Skip to main content

Contrast Agents: Magnetic Resonance

  • Chapter
Molecular Imaging I

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 185/1))

Abstract

Even though the intrinsic magnetic resonance imaging (MRI) contrast is much more flexible than in other clinical imaging techniques, the diagnosis of several pathologies requires the involvement of contrast agents (CAs) that can enhance the difference between normal and diseased tissues by modifying their intrinsic parameters. MR CAs are indirect agents because they do not become visible by themselves as opposed to other imaging modalities. The signal enhancement produced by MRI CAs (i.e., the efficiency of the CAs) depends on their longitudinal (r1) and transverse (r2) relaxivity (expressed in s−1 mmol−1 1), which is defined as the increase of the nuclear relaxation rate (the reciprocal of the relaxation time) of water protons produced by 1 mmol per liter of CA.

Paramagnetic CAs (most of them complexes of gadolinium) are frequently used in clinics as extracellular, hepatobiliary or blood pool agents. Low molecular weight paramagnetic CAs have similar effects on R1 and R2, but the predominant effect at low doses is that of T1 shortening (and R1 enhancement). Thus, organs taking up such agents will become bright in a T1-weighted MRI sequence; these CAs are thus called positive contrast media.

The CAs known as negative agents influence signal intensity mainly by shortening T2* and T2, which produces the darkening of the contrast-enhanced tissue. These CAs are generally composed of superparamagnetic nanoparticles, consisting of iron oxides (magnetite, Fe3O4, maghemite, γFe2O3, or other ferrites). Iron oxide nanoparticles are taken up by the monocyte-macrophage system, which explains their potential application as MRI markers of inflammatory and degenerative disorders.

Most of the contemporary MRI CAs approved for clinical applications are non-specific for a particular pathology and report exclusively on the anatomy and the physiological status of various organs. A new generation of MRI CAs is progressively emerging in the current context of molecular imaging, agents that are designed to detect with a high specificity the cellular and molecular hallmarks of various pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlstrom KH, Johansson LO, Rodenburg JB, Ragnarsson AS, Akeson P, Borseth A (1999) Pul-monary MR angiography with ultrasmall superparamagnetic iron oxide particles as a blood pool agent and a navigator echo for respiratory gating: pilot study. Radiology 211:865-869

    PubMed  CAS  Google Scholar 

  • Aime S, Botta M, Fasano M, Terreno E (1998) Lanthanide(III) chelates for NMR biomedical ap-plications. Chem Soc Rev 27:19-29

    CAS  Google Scholar 

  • Aime S, Botta M, Fasano M, Terreno E (1999) Prototropic and water-exchange processes in aque-ous solutions of Gd(III) chelates. Acc Chem Res 32:941-949

    CAS  Google Scholar 

  • Anelli PL, Lattuada L, Lorusso V, Schneider M, Tourner H, Uggeri F (2001) Mixed micelles con-taining lipophilic gadolinium complexes as MRA contrast agents. MAGMA 12:114-120

    PubMed  CAS  Google Scholar 

  • Barber PA, Foniok T, Kirk D, Buchan AM, Laurent S, Boutry S, Muller RN, Hoyte L, Tomanek B, Tuor UI (2004) Magnetic resonance molecular imaging (MRMI) of early endothelial activation in focal ischemia in mice. Ann Neurol 56:116-120

    PubMed  CAS  Google Scholar 

  • Bellin M-F, Webb JAW, Van Der Molen AJ, Thomsen HS, Morcos SK (2005) Safety of MR liver specific contrast media. Eur Radiol 15:1607-1614

    PubMed  Google Scholar 

  • Bloembergen NJ (1957) Proton relaxation times in paramagnetic solutions. Chem Phys 27: 572-573

    CAS  Google Scholar 

  • Bogdanov AA Jr, Lewin M, Weissleder R (1999) Approaches and agents for imaging the vascular system. Adv Drug Delivery Rev 37:279-293

    CAS  Google Scholar 

  • Bonnemain B (1998) Superparamagnetic agents in magnetic resonance imaging, physicochemical characteristics and clinical applications. A review. J Drug Target 6:167-174

    PubMed  CAS  Google Scholar 

  • Bousquet JC, Saini S, Stark DD, Hahn PF, Nigam M, Wittenberg J, Ferrucci JT (1988) Gd-DOTA: characterization of a new paramagnetic complex. Radiology 166:693-698

    PubMed  CAS  Google Scholar 

  • Boutry S, Burtea C, Laurent S, Vander Elst L, Muller RN (2005) Magnetic resonance imaging of inflammation with a specific selectin-targeted contrast agent. Magn Reson Med 53:800-807

    PubMed  CAS  Google Scholar 

  • Boutry S, Laurent S, Vander Elst L, Muller RN (2006) Specific E-selectin targeting with a super-paramagnetic MRI contrast agent. Contrast Med Mol Imaging 1:15-22

    CAS  Google Scholar 

  • Bremer C, Allkemper T, B ärmig J, Reimer P (1999) RES-specific imaging of the liver and spleen with iron oxide particles designed for blood pool MR-angiography. J Magn Reson Imaging 10:461-467

    PubMed  CAS  Google Scholar 

  • Bremer C, Weissleder R (2001) In vivo imaging of gene expression: MR and optical technologies. Acad Radiol 8:15-23

    PubMed  CAS  Google Scholar 

  • Bremerich J, Colet J-M, Giovenzana GB, Aime S, Scheffler K, Laurent S, Bongartz G, Muller RN (2001) Slow clearance gadolinium-based extracellular and intravascular contrast media for three-dimensional MR angiography. J Magn Reson Imaging 13:588-593

    PubMed  CAS  Google Scholar 

  • Bulte JWM, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17:484-499

    PubMed  CAS  Google Scholar 

  • Burtea C, Laurent S, Roch A, Vander Elst L, Muller RN (2005) C-MALISA (cellular magnetic-linked immunosorbent assay), a new application of cellular ELISA for MRI. J Inorg Biochem 99:1135-1144

    PubMed  CAS  Google Scholar 

  • Burtea C, Laurent S, Murariu O, Rattat D, Toubeau G, Verbruggen A, Vansthertem D, Vander Elst L, Muller RN (2008) Molecular imaging of alpha-v beta-3 integrin expression in atherosclerotic plaques with a mimetic of RGD peptide grafted to Gd-DTPA, Cardiovasc Res, doi: 10.1093/cvr/cvm115.

    Google Scholar 

  • Cabella C, Geninatti Crich S, Corpillo D, Barge A, Ghirelli C, Bruno E, Lorusso V, Uggeri F, Aime S (2006) Cellular labeling with Gd(III) chelates: only high thermodynamic stabilities prevent the cells acting as ‘sponges’ of Gd3+ ions. Contrast Med Mol Imaging 1:23-29

    CAS  Google Scholar 

  • Cacheris WP, Quay SC, Rocklage SM (1990) The relationship between thermodynamics and toxi-city of gadolinium complexes. Magn Reson Imaging 8:467-481

    PubMed  CAS  Google Scholar 

  • Caravan P, Ellison JJ, McMurry TJ, Lauffer R (1999) Gadolinium (III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99:2293-2352

    PubMed  CAS  Google Scholar 

  • Caravan P, Cloutier NJ, Greenfield MT, McDermid SA, Dunham SU, Bulte JWM, Amedio JC, Looby RJ, Supkowski RM, Horrocks WD, McMurry TJ, Lauffer RB (2002) The interaction of MS-325 with human serum albumin and its effect on proton relaxation rates. J Am Chem Soc 124:3152-3162

    PubMed  CAS  Google Scholar 

  • Corot C, Schaefer M, Beaut é S, Bourrinet P, Zehaf S (1997) Physical, chemical and biological evaluations of CMD-A2-Gd-DOTA - A new paramagnetic dextran polymer. Acta Radiol 38: 91-99

    Google Scholar 

  • Corot C, Violas X, Robert P, Gagneur G, Port M (2003) Comparison of different types of blood pool agents (P792, MS325, USPIO) in a rabbit MR angiography-like protocol. Invest Radiol 38:311-319

    PubMed  CAS  Google Scholar 

  • Corot C, Robert P, Id ée J-M, Port M (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58:1471-1504

    PubMed  CAS  Google Scholar 

  • De Le ón-Rodriguez LM, Ortiz A, Weiner AL, Zhang S, Kovacs Z, Kodadek T, Sherry AD (2002) Magnetic resonance imaging detects a specific peptide-protein binding event. J Am Chem Soc 124:3514-3515

    Google Scholar 

  • Den Boer JA, Hoogeveen R (2001) Contrast enhanced MR angiography. Medica Mundi 45:10-22

    Google Scholar 

  • Dousset V, Brochet B, Deloire MSA, Lagoarde L, Barroso B, Caille JM, Petry KJ (2006) MR imag-ing of relapsing multiple sclerosis patients using ultra-small-particle iron oxide and compared with gadolinium. Am J Neuroradiol 27:1000-1005

    PubMed  CAS  Google Scholar 

  • Elizondo G, Fnetz CJ, Stank DD, Scott M. Rocklage SM, Quay SC, Wonah D, Tsang YM, Chia-Mei Chen M, Ferrucci JT (1991) Preclinical evaluation of MnDPDP: New paramagnetic hepa-tobiliary contrast agent for MR imaging. Radiology 178:73-78

    PubMed  CAS  Google Scholar 

  • Farooki A, Narra V, Brown J, Gadofosveset EPIX/Schering (2004) Curr Opin Investig Drugs 5: 967-976

    PubMed  CAS  Google Scholar 

  • Freed JH (1978) Dynamic effects of pair correlation functions on spin relaxation by translational diffusion in liquids. II. Finite jumps and independent T1 processes. J Chem Phys 68:4034-4037

    CAS  Google Scholar 

  • Gaillard S, Kubiak C, Stolz C, Bonnemain B, Chassard D (2002) Safety and pharmacokinetics of P792, a new blood-pool agent: results of clinical testing in nonpatient volunteers. Invest Radiol 37:161-166

    PubMed  CAS  Google Scholar 

  • George AJT, Bhakoo KK, Haskard DO, Larkman DJ, Reynolds PR (2006) Imaging molecular and cellular events in transplantation. Transplantation 82:1124-1129

    PubMed  CAS  Google Scholar 

  • Gonzalez G, Powell DH, Tissi ères V, Merbach AE (1994) Water-exchange, electronic relaxation and rotational dynamics of the MRI contrast agent [Gd(DTPA-BMA)(H2 O)] I aqueous so-lution: a variable pressure, temperature, and magnetic field 17 O NMR study. J Phys Chem. 98:53-59

    CAS  Google Scholar 

  • Groman EV, Josephson L. Lewis JM (1989) US Patent, 4827945

    Google Scholar 

  • Gupta H, Weissleder R (1996) Targeted contrast agents in MR imaging. Magn Reson Imaging Clin N Am 4:171-184

    PubMed  CAS  Google Scholar 

  • Hamm B, Staks T, M ühler A, Bolbow M, Taupitz M, Frenzel T, Wolf K-J, Weinmann H-J, Lange L (1995) Phase I clinical evaluation of Gd-EOB-DTPA as a hepatobiliary MR contrast agent: safety, pharmacokinetics, and MR imaging. Radiology 195:785-792

    PubMed  CAS  Google Scholar 

  • Harpur ES, Worah D, Hals P-A, Holtz E, Furuhama K, Nomura H (1993) Preclinical safety as-sessment and pharmacokinetics of gadodiamide injection, a new magnetic resonance imaging contrast agent. Invest Radiol 28:S28-S432

    PubMed  CAS  Google Scholar 

  • Helms MK, Petersen CE, Bhagavan NV, Jameson DM (1997) Time-resolved fluorescence studies on site-directed mutants of human serum albumin FEBS Letters, 408:67-70

    PubMed  CAS  Google Scholar 

  • Herborn CU, Honold E, Wolf M, Kemper J, Kinner S, Adam G, Barkhausen J (2007) Clinical safety and diagnostic value of the gadolinium chelate gadoterate meglumine (Gd-DOTA). Invest Ra-diol 42:58-62

    CAS  Google Scholar 

  • H ögemann D, Ntziachristos V, Josephson L, Weissleder R (2002) High throughput magnetic reso-nance imaging for evaluating targeted nanoparticle probes. Bioconjugate Chem 13:116-121

    Google Scholar 

  • Hovland R, Aasen AJ, Klaveness J (2003) Preparation and in vitro evaluation of GdDOTA-(BOM)4 ; a novel angiographic MRI contrast agent. Org Biomol Chem 1:1707-1710

    PubMed  CAS  Google Scholar 

  • Hudgins PA, Anzai Y, Morris MR, Lucas MA (2002) Ferumoxtran-10, a superparamagnetic iron oxide as a magnetic resonance enhancement agent for imaging lymph nodes: A phase 2 dose study. Am J Neuroradiol 23:649-656

    PubMed  Google Scholar 

  • Ichikawa T, H ögemann D, Saeki Y, Tyminski E, Terada K, Weissleder R, Chiocca EA, Basilion JP (2002) MRI of transgene expression: correlation to therapeutic gene expression. Neoplasia. 4:523-530

    PubMed  CAS  Google Scholar 

  • Id ée J-M, Port M, Raynal I, Schaefer M, Le Greneur S, Corot C (2006) Clinical and biological consequences of transmetallation induced by contrast agents for magnetic resonance imaging: a review. Fundam Clin Pharmacol 20:563-576

    Google Scholar 

  • Jacobsen TF, Laniado M, Van Beers BE, Dupas B, Boudghene FP, Rummeny E, Falk TH, Rinck PA, MacVicar D, Lundby B (1996) Oral magnetic particles (ferristene) as a contrast medium in abdominal magnetic resonance imaging. Acad Radiol 3:571-580

    PubMed  CAS  Google Scholar 

  • Johnson WK, Stoupis C, Torres GM, Rosenberg EB, Ros RR (1996) Superparamagnetic iron oxide (SPIO) as an oral contrast agent in gastrointestinal (GI) magnetic resonance imaging (MRI): comparison with state-of-the-art computed tomography (CT). Magn Reson Imaging 14:43-49

    PubMed  CAS  Google Scholar 

  • Jung, CW, Jacobs P (1995) Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magn Reson Imaging 13:661-674

    PubMed  CAS  Google Scholar 

  • Karabulut N, Elmas N (2006) Contrast agents used in MR imaging of the liver. Diagn Interv Radiol 12:22-30

    PubMed  Google Scholar 

  • Kellar KE, Fujii DK, Guther WHH, Briley-Saebo K, Spiller M, Bjornerud A, Koenig SH (2000) NC100150 Injection, a preparation of optimized iron oxide nanoparticles for positive-contrast MR angiography. J Magn Reson Imaging 11:488-494

    PubMed  CAS  Google Scholar 

  • Kobayashi H, Kawamoto S, Saga T, Sato N, Hiraga A, Ishimori T, Konishi J, Togashi K, Brechbiel MW (2001) Positive effects of polyethylene glycol conjugation to generation-4 polyami-doamine dendrimers as macromolecular MR contrast agents. Magn Reson Med 46:781-788

    PubMed  CAS  Google Scholar 

  • Kroft LJM, de Roos A (1999) Blood pool contrast agents for cardiovascular MR imaging. J Magn Reson Imaging 10:395-403

    PubMed  CAS  Google Scholar 

  • Lanza GM, Lamerichs R, Caruthers S, Wickline SA (2003) Molecular imaging in MR with targeted paramagnetic nanoparticles. Medica Mundi 47:34-39

    Google Scholar 

  • Lauffer R (1988) Paramagnetic metal complexes as water proton relaxation agents for MRI: theory and design. Chem Rev 187:901-927

    Google Scholar 

  • Laurent S, Vander Elst L, Houz é S, Gu érit N, Muller RN (2000) Synthesis and characterization of various benzyl diethylenetriaminepentaacetic acids (DTPA) and their paramagnetic complexes: potential organ specific contrast agents for MRI. Helv Chim Acta 83:394-406

    CAS  Google Scholar 

  • Laurent S, Vander Elst L, Copoix F, Muller RN (2001) Stability of MRI paramagnetic contrast me-dia. A proton relaxometric protocol for transmetallation assessment. Invest Radiol 36:115-122

    PubMed  CAS  Google Scholar 

  • Laurent S, Botteman F, Vander Elst L, Muller RN, (2004a) Optimising the design of paramagnetic MRI contrast agents: influence of backbone substitution on the water exchange rate of Gd-DTPA derivatives. Magn Reson Mater Phys Biol Med 16:235-245

    CAS  Google Scholar 

  • Laurent S, Botteman F, Vander Elst L, Muller RN (2004b) Relaxivity and transmetallation sta-bility of new benzyl-substituted derivatives of gadolinium-DTPA complexes. Helv Chim Acta 87:1077-1089

    CAS  Google Scholar 

  • Laurent S, Vander Elst L, Muller RN (2006) Comparative study of the physicochemical properties of six clinical low molecular weight gadolinium contrast agents. Contrast Med Mol Imaging 1:128-137

    CAS  Google Scholar 

  • Lauterbur PC (1973) Image formation by induced local interactions - examples employing nuclear magnetic resonance. Nature 242:190-191

    CAS  Google Scholar 

  • Lauterbur PC, Mendonça-Dias MH, Rudin AM (1978) Augmentation of tissue water proton spin-lattce relaxation rates by in-vivo addition of paramagnetic ions. In: Dutton PO, Leigh J, Scarpa A (eds) Frontiers of Biological Energetics. Academic Press, New York, pp 752-759

    Google Scholar 

  • Mack MG, Balzer JO, Straub R, Eichler K, Vogl TJ (2002) Superparamagnetic iron oxide-enhanced MR imaging of head and neck lymph nodes. Radiology 222:239-244

    PubMed  Google Scholar 

  • Magerstadt M, Gansow OA, Brechbiel MW, Colcher D, Balzer L, Knop RH, Girton ME, Naegele M (1986) Gadolinium-(DOTA): an alternative to gadolinium - (DTPA) as a T1, 2 relaxation agent for NMR imaging or spectroscopy. Magn Reson Med 3:808-812

    PubMed  CAS  Google Scholar 

  • Mandry D, Pedersen M, Odile F, Robert P, Corot C, Felblinger J, Grenier N, Claudon M (2005) Renal functional contrast-enhanced magnetic resonance imaging; Evaluation of a new rapid-clearance blood pool agent (P792) in Sprague-Dawley rats. Invest Radiol 40:295-305

    PubMed  CAS  Google Scholar 

  • Marchal G, Zhang X, Ni Y, Van Hecke P, Yu J, Baert AL (1993) Comparison between Gd-DTPA, Gd-EOB-DTPA, and Mn-DPDP in induced HCC in rats: a correlation study of MR imaging, microangiography, and histology. Magn Reson Imaging 11:665-674

    PubMed  CAS  Google Scholar 

  • Massoud TF, Gambhir SS (2003) Molecular Imaging in living subjects: seeing fundamental bio-logical processes in new light. Genes Dev 17:545-580

    PubMed  CAS  Google Scholar 

  • McMurry TJ, Parmelee DJ, Sajiki H, Scott DM, Ouellet HS, Walovitch RC, Tyekl àr Z, Dumas S, Bernard P, Nadler S, Midelfort K, Greenfield M, Throughton J, Lauffer RB (2002) The effect of a phosphodiester linking group on albumin binding. Blood half-life, and relaxivity of intravascular diethylenetriaminepentaacetato aquo gadolinium(III) MRI contrast agents. J Med Chem 45:3465-3474

    PubMed  CAS  Google Scholar 

  • Meade TJ, Taylor AK, Bull SR (2003) New magnetic resonance contrast agents as biochemical reporters. Curr Opin Biotechnol 13:597-602

    CAS  Google Scholar 

  • Micskei K, Helm L Brucher E, Merbach AE (1993a) NMR study of water exchange on [Gd(DTPA)H2O]2− and [Gd(DOTA)H2O] related to NMR imaging. Inorg Chem 32: 3844-3850

    CAS  Google Scholar 

  • Micskei K, Powell DH, Helm L, Br ücher E, Merbach AE (1993b) Water exchange on [Gd(H2 O)8 ]3+ and [Gd(PDTA)(H2 O)2 ] in aqueous solution: a variable-pressure, - temperature and -magnetic field 17 O NMR study. Magn Reson Chem 31:1011-1020

    CAS  Google Scholar 

  • Morisetti A, Bussi S, Tirone P, de Ha ën C (1999) Toxicological safety evaluation of gadobenate dimeglumine 0.5 M solution for injection (MultiHance), a new magnetic resonance imaging contrast medium. J Comput Assist Tomogr 23:S207-S217

    PubMed  Google Scholar 

  • Muller RN (1996) Contrast agents in whole body magnetic resonance: operating mechanisms. In: Grant DM, Harris RK (eds) Encyclopedia of nuclear magnetic resonance. Wiley, New York, pp 1438-1444

    Google Scholar 

  • Muller RN, Raduchel B, Laurent S, Platzek J, Pi érart C, Mareski P, Vander Elst L (1999) Physico-chemical characterization of MS-325, a new gadolinium complex, by multinuclear relaxometry. Eur J Inorg Chem 1949-1955

    Google Scholar 

  • Muller RN, Roch A, Colet JM, Ouakssim A, Gillis P (2001) Particulate magnetic contrast agents. In: Merbach AE, Toth E (eds) The chemistry of contrast agents in medical magnetic resonance imaging. Wiley, New York, pp 417-435

    Google Scholar 

  • Nunn AD, Linder KE, Tweedle MF (1997) Can receptors be imaged with MRI agents? Q J Nucl Med 41:155-162

    PubMed  CAS  Google Scholar 

  • Okuhata Y (1999) Delivery of diagnostic agents for magnetic resonance imaging. Adv Drug Deliv Rev 37:121-137

    PubMed  CAS  Google Scholar 

  • Ouakssim A, Fastrez S, Roch A, Laurent S, Gossuin Y, Pierart C, Vander Elst L, Muller RN (2004) Control of the synthesis of magnetic fluids by relaxometry and magnetometry. J Magn Magn Mater 272-276:1711-1713

    Google Scholar 

  • Parac-Vogt TN, Kimpe K, Laurent S, Vander Elst L, Burtea C, Chen F, Muller RN, Ni Y, Verbruggen A, Binnemans K (2005) Synthesis, characterization and pharmacokinetic evalu-ation of a potential MRI contrast agent containing two paramagnetic centers with albumin binding affinity. Chem Eur J 11:3077-3086

    CAS  Google Scholar 

  • Parac-Vogt TN, Kimpe K, Laurent S, Pi érart C, Vander Elst L, Muller RN, Binnemans K (2006) Paramagnetic liposomes containing amphiphilic bisamide derivatives of Gd-DTPA with aro-matic side chain groups as possible contrast agents for magnetic resonance imaging. Eur Bio-phys J 35:136-144

    CAS  Google Scholar 

  • Parmelee DJ, Walovitch RC, Ouellet HS, Lauffer RB (1997) Preclinical evaluation of the phar-macokinetics, biodistribution, and elimination of MS-325, a blood pool agent for magnetic resonance imaging. Invest Radiol 32:741-747

    PubMed  CAS  Google Scholar 

  • Perez JM, Josephson L, O’Loughlin T, H ögemann D, Weissleder R (2002) Magnetic relaxation switches capable of sensing molecular interactions. Nat Biotechnol 20:816-820

    PubMed  CAS  Google Scholar 

  • Petersen SB, Muller RN, Rinck PA (eds) (1985) An introduction to biomedical nuclear magnetic resonance. Thieme, Stuttgart New York

    Google Scholar 

  • Platzek J, Blaszkiewicz P, Gries H, Luger P, Mishl G, Muller-Fahrnow A, Raduchel B, Sulzle D (1997) Synthesis and structure of a new macrocyclic polyhydroxylated gadolunium chelate used as a contrast agent for magnetic resonance imaging. Inorg Chem 36:6086-6093

    PubMed  CAS  Google Scholar 

  • Reimer P, Muller M, Marx C, Wiedermann D, Muller RN, Rummeny EJ, Ebert W, Shamsi K, Peters PE (1998) T1 effects of a bolus-injectable superparamagnetic iron oxide, SH U 555 A: dependence on field strength and plasma concentration-preliminary clinical experience with dynamic T1-weighted MR imaging. Radiology 209:831-836

    PubMed  CAS  Google Scholar 

  • Reimer P, Schneider G, Schima W (2004a) Hepatobiliary contrast agents for contrast-enhanced MRI of the liver: properties, clinical development and applications. Eur Radiol 14:559-578

    Google Scholar 

  • Reimer P, Bremer C, Allkemper T, Engelhardt M, Mahler M, Ebert W, Tombach B (2004b) Myocardial perfusion and MR angiography of chest with SH U 555 C: Results of placebocontrolled clinical phase I study. Radiology 231:474-481

    Google Scholar 

  • Rinck PA (1993) Magnetic resonance in medicine. The basic textbook of the European Mag-netic Resonance Forum, 3rd edn. Blackwell, Oxford London Edinburgh Boston Melbourne Paris Berlin Vienna

    Google Scholar 

  • Roch A, Muller RN (1992) Longitudinal relaxation of water protons in colloidal suspensions of superparamagnetic crystals. Proc11th Annual Meeting of the Society of Magnetic Resonance in Medicine. 11:1447

    Google Scholar 

  • Roch A, Muller RN, Gillis P (1999a) Theory of proton relaxation induced by superparamagnetic particles. J Chem Phys 110:5403-5411

    CAS  Google Scholar 

  • Roch A, Gillis P, Ouakssim A, Muller RN (1999b) Proton magnetic relaxation in superparamag-netic aqueous colloids: a new tool for the investigation of ferrite crystal anisotropy. J Magn Magn Mater 201:77-79

    CAS  Google Scholar 

  • Roch A, Muller RN, Gillis P (2001) Water relaxation by SPM particles: Neglecting the magnetic anisotropy? A caveat. J Magn Reson Imaging 14:94-96

    PubMed  CAS  Google Scholar 

  • Roch A, Moiny F, Muller RN, Gillis P (2002) Water magnetic relaxation in superparamagnetic colloid suspensions: the effect of agglomeration. In: Fraissard J, Lapina O (eds) Magnetic res-onance in colloid and interface science. Kluwer, Dordrecht, pp 383-392

    Google Scholar 

  • Rofsky NM, Weinreb JC, Bernardino ME, Young SW, Lee JK, Noz ME (1993) Hepatocellular tumors: characterization with Mn-DPDP-enhanced MR imaging. Radiology 188:53-59

    PubMed  CAS  Google Scholar 

  • Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann H-J (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol, 40:715-724

    PubMed  Google Scholar 

  • Rollo FD (2003) Molecular imaging: an overview and clinical applications. Radiol Manage 25:28-32

    PubMed  Google Scholar 

  • Rudin M, Weissleder R (2003) Molecular imaging in drug discovery and development. Nat Rev Drug Discov 2:123-131

    PubMed  CAS  Google Scholar 

  • Ruehm SG, Corot C, Vogt P, Kolb S, Debatin JF (2001) Magnetic resonance imaging of atheroscle-rotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rab-bits. Circulation 103:415-422

    PubMed  CAS  Google Scholar 

  • Saleh A, Wiedermann D, Schroeter M, Jonkmanns C, Jander S, Hoehn M (2004) Central ner-vous system inflammatory response after cerebral infarction as detected by magnetic resonance imaging. NMR Biomed 17:163-169

    PubMed  Google Scholar 

  • Schellenberger EA, Hogemann D, Josephson L, Weissleder R (2002) Annexin V-CLIO: a nanopar-ticle for detecting apoptosis by MRI. Acad Radiol 9:S310-S311

    PubMed  Google Scholar 

  • Schima W, Saini S, Petersein J, Weissleder R, Harisinghani M, Mayo-Smith W, Hahn PF (1999) MR imaging of the liver with Gd-BOPTA: quantitative analysis of T1-weighted images at two different doses. J Magn Reson Imaging 10:80-83

    PubMed  CAS  Google Scholar 

  • Schneider G, Prince MR, Meaney JFM, Ho VB (eds) (2005) Magnetic resonance angiogra-phy - Techniques, indications and practical applications. Springer, Milan Berlin Heidelberg New York.

    Google Scholar 

  • Schuhmann-Giampieri G, Schmitt-Willich H, Press WR, Negishi C, Weinmann HJ, Speck U (1992) Preclinical evaluation of Gd-EOB-DTPA as a contrast agent in MR imaging of the hepatobiliary system. Radiology 183:59-64

    PubMed  CAS  Google Scholar 

  • Semelka RC, Helmberger TKG (2001) Contrast agents for MR imaging of the liver. Radiology 218:27-38

    PubMed  CAS  Google Scholar 

  • Sharafuddin MJ, Stolpen AH, Dang YM, Andresen KJ, Roh B-S (2002) Comparison of MS-325- and gadodiamide enhanced MR venography of iliocaval veins. J Vasc Interv Radiol 13: 1021-1027

    PubMed  Google Scholar 

  • Shukla R. Zhang X, Tweedle M. (1991) In vitro determination of correlation times independent of nuclear magnetic resonance dispersion. Inverst Radiol 26:S224-S225

    Google Scholar 

  • Shuter B, Tofts PS, Wanga S-C, Pope JM (1996) The relaxivity of Gd-EOB-DTPA and Gd-DTPA in liver and kidney of the Wistar rat. Magn Reson Imaging 14:243-253

    PubMed  CAS  Google Scholar 

  • Sibson NR, Blamire AM, Bernades-Silva M, Laurent S, Boutry S, Muller RN, Styles P, Anthony DC (2004) MRI detection of early endothelial activation in CNS inflammation. Magn Reson Med 51:248-252

    PubMed  CAS  Google Scholar 

  • Solomon I (1955) Relaxation processes in a system of two spins. Phys Rev 99:559-565

    CAS  Google Scholar 

  • Sosnovik DE, Weissleder R (2006) Emerging concepts in molecular MRI. Curr Opin Biotechnol 17:1-7

    Google Scholar 

  • Stark DD, Weissleder R, Elizondo G, Hahn PF, Saini S, Todd LE, Wittenberg J, Ferrucci JT (1988) Superparamagnetic iron oxide: Clinical application as a contrast agent for MR imaging of the liver. Radiology 168:297-301

    PubMed  CAS  Google Scholar 

  • Tanimoto A, Kuribayashi S (2005) Hepatocyte-targeted MR contrast agents: Contrast enhanced detection of liver cancer in diffusely damaged liver. Magn Reson Med Sci 4:53-60

    PubMed  CAS  Google Scholar 

  • Thomsen HS (2006) Nephrogenic systemic fibrosis: a serious late adverse reaction to gadodiamide. Eur Radiol 16:2619-2621

    PubMed  Google Scholar 

  • Thorek DLJ, Chen AK, Czupryna J, Tsourkas A (2006) Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 34:23-38

    PubMed  Google Scholar 

  • Toft KG, Hustvedt SO, Grant D, Friisk GA, Skotland T (1997a) Metabolism of mangafodipir trisodium (MnDPDP), a new contrast medium for magnetic resonance imaging, in beagle dogs. Eur J Drug Metab Pharmacokinet 22:65-72

    Article  CAS  Google Scholar 

  • Toft KG, Hustvedt SO, Grant D, Martinsen I, Gordon PB, Friisk GA, Korsmo AJ, Skotland T (1997b) Metabolism and pharmacokinetics of MnDPDP in man. Acta Radiol 38:677-689

    CAS  Google Scholar 

  • Tombach B, Heindel W (2002) Value of 1.0-M gadolinium chelates: review of preclinical and clinical data on gadobutrol. Eur Radiol 12:1550-1556

    PubMed  Google Scholar 

  • Toth E, Pubanz D, Vauthey S, Helm L, Merbach AE (1996) High-pressure NMR kinetics. 72. The role of water exchange in attaining maximum relaxivities for dendrimeric MRI contrast agents. Chem Eur J 2:1607-1615

    CAS  Google Scholar 

  • Toth E, Van Uffelen I, Helm L, Merbach AE, Ladd D, Briley-Saebo K, Kellar KE (1998) Gadolinium-based linear polymer with temperature-independent proton relaxivities: a unique interplay between the water exchange and rotational contributions. Magn Reson Chem 36:S125-S134

    CAS  Google Scholar 

  • Toth E, Helm L, Kellar KE, Merbach AE (1999) Gd(DTPA-bisamide)alkyl copolymers: A hint for the formation of MRI contrast agents with very high relaxivity. Chem Eur J 5:1202-1211

    CAS  Google Scholar 

  • Trivedi RA, U-King-Im JM, Graves MJ, Kirkpattrick PJ, Gillard JH (2004) Noninvasive imaging of carotid plaque inflammation. Neurology 63:187-188

    PubMed  CAS  Google Scholar 

  • Turetschek K, Floyd E, Shames DM, Roberts TPL, Preda A, Novikov V, Corot C, Carter WO, Brasch RC (2001) Assessment of a rapid clearance blood pool MR contrast medium (P792) for assays of microvascular characteristics in experimental breast tumors with correlations to histopathology. Magn Reson Med 45:880-886

    PubMed  CAS  Google Scholar 

  • Tweedle MF, Hagan JJ, Kumar K, Mantha S, Chang CA (1991) Reaction of gadolinium chelates with endogenously available ions. Magn Reson Imaging 9:409-415

    PubMed  CAS  Google Scholar 

  • Tweedle MF, Wedeking P, Kumar K (1995) Biodistribution of radiolabeled, formulated gadopen-tetate, gadoteridol, gadoterate, and gadodiamide in mice and rats. Invest Radiol 30:372-380

    PubMed  CAS  Google Scholar 

  • Uggeri F, Aime S, Anelli PL, Botta M, Brocchetta M, de Haen C, Ermondi G, Grandi G, Paoli P (1995) Novel contrast agents for magnetic resonance imaging. Synthesis and characteri-zation of the ligand BOPTA and its Ln(III) complexes (Ln = Gd, La, Ln). X-ray structure of disodium (TPS-9-145337286-C-S)-[4-carboxy-5,8,11-tris(carboxymethyl)-1-phenyl-2-oxa-5,8,11-triazatridecan-13-oato(5-)]gadolinite (2-) in a mixture with its enantiomer. Inorg Chem 34:633-642

    CAS  Google Scholar 

  • Vander Elst L, Maton F, Laurent S, Seghi F, Chapelle F, Muller RN (1997) A multinuclear MR study of Gd-EOB-DTPA: comprehensive preclinical characterization of an organ specific MRI contrast agent. Magn Reson Med 38:604-614

    PubMed  CAS  Google Scholar 

  • Vander Elst L, Raynal I, Port M, Tisn ès P, Muller RN (2005) In vitro relaxometric and luminiscence characterization of P792 (Gadomelitol, Vistarem) an efficient and rapid clearance blood pool MRI contrast agent. Eur J Inorg Chem 1142-1148

    Google Scholar 

  • van Montfoort JE, Stieger B, Meijer DKF, Weinmann H-J, Meier PJ, Fattinger KE (1999) He-patic uptake of the magnetic resonance imaging contrast agent gadoxetate by the organic anion transporting polypeptide Oatp1. J Pharmacol Exp Ther 290:153-157

    PubMed  CAS  Google Scholar 

  • Vogler H, Platzek J, Schuhmann-Giampieri G, Frenzel T, Weimann H-J, Rad üchel B, Press W-R (1995) Pre-clinical evaluation of gadobutrol: a new neutral, extracellular contrast agent for magnetic resonance imaging. Eur J Radiol 21:1-10

    PubMed  CAS  Google Scholar 

  • Wang SJ, Brechbiel M, Wiener EC (2003) Characteristics of a new MRI contrast agent prepared from polypropyleneimine dendrimers, generation 2. Invest Radiol 38:662-668

    PubMed  CAS  Google Scholar 

  • Wang Y-XJ, Hussain SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11:2319-2331

    PubMed  CAS  Google Scholar 

  • Wedeking P, Kumar K, Tweedle MF (1992) Dissociation of gadolinium chelates in mice: relation-ship to chemical characteristics. Magn Reson Imaging 10:641-648

    PubMed  CAS  Google Scholar 

  • Weinmann H-J, Brasch RC, Press W-R, Wesbey GE (1984) Characteristics of gadolinium -DTPA complex, apotential NMR contrast agent. Am J Roentgenol 142:619-624

    CAS  Google Scholar 

  • Weinmann HJ, Schuhmann-Giampiepi G, Schmitt-Willich H, Vogler H, Frenzei, Gries H (1991) A new lipophilic gadolinium chelate as a tissue-specific contrast medium for MRI. Magn Reson Med 22:233-237

    PubMed  CAS  Google Scholar 

  • Weinmann H-J, Ebert W, Misselwitz B, Schmitt-Willich H (2003) Tissue-specific MR contrast agents. Eur J Radiol 46:33-44

    PubMed  Google Scholar 

  • Weissleder R, Elizondo G, Wittenberg J, Rabito CA, Bengele HH, Josephson L (1990) Ultrasmall superparamagnetic iron oxide: Characterization of a new class of contrast agents for MR imag-ing. Radiology 175:489-493

    PubMed  CAS  Google Scholar 

  • Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219:316-333

    PubMed  CAS  Google Scholar 

  • Wiener EC, Brechbiel MW, Brothers H, Magin RL, Gansow OA, Tomalia DA, Lauterbur PC (1994) Dendrimer-based metal chelates: a new class of magnetic resonance imaging contrast agents. Magn Reson Med 31:1-8

    PubMed  CAS  Google Scholar 

  • Willard MA, Kurihara LK, Carpenter EE, Calvin S, Harris VG (2004) Chemically prepared mag-netic nanoparticles. In: Nalwa HS (ed) Encyclopedia of science and nanotechnology, vol 1, pp 815-848

    Google Scholar 

  • Xu S, Jordan E, Brocke S, Bulte JW, Quigley L, Tresser N, Ostuni JL, Yang Y, mcFarland HF, Frank JA (1998) Study of relapsing remitting experimental allergic encephalomyelitis SJL mouse model using MION-46L enhanced in-vivo MRI: early histopathological correlation. J Neurosci Res 52:549-558

    PubMed  CAS  Google Scholar 

  • Yoshikawa T, Mitchell DG, Hirota S, Ohno Y, Oda K, Maeda T, Fuji M, Sugimura K (2006) Gradient- and spin-echo T2-weighted imaging for SPIO-enhanced detection and characteriza-tion of focal liver lesions. J Magn Reson Imaging 23:712-719

    PubMed  Google Scholar 

  • Zhang S, Wu K, Sherry AD (2001) Gd3+ complexes with slowly exchanging bound-water mole-cules may offer advantages in the design of responsive MR agents. Invest Radiol 36:82-86

    PubMed  CAS  Google Scholar 

  • Zhao M, Beauregard DA, Loizou L, Davletov B, Brindle M (2001) Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nature Med 7: 1241-1244

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert N. Muller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Burtea, C., Laurent, S., Vander Elst, L., Muller, R.N. (2008). Contrast Agents: Magnetic Resonance. In: Semmler, W., Schwaiger, M. (eds) Molecular Imaging I. Handbook of Experimental Pharmacology, vol 185/1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72718-7_7

Download citation

Publish with us

Policies and ethics