13.
    Fritz J, Clasen S, Boss A, et al. Real-time MR fluoroscopy-navigated lumbar facet joint injections: feasibility and technical properties. Eur Radiol. 2008;18:1513–18.PubMedCrossRefGoogle Scholar
  14. 14.
    Stattaus J, Maderwald S, Forsting M, Barkhausen J, Ladd ME. MR-guided core biopsy with MR fluoroscopy using a short, wide-bore 1.5-Tesla scanner: feasibility and initial results. J Magn Reson Imaging. 2008;27:1181–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Smits HF, Bos C, van der Weide R, Bakker CJ. Interventional MR: vascular applications. Eur Radiol. 1999;9:1488–95.PubMedCrossRefGoogle Scholar
  16. 16.
    Thomas C, Springer F, Röthke M, et al. In vitro assessment of needle artifacts with an interactive three-dimensional MR fluoroscopy system. J Vasc Interv Radiol. 2010;21:375–80.PubMedCrossRefGoogle Scholar
  17. 17.
    Weiss CR, Nour SG, Lewin JS. MR-guided biopsy: a review of current techniques and applications. J Magn Reson Imaging. 2008;27:311–25.PubMedCrossRefGoogle Scholar
  18. 18.
    Moelker A, Maas RAJJ, Lethimonnier F, Pattynama PMT. Interventional MR imaging at 15 T: quantification of sound exposure. Radiology. 2002;224:889–95.PubMedCrossRefGoogle Scholar
  19. 19.
    Moelker A, Wielopolski PA, Pattynama PMT. Relationship between magnetic field strength and magnetic-resonance-related acoustic noise levels. Magn Reson Mater Phys Biol Med. 2003;16:52–5.CrossRefGoogle Scholar
  20. 20.
    Nour SG, Lewin JS. Radiofrequency thermal ablation: the role of MR imaging in guiding and monitoring tumor therapy. Magn Reson Imaging Clin N Am. 2005;13:561–81.PubMedCrossRefGoogle Scholar
  21. 21.
    Gaffke G, Gebauer B, Knollmann FD, et al. Use of semiflexible applicators for radiofrequency ablation of liver tumors. Cardiovasc Intervent Radiol. 2006;29:270–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Chen MH, Yang W, Yan K, et al. The role of contrast-enhanced ultrasound in planning treatment protocols for hepatocellular carcinoma before radiofrequency ablation. Clin Radiol. 2007;62:752–60.PubMedCrossRefGoogle Scholar
  23. 23.
    Liu JB, Wansaicheong G, Merton DA, et al. Canine prostate: contrast-enhanced US-guided radiofrequency ablation with urethral and neurovascular cooling–initial experience. Radiology. 2008;247:717–25.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Numata K, Isozaki T, Ozawa Y, et al. Percutaneous ablation therapy guided by contrast-enhanced sonography for patients with hepatocellular carcinoma. AJR Am J Roentgenol. 2003;180:143–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Solbiati L, Ierace T, Tonolini M, Cova L. Guidance and monitoring of radiofrequency liver tumor ablation with contrast-enhanced ultrasound. Eur J Radiol. 2004;51(Suppl):S19–23.PubMedCrossRefGoogle Scholar
  26. 26.
    Weichert JP, Lee FT, Chosy SG, et al. Combined hepatocyte-selective and blood-pool contrast agents for the CT detection of experimental liver tumors in rabbits1. Radiology. 2000;216:865–71.PubMedCrossRefGoogle Scholar
  27. 27.
    Fu Y, Nitecki DE, Maltby D, et al. Dendritic iodinated contrast agents with PEG-cores for CT imaging: synthesis and preliminary characterization. Bioconjug Chem. 2006;17:1043–56.PubMedCrossRefGoogle Scholar
  28. 28.
    Burtea C, Laurent S, Vander Elst L, Muller RN. Contrast agents: magnetic resonance. In: Semmler W, Schwaiger M, editors. Molecular imaging I: handbook of experimental pharmacology. Berlin/Heidelberg: Springer; 2008. p. 135–65.CrossRefGoogle Scholar
  29. 29.
    Bartolozzi C, Crocetti L, Lencioni R, Cioni D, Della Pina C, Campani D. Biliary and reticuloendothelial impairment in hepatocarcinogenesis: the diagnostic role of tissue-specific MR contrast media. Eur Radiol. 2007;17:2519–30.PubMedCrossRefGoogle Scholar
  30. 30.
    Lindner LH, Reinl HM, Schlemmer M, Stahl R, Peller M. Paramagnetic thermosensitive liposomes for MR-thermometry. Int J Hyperthermia. 2005;21:575–88.PubMedCrossRefGoogle Scholar
  31. 31.
    McDannold N, Tempany CM, Fennessy FM, et al. Uterine leiomyomas: MR imaging-based thermometry and thermal dosimetry during focused ultrasound thermal ablation. Radiology. 2006;240:263–72.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Needham D, Dewhirst MW. The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors. Adv Drug Deliv Rev. 2001;53:285–305.PubMedCrossRefGoogle Scholar
  33. 33.
    Strong VE, Humm J, Russo P, et al. A novel method to localize antibody-targeted cancer deposits intraoperatively using handheld PET beta and gamma probes. Surg Endosc Inter Tech. 2008;22:386–91.CrossRefGoogle Scholar
  34. 34.
    Wendler T, Traub J, Ziegler SI, Navab N. Navigated three dimensional beta probe for optimal cancer resection. Med Image Comput Comput Assist Interv. 2006;9:561–9.PubMedGoogle Scholar
  35. 35.
    Katada K, Kato R, Anno H, et al. Guidance with real-time CT fluoroscopy: early clinical experience. Radiology. 1996;200:851–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Hiraki T, Mimura H, Gobara H, et al. CT Fluoroscopy-guided biopsy of 1,000 pulmonary lesions performed with 20-gauge coaxial cutting needles. Chest. 2009;136:1612–17.PubMedCrossRefGoogle Scholar
  37. 37.
    Trumm CG, Jakobs TF, Zech CJ, Helmberger TK, Reiser MF, Hoffmann R-T. CT Fluoroscopy-guided percutaneous vertebroplasty for the treatment of osteolytic breast cancer metastases: results in 62 sessions with 86 vertebrae treated. J Vasc Interv Radiol. 2008;19:1596–606.PubMedCrossRefGoogle Scholar
  38. 38.
    de Mey J, Op de Beeck B, Meysman M, et al. Real time CT-fluoroscopy: diagnostic and therapeutic applications. Eur J Radiol. 2000;34:32–40.PubMedCrossRefGoogle Scholar
  39. 39.
    Hohl C, Suess C, Wildberger JE, et al. Dose reduction during CT fluoroscopy: phantom study of angular beam modulation. Radiology. 2008;246:519–25.PubMedCrossRefGoogle Scholar
  40. 40.
    Yamato Y, Yamakado K, Takaki H, et al. Optimal scan parameters for CT fluoroscopy in lung interventional radiologic procedures: relationship between radiation dose and image quality. Radiology. 2010;255:233–41.CrossRefGoogle Scholar
  41. 41.
    Neeman Z, Dromi SA, Sarin S, Wood BJ. CT fluoroscopy shielding: decreases in scattered radiation for the patient and operator. J Vasc Interv Radiol. 2006;17:1999–2004.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Irie T, Kajitani M, Itai Y. CT fluoroscopy-guided intervention: marked reduction of scattered radiation dose to the physician’s hand by use of a lead plate and an improved I-I device. J Vasc Interv Radiol. 2001;12:1417–21.PubMedCrossRefGoogle Scholar
  43. 43.
    Yutzy SR, Duerk JL. Pulse sequences and system interfaces for interventional and real-time MRI. J Magn Reson Imaging. 2008;27:267–75.PubMedCrossRefGoogle Scholar
  44. 44.
    Beldi G, Styner M, Schindera S, Inderbitzin D, Candinas D. Intraoperative three-dimensional fluoroscopic cholangiography. Hepatogastroenterology. 2006;53:157–9.PubMedGoogle Scholar
  45. 45.
    Liapi E, Hong K, Georgiades CS, Geschwind JF. Three-dimensional rotational angiography: introduction of an adjunctive tool for successful transarterial chemoembolization. J Vasc Interv Radiol. 2005;16:1241–5.PubMedCrossRefGoogle Scholar
  46. 46.
    Wallace MJ. C-arm computed tomography for guiding hepatic vascular interventions. Tech Vasc Interv Radiol. 2007;10:79–86.PubMedCrossRefGoogle Scholar
  47. 47.
    Iwazawa J, Ohue S, Mitani T, et al. Identifying feeding arteries during TACE of hepatic tumors: comparison of C-arm CT and digital subtraction angiography. AJR Am J Roentgenol. 2009;192:1057–63.PubMedCrossRefGoogle Scholar
  48. 48.
    Kakeda S, Korogi Y, Hatakeyama Y, et al. The usefulness of three-dimensional angiography with a flat panel detector of direct conversion type in a transcatheter arterial chemoembolization procedure for hepatocellular carcinoma: initial experience. Cardiovasc Intervent Radiol. 2008;31:281–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Kakeda S, Korogi Y, Ohnari N, et al. Usefulness of cone-beam volume CT with flat panel detectors in conjunction with catheter angiography for transcatheter arterial embolization. J Vasc Interv Radiol. 2007;18:1508–16.PubMedCrossRefGoogle Scholar
  50. 50.
    Kim HC, Chung JW, Park JH, et al. Transcatheter arterial chemoembolization for hepatocellular carcinoma: prospective assessment of the right inferior phrenic artery with C-arm CT. J Vasc Interv Radiol. 2009;20:888–95.PubMedCrossRefGoogle Scholar
  51. 51.
    Matsui O, Kadoya M, Yoshikawa J, et al. Small hepatocellular carcinoma: treatment with subsegmental transcatheter arterial embolization. Radiology. 1993;188:79–83.PubMedCrossRefGoogle Scholar
  52. 52.
    Tanigawa N, Komemushi A, Kojima H, Kariya S, Sawada S. Three-dimensional angiography using rotational digital subtraction angiography: usefulness in transarterial embolization of hepatic tumors. Acta Radiol. 2004;45:602–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Solomon S, Thornton R, Deschamps F, et al. A treatment planning system for transcatheter hepatic therapies: pilot study. J Interv Oncol. 2008;1:12–8.Google Scholar
  54. 54.
    Heron DE, Smith RP, Andrade RS. Advances in image-guided radiation therapy – the role of PET-CT. Medical Dosimetry. 2006;31:3–11.PubMedCrossRefGoogle Scholar
  55. 55.
    Veit P, Kuehle C, Beyer T, Kuehl H, Bockisch A, Antoch G. Accuracy of combined PET/CT in image-guided interventions of liver lesions: an ex-vivo study. World J Gastroenterol. 2006;12:2388–93.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Yap JT, Carney JPJ, Hall NC, Townsend DW. Image-guided cancer therapy using PET/CT. Cancer J. 2004;10:221–33.PubMedCrossRefGoogle Scholar
  57. 57.
    Crocetti L, Lencioni R, DeBeni S, See TC, Della Pina C, Bartolozzi C. Targeting liver lesions for radiofrequency ablation – an experimental feasibility study using a CT-US fusion imaging system. Invest Radiol. 2008;43:33–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Wein W, Roper B, Navab N. Automatic registration and fusion of ultrasound with CT for radiotherapy. Med Image Comput Comput Assist Interv. 2005;8(Pt 2):303–11.PubMedGoogle Scholar
  59. 59.
    Ewertsen C, Grossjohann HS, Nielsen KR, Torp-Pedersen S, Nielsen MB. Biopsy guided by real-time sonography fused with MRI: a phantom study. Am J Roentgenol. 2008;190:1671–4.CrossRefGoogle Scholar
  60. 60.
    Singh AK, Kruecker J, Xu S, et al. Initial clinical experience with real-time transrectal ultrasonography-magnetic resonance imaging fusion-guided prostate biopsy. BJU Int. 2008;101:841–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Archip N, Tatli S, Morrison P, Jolesz F, Warfield SK, Silverman S. Non-rigid registration of pre-procedural MR images with intra-procedural unenhanced CT images for improved targeting of tumors during liver radiofrequency ablations. Med Image Comput Comput Assist Interv. 2007;10:969–77.PubMedGoogle Scholar
  62. 62.
    Gutierrez LF, Silva R, Ozturk C, et al. Technology preview: X-ray fused with magnetic resonance during invasive cardiovascular procedures. Catheter Cardiovasc Interv. 2007;70:773–82.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Solomon SB, Incorporating CT. MR imaging, and positron emission tomography into minimally invasive therapies. J Vasc Interv Radiol. 2005;16:445–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Cleary K, Melzer A, Watson V, Kronreif G, Stoianovici D. Interventional robotic systems: applications and technology state-of-the art. Minim Invasive Ther Allied Technol. 2006;15:101–13.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Wood B, Locklin J, Viswanathan A, et al. Technologies for guidance of radiofrequency ablation in the multimodality interventional suite of the future. J Vasc Interv Radiol. 2007;18:9–24.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Kruecker J, Xu S, Glossop N, et al. Electromagnetic tracking for thermal ablation and biopsy guidance: clinical evaluation of spatial accuracy. J Vasc Interv Radiol. 2007;18:1141–50.CrossRefGoogle Scholar
  67. 67.
    Meyer BC, Peter O, Nagel M, et al. Electromagnetic field-based navigation for percutaneous punctures on C-arm CT: experimental evaluation and clinical application. Eur Radiol. 2008;18:2855–64.PubMedCrossRefGoogle Scholar
  68. 68.
    Borgert J, Kruger S, Timinger H, et al. Respiratory motion compensation with tracked internal and external sensors during CT-guided procedures. Comput Aided Surg. 2006;11:119–25.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Mogami T, Dohi M, Harada J. A new image navigation system for MR-guided cryosurgery. Magn Reson Med Sci. 2002;1:191–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Peters TM. Image-guidance for surgical procedures. Phys Med Biol. 2006;51:R505–40.PubMedCrossRefGoogle Scholar
  71. 71.
    Solomon SB. Interactive images in the operating room. J Endourol. 1999;13:471–5.PubMedCrossRefGoogle Scholar
  72. 72.
    Zhang H, Banovac F, Lin R, et al. Electromagnetic tracking for abdominal interventions in computer aided surgery. Comput Aided Surg. 2006;11:127–36.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Marohn MR, Hanly EJ. Twenty-first century surgery using twenty-first century technology: surgical robotics. Curr Surg. 2004;61:466–73.PubMedCrossRefGoogle Scholar
  74. 74.
    Hempel E, Fischer H, Gumb L, et al. An MRI-compatible surgical robot for precise radiological interventions. Comput Aided Surg. 2003;8:180–91.PubMedCrossRefGoogle Scholar
  75. 75.
    Solomon SB, Patriciu A, Bohlman ME, Kavoussi LR, Stoianovici D. Robotically driven interventions: a method of using CT fluoroscopy without radiation exposure to the physician. Radiology. 2002;225:277–82.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Boctor EM, Choti MA, Burdette EC, Webster Iii RJ. Three-dimensional ultrasound-guided robotic needle placement: an experimental evaluation. Int J Med Robot. 2008;4:180–91.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    DiMaio SP, Pieper S, Chinzei K, et al. Robot-assisted needle placement in open MRI: system architecture, integration and validation. Comput Aided Surg. 2007;12:15–24.PubMedCrossRefGoogle Scholar
  78. 78.
    Stoianovici D. Multi-imager compatible actuation principles in surgical robotics. Int J Med Robot. 2005;1:86–100.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Patriciu A, Solomon S, Kavoussi LR, Stoianovici D. Robotic kidney and spine percutaneous procedures using a new laser-based CT registration method. In: Niessen W, Viergever MA, editors. Medical image computing and computer-assisted intervention, Lecture notes in computer science, vol. 2208. Utrecht: Springer; 2001. p. 249–58.Google Scholar
  80. 80.
    Korb W, Kornfeld M, Birkfellner W, et al. Risk analysis and safety assessment in surgical robotics: a case study on a biopsy robot. Minim Invasive Ther Allied Technol. 2005;14:23–31.PubMedCrossRefGoogle Scholar
  81. 81.
    Larson AC, Wang D, Atassi B, et al. Transcatheter intraarterial perfusion: MR monitoring of chemoembolization for hepatocellular carcinoma–feasibility of initial clinical translation. Radiology. 2008;246:964–71.PubMedCrossRefGoogle Scholar
  82. 82.
    Kim CK, Choi D, Lim HK, et al. Therapeutic response assessment of percutaneous radiofrequency ablation for hepatocellular carcinoma: utility of contrast-enhanced agent detection imaging. Eur J Radiol. 2005;56:66–73.PubMedCrossRefGoogle Scholar
  83. 83.
    Leyendecker JR, Dodd 3rd GD, Halff GA, et al. Sonographically observed echogenic response during intraoperative radiofrequency ablation of cirrhotic livers: pathologic correlation. AJR Am J Roentgenol. 2002;178:1147–51.PubMedCrossRefGoogle Scholar
  84. 84.
    Permpongkosol S, Nielsen ME, Solomon SB. Percutaneous renal cryoablation. Urology. 2006;68:19–25.PubMedCrossRefGoogle Scholar
  85. 85.
    Saksena M, Gervais D. Percutaneous renal tumor ablation. Abdom Imaging. 2009;34:582–7.PubMedCrossRefGoogle Scholar
  86. 86.
    Hahn PF, Gazelle GS, Jiang DY, Compton CC, Goldberg SN, Mueller PR. Liver tumor ablation: real-time monitoring with dynamic CT. Acad Radiol. 1997;4:634–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Hamuro M, Kaminou T, Nakamura K, et al. Percutaneous ethanol injection under CT fluoroscopy for hypervascular hepatocellular carcinoma following transcatheter arterial embolization. Hepatogastroenterology. 2002;49:752–7.PubMedGoogle Scholar
  88. 88.
    Tsai H-M, Lin X-Z, Chen C-Y. Computed tomography demonstration of immediate and delayed complications of computed tomography-guided transthoracic percutaneous ethanol injection of hepatocellular carcinoma at the liver dome. [Miscellaneous Article].Google Scholar
  89. 89.
    Bao A, Goins B, Dodd 3rd GD, et al. Real-time iterative monitoring of radiofrequency ablation tumor therapy with 15O-water PET imaging. J Nucl Med. 2008;49:1723–9.PubMedCrossRefGoogle Scholar
  90. 90.
    de Senneville BD, Mougenot C, Quesson B, Dragonu I, Grenier N, Moonen CT. MR thermometry for monitoring tumor ablation. Eur Radiol. 2007;17:2401–10.PubMedCrossRefGoogle Scholar
  91. 91.
    Dewey WC. Arrhenius relationships from the molecule and cell to the clinic. Int J Hyperthermia. 1994;10:457–83.PubMedCrossRefGoogle Scholar
  92. 92.
    Quesson B, de Zwart JA, Moonen CT. Magnetic resonance temperature imaging for guidance of thermotherapy. J Magn Reson Imaging. 2000;12:525–33.PubMedCrossRefGoogle Scholar
  93. 93.
    Denis de Senneville B, Quesson B, Moonen CTW. Magnetic resonance temperature imaging. Int J Hyperthermia. 2005;21:515–31.PubMedCrossRefGoogle Scholar
  94. 94.
    Rieke V, Butts Pauly K. MR thermometry. J Magn Reson Imaging. 2008;27:376–90.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Boss A, Rempp H, Martirosian P, et al. Wide-bore 1.5 Tesla MR imagers for guidance and monitoring of radiofrequency ablation of renal cell carcinoma: initial experience on feasibility. Eur Radiol. 2008;18:1449–55.PubMedCrossRefGoogle Scholar
  96. 96.
    Liu HY, Hall WA, Martin AJ, Maxwell RE, Truwit CL. MR-guided and MR-monitored neurosurgical procedures at 1.5 T. J Comput Assist Tomogr. 2000;24:909–18.PubMedCrossRefGoogle Scholar
  97. 97.
    Mack MG, Straub R, Eichler K, Sollner O, Lehnert T, Vogl TJ. Breast cancer metastases in liver: laser-induced interstitial thermotherapy–local tumor control rate and survival data. Radiology. 2004;233:400–9.PubMedCrossRefGoogle Scholar
  98. 98.
    Morikawa S, Inubushi T, Kurumi Y, et al. MR-guided microwave thermocoagulation therapy of liver tumors: Initial clinical experiences using a 0.5 T open MR system. J Magn Reson Imaging. 2002;16:576–83.PubMedCrossRefGoogle Scholar
  99. 99.
    Okuda S, Kuroda K, Oshio K, et al. MR-based temperature monitoring for hot saline injection therapy. J Magn Reson Imaging. 2000;12:330–8.PubMedCrossRefGoogle Scholar
  100. 100.
    Seror O, Lepetit-Coiffe M, Le Bail B, et al. Real time monitoring of radiofrequency ablation based on MR thermometry and thermal dose in the pig liver in vivo. Eur Radiol. 2008;18:408–16.PubMedCrossRefGoogle Scholar
  101. 101.
    Vogl TJ, Straub R, Eichler K, Sollner O, Mack MG. Colorectal carcinoma metastases in liver: laser-induced interstitial thermotherapy – local tumor control rate and survival data. Radiology. 2004;230:450–8.PubMedCrossRefGoogle Scholar
  102. 102.
    Arthur RM, Straube WL, Trobaugh JW, Moros EG. Non-invasive estimation of hyperthermia temperatures with ultrasound. Int J Hyperthermia. 2005;21:589–600.PubMedCrossRefGoogle Scholar
  103. 103.
    Fallone BG, Moran PR, Podgorsak EB. Noninvasive thermometry with a clinical x-ray CT scanner. Med Phys. 1982;9:715–21.PubMedCrossRefGoogle Scholar
  104. 104.
    Efstathopoulos EP, Brountzos EN, Alexopoulou E, et al. Patient radiation exposure measurements during interventional procedures: a prospective study. Health Phys. 2006;91:36–40.PubMedCrossRefGoogle Scholar
  105. 105.
    Stoeckelhuber BM, Leibecke T, Schulz E, et al. Radiation dose to the radiologist’s hand during continuous CT fluoroscopy-guided interventions. Cardiovasc Intervent Radiol. 2005;28:589–94.PubMedCrossRefGoogle Scholar
  106. 106.
    Gupta R, Grasruck M, Suess C, et al. Ultra-high resolution flat-panel volume CT: fundamental principles, design architecture, and system characterization. Eur Radiol. 2006;16:1191–205.PubMedCrossRefGoogle Scholar
  107. 107.
    Orth RC, Wallace MJ, Kuo MD. C-arm cone-beam CT: general principles and technical considerations for use in interventional radiology. J Vasc Interv Radiol. 2008;19:814–20.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of RadiologyMemorial Sloan-Kettering Cancer CenterNew YorkUSA

Personalised recommendations