Encyclopedia of Geobiology

2011 Edition
| Editors: Joachim Reitner, Volker Thiel

Fluorescence In Situ Hybridization (FISH)

  • Natuschka M. Lee
  • Daniela B. Meisinger
  • Michael Schmid
  • Michael Rothballer
  • Frank E. Löffler
Reference work entry
DOI: https://doi.org/10.1007/978-1-4020-9212-1_91

Definition

FISH (fluorescence in situ hybridization) is a hybridization technique employing reverse complementary fluorescently labeled probes to detect and localize only those parts of the chromosome, a gene or its transcript with which they show a high degree of sequence similarity. Results are mostly evaluated by either fluorescence microscopy or cell sorting methods like flow cytometry. Depending on target gene, probe chemistry, labeling, and combination with other analytical tools, a wide range of different FISH applications can be employed for advanced in situ analysis of community structure, dynamics, localization, activity, function and interactions of different cellular species.

Introduction

Antonie van Leeuwenhoek’s ingenious improvement of the microscope in the seventeenth century revolutionized biology as this initiated novel ways to explore our world and ultimately led to the discovery of a new dimension of life forms, the microorganisms. However, since traditional...

Keywords

Ribosome Content Probe Accessibility Probe Signal Intensity Fixative Reagent Confounding Background 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Bibliography

  1. Ainsworth, T. D., Fine, M., Blackall, L. L., and Hoegh-Guldberg, O., 2006. Fluorescence in situ hybridization and spectral imaging of coral-associated bacterial communities. Applied and Environmental Microbiology, 72, 3016–3020.CrossRefGoogle Scholar
  2. Alm, E., Oerther, D., Larsen, N., Stahl, D., and Raskin, L., 1996. The oligonucleotide probe database. Applied and Environmental Microbiology, 62, 3557–3559.Google Scholar
  3. Amann, R., and Fuchs, B. M., 2008. Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nature Reviews Microbiology, 6, 339–348.CrossRefGoogle Scholar
  4. Amann, R., Ludwig, W., and Schleifer, K.-H., 1994. Identification of uncultured bacteria: a challenging task for molecular taxonomists. ASM News, 60, 360–365.Google Scholar
  5. Amann, R., Ludwig, W., and Schleifer, K.-H., 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews, 59, 143–169.Google Scholar
  6. Amann, R., and Schleifer, K.-H., 2001. Nucleid acid probes and their application in environmental microbiology. In Garrity, G. M. (ed.), Bergey’s Manual of Systematic Bacteriology. New York: Springer, 2nd edn. pp. 67–82.CrossRefGoogle Scholar
  7. Amann, R., Snaidr, J., Wagner, M., Ludwig, W., and Schleifer, K. H., 1996. In situ visualization of high genetic diversity in a natural microbial community. Journal of Bacteriology, 178, 3496–3500.Google Scholar
  8. Amann, R. I., 1995. In situ identification of micro-organisms by whole cell hybridization with rRNA-targeted nucleic acid probes. In Molecular Microbial Ecology Manual. Vol. 3.3.6, pp. 1–15.Google Scholar
  9. Amann, R. I., Binder, B. J., Olson, R. J., Chisholm, S. W., Devereux, R., and Stahl, D., 1990. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Applied and Environmental Microbiology, 56, 1919–1925.Google Scholar
  10. Amann, R. I., Krumholz, L., and Stahl, D. A., 1990. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. Journal of Bacteriology, 172, 762–770.Google Scholar
  11. Amann, R. I., Zarda, B., Stahl, D. A., and Schleifer, K. H., 1992. Identification of individual prokaryotic cells by using enzyme-labeled, rRNA-targeted oligonucleotide probes. Applied and Environmental Microbiology, 58, 3007–3011.Google Scholar
  12. Amaral-Zettler, L., Peplies, J., Ramette, A., Fuchs, B., Ludwig, W., and Glöckner, F. O., 2008. Proceedings of the international workshop on Ribosomal RNA technology, April 7–9, 2008, Bremen, Germany. Systematic and Applied Microbiology, 31, 258–268.CrossRefGoogle Scholar
  13. Anderson, R., 2010. Multiplex fluorescence in situ hybridization (M-FISH). Methods Molecular Biology, 659, 83–97.CrossRefGoogle Scholar
  14. Baker, B. J., Lutz, M. A., Dawson, S. C., Bond, P. L., and Banfield, J. F., 2004. Metabolically active eukaryotic communities in extremely acidic mine drainage. Applied and Environmental Microbiology, 70, 6264–6271.CrossRefGoogle Scholar
  15. Barton, H. A., Spear, J. R., and Pace, N. R., 2001. Microbial life in the underworld: biogenicity in secondary mineral formations. Geomicrobiology Journal, 18, 359–368.CrossRefGoogle Scholar
  16. Barton, H. A., Taylor, N. M., Lubbers, B. R., and Pemberton, A. C., 2006. DNA extraction from low-biomass carbonate rock: an improved method with reduced contamination and the low-biomass contaminant database. Journal of Microbiological Methods, 66, 21–31.CrossRefGoogle Scholar
  17. Baschien, C., Manz, W., Neu, T. R., and Szewzyk, U., 2001. I. Decomposition and microbial activities fluorescence in situ hybridization of freshwater fungi. International Review of Hydrobiology, 86, 371–381.CrossRefGoogle Scholar
  18. Behrens, S., Fuchs, B. M., and Amann, R., 2004. The effect of nucleobase-specific fluorescence quenching on in situ hybridization with rRNA-targeted oligonucleotide probes. Systematic and Applied Microbiology, 27, 565–572.CrossRefGoogle Scholar
  19. Behrens, S., Fuchs, B. M., Mueller, F., and Amann, R., 2003. Is the in situ accessibility of the 16S rRNA of Escherichia coli for Cy3-labeled oligonucleotide probes predicted by a three-dimensional structure model of the 30S ribosomal subunit? Applied and Environmental Microbiology, 69, 4935–4941.CrossRefGoogle Scholar
  20. Behrens, S., Losekann, T., Pett-Ridge, J., Weber, P. K., Ng, W.-O., Stevenson, B. S., Hutcheon, I. D., Relman, D. A., and Spormann, A. M., 2008. Linking microbial phylogeny to metabolic activity at the single-cell level by using enhanced element labeling-catalyzed reporter deposition fluorescence in situ hybridization (EL-FISH) and NanoSIMS. Applied and Environmental Microbiology, 74, 3143–3150.CrossRefGoogle Scholar
  21. Behrens, S., Rühland, C., Inácio, J., Huber, H., Fonseca, Á., Spencer-Martins, I., Fuchs, B. M., and Amann, R., 2003. In Situ accessibility of small-subunit rRNA of members of the domains bacteria, archaea, and eucarya to Cy3-labeled oligonucleotide probes. Applied and Environmental Microbiology, 69, 1748–1758.CrossRefGoogle Scholar
  22. Bentolila, l. A., and Weiss, S., 2006. Single-step multicolor fluorescence in situ hybridization using semiconductor quantum dot–dna conjugates. Cell Biochemistry and Biophysics, 45, 59–70.CrossRefGoogle Scholar
  23. Bertaux, J., Gloger, U., Schmid, M., Hartmann, A., and Scheu, S., 2007. Routine fluorescence in situ hybridization in soil. Journal of Microbiological Methods, 69, 451–460.CrossRefGoogle Scholar
  24. Boetius, A., et al., 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407, 623.CrossRefGoogle Scholar
  25. Bond, P. L., Druschel, G. K., and Banfield, J. F., 2000. Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems. Applied and Environmental Microbiology, 66, 4962–4971.CrossRefGoogle Scholar
  26. Bridger, J. M., and Volpi, E. V., 2010. Fluorescence In Situ Hybridization. Methods in Molecular Biology. Totowa: Humana Press, Vol. 659.CrossRefGoogle Scholar
  27. Brown, D. J., and Lee, M., 2007. From microscopic minerals to global climate change? Geology Today, 23, 172–177.CrossRefGoogle Scholar
  28. Caracciolo, A. B., Grenni, P., Cupo, C., and Rossetti, S., 2005. In situ analysis of native microbial communities in complex samples with high particulate loads. FEMS Microbiology Letters, 253, 55–58.CrossRefGoogle Scholar
  29. Chatzinotas, A. S. R., Schönhuber, W., Amann, R., Daae, F. L., Torsvik, V., Zeyer, J., and Hahn, D., 1998. Analysis of broad-scale differences in microbial community composition of two pristine forest soils. Systematic and Applied Microbioliology, 21, 579–587.CrossRefGoogle Scholar
  30. Christensen, H., Hansen, M., and Sørensen, J., 1999. Counting and size classification of active soil bacteria by fluorescence in situ hybridization with an rRNA oligonucleotide probe. Applied and Environmental Microbiology, 65, 1753–1761.Google Scholar
  31. Cockell, C. S., and Herrera, A., 2008. Why are some microorganisms boring? Trends in Microbiology, 16, 101–106.CrossRefGoogle Scholar
  32. Coleman, J. R., Culley, D. E., Chrisler, W. B., and Brockman, F. J., 2007. mRNA-targeted fluorescent in situ hybridization (FISH) of gram-negative bacteria without template amplification or tyramide signal amplification. Journal of Microbiological Methods, 71, 246–255.CrossRefGoogle Scholar
  33. Cottrell, M. T., and Kirchman, D. L., 2003. Contribution of major bacterial groups to bacterial biomass production (thymidine and leucine incorporation) in the Delaware estuary. Limnology and Oceanography, 48, 168–178.CrossRefGoogle Scholar
  34. Cottrell, M. T., and Kirchman, D. L., 2000. Natural assemblages of marine proteobacteria and members of the cytophaga-flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Applied and Environmental Microbiology, 66, 1692–1697.CrossRefGoogle Scholar
  35. Cottrell, M. T., and Kirchman, D. L., 2000. Community composition of marine bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence in situ hybridization. Applied and Environmental Microbiology, 66, 5116–5122.CrossRefGoogle Scholar
  36. Currin, C. A., Pearl, H. W., Suba, G. K., and Alberte, R. S., 1990. Immunofluorescence detection and characterization of N2-fixing microorganisms from aquatic environments. Limnoloy and Oceanography, 35, 59–71.CrossRefGoogle Scholar
  37. Daims, H., 2009. Use of fluorescence in situ hybridization and the daime image analysis program for the cultivation-independent quantification of microorganisms in environmental and medical samples. Cold Spring Harbor Protocols, pdb.prot5253.Google Scholar
  38. Daims, H., and Wagner, M., 2007. Quantification of uncultured microorganisms by fluorescence microscopy and digital image analysis. Applied Microbiology and Biotechnology, 75, 237–248.CrossRefGoogle Scholar
  39. Daims, H., Bruhl, A., Amann, R., Schleifer, K. H., and Wagner, M., 1999. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Systematic and Applied Microbiology, 22, 434–444.CrossRefGoogle Scholar
  40. Daims, H., Ramsing, N. B., Schleifer, K.-H., and Wagner, M., 2001. Cultivation-independent, semiautomatic determination of absolute bacterial cell numbers in environmental samples by fluorescence in situ hybridization. Applied and Environmental Microbiology, 67, 5810–5818.CrossRefGoogle Scholar
  41. de los Reyes, F., Ritter, W., and Raskin, L., 1997. Group-specific small-subunit rRNA hybridization probes to characterize filamentous foaming in activated sludge systems. Applied and Environmental Microbiology, 63, 1107–1117.Google Scholar
  42. DeLong, E. F., Taylor, L. T., Marsh, T. L., and Preston, C. M., 1999. Visualization and enumeration of marine planktonic archaea and bacteria by using polyribonucleotide probes and fluorescent in situ hybridization. Applied and Environmental Microbiology, 65, 5554–5563.Google Scholar
  43. DeLong, E. F., Wickhamn, G. S., and Pace, N. R., 1989. Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science, 243, 1360–1363.CrossRefGoogle Scholar
  44. DeSantis, T. Z., Stone, C. E., Murray, S. R., Moberg, J. P., and Andersen, G. L., 2005. Rapid quantification and taxonomic classification of environmental DNA from both prokaryotic and eukaryotic origins using a microarray. FEMS Microbiology Letters, 245, 271–278.CrossRefGoogle Scholar
  45. Edwards, K. J., Gihring, T. M., and Banfield, J. F., 1999. Seasonal variations in microbial populations and environmental conditions in an extreme acid mine drainage environment. Applied and Environmental Microbiology, 65, 3627–3632.Google Scholar
  46. Engel, A. S., Lee, N., Porter, M. L., Stern, L. A., Bennett, P. C., and Wagner, M., 2003. Filamentous “Epsilonproteobacteria” dominate microbial mats from sulfidic cave springs. Applied and Environmental Microbiology, 69, 5503–5511.CrossRefGoogle Scholar
  47. Engel, A. S., Meisinger, D. B., Porter, M. L., Payn, R. A., Schmid, M., Stern, L. A., Schleifer, K. H., and Lee, N. M., 2010. Linking phylogenetic and functional diversity to nutrient spiraling in microbial mats from Lower Kane Cave (USA). The ISME Journal, 4, 98–110.CrossRefGoogle Scholar
  48. Flies, C. B., Peplies, J., and Schuler, D., 2005. Combined approach for characterization of uncultivated magnetotactic bacteria from various aquatic environments. Applied and Environmental Microbiology, 71, 2723–2731.CrossRefGoogle Scholar
  49. Fried, J., and Foissner, W., 2007. Differentiation of two very similar glaucomid ciliate morphospecies (ciliophora, tetrahymenida) by fluorescence in Situ hybridization with 18S rRNA targeted oligonucleotide probes. Journal of Eukaryotic Microbiology, 54, 381–387.CrossRefGoogle Scholar
  50. Fried, J., Ludwig, W., Psenner, R., and Schleifer, K. H., 2002. Improvement of ciliate identification and quantification: a new protocol for fluorescence in situ hybridization (FISH) in combination with silver stain techniques. Systematic and Applied Microbiology, 25, 555–571.CrossRefGoogle Scholar
  51. Fuchs, B., Wallner, G., Beisker, W., Schwippl, I., Ludwig, W., and Amann, R., 1998. Flow cytometric analysis of the in situ accessibility of Escherichia coli 16S rRNA for fluorescently labeled oligonucleotide probes. Applied and Environmental Microbiology, 64, 4973–4982.Google Scholar
  52. Fuchs, B. M., Glöckner, F. O., Wulf, J., and Amann, R., 2000. Unlabeled helper oligonucleotides increase the in situ accessibility to 16S rRNA of fluorescently labeled oligonucleotide probes. Applied and Environmental Microbiology, 66, 3603–3607.CrossRefGoogle Scholar
  53. Gerard, E., Guyot, F., Philippot, P., and Purificacion, L.-G., 2005. Fluorescence in situ hybridisation coupled to ultra small immunogold detection to identify prokaryotic cells using transmission and scanning electron microscopy. Journal of Microbiological Methods, 63, 20–28.CrossRefGoogle Scholar
  54. Giovannoni, S. J., DeLong, E. F., Olsen, G. J., and Pace, N. R., 1988. Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. Journal of Bacteriology, 170, 720–726.Google Scholar
  55. Glöckner, F. O., Fuchs, B. M., and Amann, R., 1999. Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Applied and Environmental Microbiology, 65, 3721–3726.Google Scholar
  56. Glöckner, F. O., Zaichikov, E., Belkova, N., Denissova, L., Pernthaler, J., Pernthaler, A., and Amann, R., 2000. Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of actinobacteria. Applied and Environmental Microbiology, 66, 5053–5065.CrossRefGoogle Scholar
  57. Gmür, R., and Lüthi-Schaller, H., 2007. A combined immunofluorescence and fluorescent in situ hybridization assay for single cell analyses of dental plaque microorganisms. Journal of Microbiological Methods, 69, 402–405.CrossRefGoogle Scholar
  58. Hahn, D., Amann, R. I., Ludwig, W., Akkermans, A. D. L., and Schleifer, K. H., 1992. Detection of micro-organisms in soil after in situ hybridization with rRNA-targeted, fluorescently labelled oligonucleotides. Journal of General Microbiology, 138, 879–887.CrossRefGoogle Scholar
  59. Harmsen, H., Prieur, D., and Jeanthon, C., 1997. Group-specific 16S rRNA-targeted oligonucleotide probes to identify thermophilic bacteria in marine hydrothermal vents. Applied and Environmental Microbiology, 63, 4061–4068.Google Scholar
  60. Hauer, K., Pavlekovic, M., Chee-Sanford, J., Sanford, R., A., Löffler, F., E., and Lee, N. M., In situ detection of functional genes by RING-FISH in Anaeromyxobacter sp. (in press)Google Scholar
  61. Herndl, G. J., Reinthaler, T., Teira, E., van Aken, H., Veth, C., Pernthaler, A., and Pernthaler, J., 2005. Contribution of archaea to total prokaryotic production in the deep Atlantic ocean. Applied and Environmental Microbiology, 71, 2303–2309.CrossRefGoogle Scholar
  62. Heydorn, A., Ersboll, B. K., Hentzer, M., Parsek, M. R., Givskov, M., and Molin, S., 2000. Experimental reproducibility in flow-chamber biofilms. Microbiology, 146, 2409–2415.Google Scholar
  63. Hodson, R. E., Dustman, W. A., Garg, R. P., and Moran, M. A., 1995. In situ PCR for visualization of microscale distribution of specific genes and gene products in prokaryotic communities. Applied and Environmental Microbiology, 61, 4074–4082.Google Scholar
  64. Hoshino, T., Yilmaz, L. S., Noguera, D. R., Daims, H., and Wagner, M., 2008. Quantification of target molecules needed to detect microorganisms by fluorescence in situ hybridization (FISH) and catalyzed reporter deposition-FISH. Applied and Environmental Microbiology, 74, 5068–5077.CrossRefGoogle Scholar
  65. Hoshino, T., and Schramm, A., 2010. Detection of denitrification genes by in situ rolling circle amplification-fluorescence in situ hybridization to link metabolic potential with identity inside bacterial cells. Environmental Microbiology, 12, 2508–2517.CrossRefGoogle Scholar
  66. Hristova, K. R., Mau, M., Zheng, D., Aminov, R. I., Mackie, R. I., Gaskins, H. R., and Raskin, L., 2000. Desulfotomaculum genus- and subgenus-specific 16S rRNA hybridization probes for environmental studies. Environmental Microbiology, 2, 143–159.CrossRefGoogle Scholar
  67. Huang, J., Ma, L., Sundararajan, S., Fei, S.-z., and Li, L., 2009. Visualization by atomic force microscopy and FISH of the 45S rDNA gaps in mitotic chromosomes of Lolium perenne. Protoplasma, 236, 59–65.CrossRefGoogle Scholar
  68. Hugenholtz, P., Tyson, G. W., and Blackall, L. L., 2001. Design and evaluation of 16S rRNA-targeted oligonucleotide probes for fluorescence in situ hybridization. In Gene Probes: Principles and Protocols. Vol. 176. London: Humana Press.Google Scholar
  69. Ishii, K., Mu[ss]mann, M., MacGregor, B. J., and Amann, R., 2004. An improved fluorescence in situ hybridization protocol for the identification of bacteria and archaea in marine sediments. FEMS Microbiology Ecology, 50, 203–212.CrossRefGoogle Scholar
  70. Janvier, M., Regnault, B., and Grimont, P., 2003. Development and use of fluorescent 16S rRNA-targeted probes for the specific detection of Methylophaga species by in situ hybridization in marine sediments. Research in Microbiology, 154, 483–490.CrossRefGoogle Scholar
  71. Junge, K., Eicken, H., and Deming, J. W., 2004. Bacterial activity at −2 to −20°C in Arctic wintertime sea ice. Applied and Environmental Microbiology, 70, 550–557.CrossRefGoogle Scholar
  72. Kalmbach, S., Manz, W., and Szwezyk, U., 1997. Dynamics of biofilm formation in drinking water: phylogenetic affiliation and metabolic potential of single cells assessed by formazan reduction and in situ hybridization. FEMS Microbiology Ecology, 22, 265–279.CrossRefGoogle Scholar
  73. Kalyuzhnaya, M. G., Zabinsky, R., Bowerman, S., Baker, D. R., Lidstrom, M. E., and Chistoserdova, L., 2006. Fluorescence in situ hybridization-flow cytometry-cell sorting-based method for separation and enrichment of type I and type II methanotroph populations. Applied and Environmental Microbiology, 72, 4293–4301.CrossRefGoogle Scholar
  74. Kenzaka, T., Ishidoshiro, A., Yamaguchi, N., Tani, K., and Nasu, M., 2005. rRNA sequence-based scanning electron microscopic detection of bacteria. Applied and Environmental Microbiology, 71, 5523–5531.CrossRefGoogle Scholar
  75. Kenzaka, T., Tamaki, S., Yamaguchi, N., Tani, K., and Nasu, M., 2005. Recognition of individual genes in diverse microorganisms by cycling primed in situ amplification. Applied and Environmental Microbiology, 71, 7236–7244.CrossRefGoogle Scholar
  76. Knittel, K., Losekann, T., Boetius, A., Kort, R., and Amann, R., 2005. Diversity and distribution of methanotrophic archaea at cold seeps. Applied and Environmental Microbiology, 71, 467–479.CrossRefGoogle Scholar
  77. Kobabe, S., Wagner, D., and Pfeiffer, E.-M., 2004. Characterisation of microbial community composition of a Siberian tundra soil by fluorescence in situ hybridisation. FEMS Microbiology Ecology, 50, 13–23.CrossRefGoogle Scholar
  78. Koebberich, M., 2008. Methodenevaluierung zur fluoresenz in situ hybridizierung des eisenoxidierenden bakteriums Gallionella ferruginea. Bachelor of science thesis of Georg August University of Göttingen, Germany. (Supervisors: J. Reitner and N. V. Queric, Geobiology Center).Google Scholar
  79. Konstantinidis, K. T., Serres, M. H., Romine, M. F., Rodrigues, J. L. M., Auchtung, J., McCue, L.-A., Lipton, M. S., Obraztsova, A., Giometti, C. S., Nealson, K. H., Fredrickson, J. K., and Tiedje, J. M., 2009. Comparative systems biology across an evolutionary gradient within the Shewanella genus. Proceedings of the National Academy of Sciences, 106, 15909–15914.CrossRefGoogle Scholar
  80. Kubota, K., Ohashi, A., Imachi, H., and Harada, H., 2006a. Improved in situ hybridization efficiency with locked-nucleic-acid-incorporated DNA probes. Applied and Environmental Microbiology, 72, 5311–5317.CrossRefGoogle Scholar
  81. Kubota, K., Ohashi, A., Imachi, H., and Harada, H., 2006b. Visualization of mcr mRNA in a methanogen by fluorescence in situ hybridization with an oligonucleotide probe and two-pass tyramide signal amplification (two-pass TSA-FISH). Journal of Microbiological Methods, 66, 521–528.CrossRefGoogle Scholar
  82. Kumar, Y., Westram, R., Behrens, S., Fuchs, B., Glockner, F., Amann, R., Meier, H., and Ludwig, W., 2005. Graphical representation of ribosomal RNA probe accessibility data using ARB software package. BMC Bioinformatics, 6, 61.CrossRefGoogle Scholar
  83. Kumar, Y., Westram, R., Kipfer, P., Meier, H., and Ludwig, W., 2006. Evaluation of sequence alignments and oligonucleotide probes with respect to three-dimensional structure of ribosomal RNA using ARB software package. BMC Bioinformatics, 7, 240.CrossRefGoogle Scholar
  84. Kurola, J., Wittmann, C., Salkinoja-Salonen, M., Aarnio, T., and Romantschuk, M., 2005. Application of cation-exchange membranes for characterisation and imaging ammonia-oxidising bacteria in soils. FEMS Microbiology Ecology, 53, 463–472.CrossRefGoogle Scholar
  85. Lim, E., Amaral, L., Caron, D., and DeLong, E., 1993. Application of rRNA-based probes for observing marine nanoplanktonic protists. Applied and Environmental Microbiology, 59, 1647–1655.Google Scholar
  86. Llobet-Brossa, E., Rossello-Mora, R., and Amann, R., 1998. Microbial community composition of Wadden Sea sediments as revealed by fluorescence in situ hybridization. Applied and Environmental Microbiology, 64, 2691–2696.Google Scholar
  87. Loy, A., Arnold, R., Tischler, P., Rattei, T., Wagner, M., and Horn, M., 2008. Probecheck – a central resource for evaluating oligonucleotide probe coverage and specificity. Environmental Microbiology, 10, 2894–2898.CrossRefGoogle Scholar
  88. Loy, A., Beisker, W., and Meier, H., 2005. Diversity of bacteria growing in natural mineral water after bottling. Applied and Environmental Microbiology, 71, 3624–3632.CrossRefGoogle Scholar
  89. Loy, A., and Bodrossy, L., 2006. Highly parallel microbial diagnostics using oligonucleotide microarrays. Clinica Chimica Acta (From Real-Time PCR to Nanotechnology: Rapid and/or High-Throughput Diagnostic Methods for Nucleic Acids), 363, 106–119.Google Scholar
  90. Loy, A., Lehner, A., Lee, N., Adamczyk, J., Meier, H., Ernst, J., Schleifer, K.-H., and Wagner, M., 2002. Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Applied and Environmental Microbiology, 68, 5064–5081.CrossRefGoogle Scholar
  91. Loy, A., Maixner, F., Wagner, M., and Horn, M., 2007. Probebase – an online resource for rRNA-targeted oligonucleotide probes: new features 2007. Nucleic Acids Research, 35, D800-04.CrossRefGoogle Scholar
  92. Lubeck, P. S., Hansen, M., and Sorensen, J., 2000. Simultaneous detection of the establishment of seed-inoculated Pseudomonas fluorescens strain DR54 and native soil bacteria on sugar beet root surfaces using fluorescence antibody and in situ hybridization techniques. FEMS Microbiology Ecology, 33, 11–19.CrossRefGoogle Scholar
  93. Ludwig, W., Bauer, S. H., Bauer, M., Held, I., Kirchhof, G., Schulze, R., Huber, I., Spring, S., Hartmann, A., and Schleifer, K. H., 1997. Detection and in situ identification of representatives of a widely distributed new bacterial phylum. FEMS Microbiology Letters, 153, 181–190.CrossRefGoogle Scholar
  94. Ludwig, W., Strunk, O., Klugbauer, S., Klugbauer, N., Weizenegger, M., Neumaier, J., Bachleitner, M., and Schleifer, K. H., 1998. Bacterial phylogeny based on comparative sequence analysis. Electrophoresis, 19, 554–568.CrossRefGoogle Scholar
  95. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S., Jobb, G., Forster, W., Brettske, I., Gerber, S., Ginhart, A. W., Gross, O., Grumann, S., Hermann, S., Jost, R., Konig, A., Liss, T., Lussmann, R., May, M., Nonhoff, B., Reichel, B., Strehlow, R., Stamatakis, A., Stuckmann, N., Vilbig, A., Lenke, M., Ludwig, T., Bode, A., and Schleifer, K.-H., 2004. ARB: a software environment for sequence data. Nucleic Acids Research, 32, 1363–1371.CrossRefGoogle Scholar
  96. Lunau, M., Lemke, A., Walther, K., Martens-Habbena, W., and Simon, M., 2005. An improved method for counting bacteria from sediments and turbid environments by epifluorescence microscopy. Environmental Microbiology, 7, 961–968.CrossRefGoogle Scholar
  97. Macalady, J. L., Lyon, E. H., Koffman, B., Albertson, L. K., Meyer, K., Galdenzi, S., and Mariani, S., 2006. Dominant microbial populations in limestone-corroding stream biofilms, Frasassi Cave System, Italy. Applied and Environmental Microbiology, 72, 5596–5609.CrossRefGoogle Scholar
  98. Manz, W., Amann, R., Ludwig, W., Wagner, M., and Schleifer, K.-H., 1992. Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions. Systematic and Applied Microbiology, 15, 593–600.CrossRefGoogle Scholar
  99. Maruyama, F., Kenzaka, T., Yamaguchi, N., Tani, K., and Nasu, M., 2003. Detection of bacteria carrying the stx2 gene by in situ loop-mediated isothermal amplification. Applied and Environmental Microbiology, 69, 5023–5028.CrossRefGoogle Scholar
  100. Maruyama, F., Kenzaka, T., Yamaguchi, N., Tani, K., and Nasu, M., 2005. Visualization and enumeration of bacteria carrying a specific gene sequence by in situ rolling circle amplification. Applied and Environmental Microbiology, 71, 7933–7940.CrossRefGoogle Scholar
  101. Maturrano, L., Santos, F., Rossello-Mora, R., and Anton, J., 2006. Microbial diversity in Maras Salterns, a hypersaline environment in the Peruvian Andes. Applied and Environmental Microbiology, 72, 3887–3895.CrossRefGoogle Scholar
  102. McDonald, R. M., 1986. Sampling soil microfloras: dispersion of soil by ion exchange and extraction of specific micro organisms form suspension by elutriation. Soil Biology. Biochemistry, 18, 399–406.CrossRefGoogle Scholar
  103. Meisinger, D. B., Pavlekovic, M., Löffler, F., E., and Lee, N., M., 2010a. Comparison of FISH and PCR applications on contaminated groundwater. (in press).Google Scholar
  104. Meisinger, D. B., Spring, S., Schmid, M., Löffler, F. E., Porter, M. L., Engel, A. S., and Lee, N. M., 2010b. Novel Chloroflexi lineages of subclasses I and VI in chemolitho-autotrophic microbial mats in the sulphidic Lower Kane Cave, USA. (in press).Google Scholar
  105. Meisinger, D. B., Zimmermann, J., Ludwig, W., Schleifer, K.-H., Wanner, G., Schmid, M., Stern, L. A., Bennett, P. C., Engel, A. S., and Lee, N., 2007. In situ detection of novel Acidobacteria in microbial mats from a chemolithoautotrophically-based cave ecosystem (Lower Kane Cave, WY, USA). Environmental Microbiology, 9, 1523–1534.CrossRefGoogle Scholar
  106. Metfies, K., and Medlin, L. K., 2008. Feasibility of transferring fluorescent in situ hybridization probes to an 18S rRNA gene phylochip and mapping of signal intensities. Applied and Environmental Microbiology, 74, 2814–2821CrossRefGoogle Scholar
  107. Molin, S., and Givskov, M., 1999. Application of molecular tools for in situ monitoring of bacterial growth activity. Environmental Microbiology, 1, 383–391.CrossRefGoogle Scholar
  108. Moraru, C., Lam, P., Fuchs, B. H., Kuypers, M. M. M., and Amann, R., 2010 GeneFISH – an in situ technique for linking gene presence and cell identity in environmental microorganisms. Environmental Microbiology, doi:10.1111/j.1462-2920.2010.02281.xGoogle Scholar
  109. Morris, R. M., Rappe, M. S., Connon, S. A., Vergin, K. L., Siebold, W. A., Carlson, C. A., and Giovannoni, S. J., 2002. SAR11 clade dominates ocean surface bacterioplankton communities. Nature, 420, 806–810.CrossRefGoogle Scholar
  110. Morris, R. M., Rappe, M. S., Urbach, E., Connon, S. A., and Giovannoni, S. J., 2004. Prevalence of the chloroflexi-related SAR202 bacterioplankton cluster throughout the Mesopelagic zone and deep ocean. Applied and Environmental Microbiology, 70, 2836–2842.CrossRefGoogle Scholar
  111. Moter, A., Schmiedel, J., Petrich, A., Schmiedel, D., Mallmann, C., Musci, M., Hetzer, R., and Göbel, U., 2010. In situ measurement of biofilm activity: implications for diagnosis of infective endocarditis. In Poster presentation at ISME 13 International Symposium on Microbial Ecology Microbes – Stewards of a Changing Planet, Seattle, WA, USA, 22–27 August 2010. Abstract Category 31 Methodological Developments.Google Scholar
  112. Murray, A. E., Preston, C. M., Massana, R., Taylor, L. T., Blakis, A., Wu, K., and DeLong, E. F., 1998. Seasonal and spatial variability of bacterial and archaeal assemblages in the coastal waters near Anvers Island, Antarctica. Applied and Environmental Microbiology, 64, 2585–2595.Google Scholar
  113. Mussmann, M., Ishii, K., Rabus, R., and Amann, R., 2005. Diversity and vertical distribution of cultured and uncultured Deltaproteobacteria in an intertidal mud flat of the Wadden Sea. Environmental Microbiology, 7, 405–418.CrossRefGoogle Scholar
  114. Nakagawa, T., Takai, K., Suzuki, Y., Hirayama, H., Konno, U., Tsunogai, U., and Horikoshi, K., 2006. Geomicrobiological exploration and characterization of a novel deep-sea hydrothermal system at the TOTO caldera in the Mariana Volcanic Arc. Environmental Microbiology, 8, 37–49.CrossRefGoogle Scholar
  115. Nakamura, K., Terada, T., Sekiguchi, Y., Shinzato, N., Meng, X.-Y., Enoki, M., and Kamagata, Y., 2006. Application of pseudomurein endoisopeptidase to fluorescence in situ hybridization of methanogens within the family methanobacteriaceae. Applied and Environmental Microbiology, 72, 6907–6913.CrossRefGoogle Scholar
  116. Nielsen, J. L., Aquino de Muro, M., and Nielsen, P. H., 2003. Evaluation of the redox dye 5-cyano-2,3-tolyl-tetrazolium chloride for activity studies by simultaneous use of microautoradiography and fluorescence in situ hybridization. Applied and Environmental Microbiology, 69, 641–643.CrossRefGoogle Scholar
  117. Nielsen, J. L., Klausen, C., Nielsen, P. H., Burford, M., and Jorgensen, N. O. G., 2006. Detection of activity among uncultured Actinobacteria in a drinking water reservoir. FEMS Microbiology Ecology, 55, 432–438.CrossRefGoogle Scholar
  118. Nielsen, J. L., and Nielsen, P. H., 2005. Advantages in microscopy: microautoradiography of single cells. In Leadbetter, J. R. (ed.), Methods in Enzymology. San Diego: Elsevier Academic Press, Vol. 397, pp. 237–56.Google Scholar
  119. Northup, D. E., and Lavoie, K. H., 2001. Geomicrobiology of caves: a review. Geomicrobiology Journal, 18, 199–222.CrossRefGoogle Scholar
  120. Nubel, U., Bateson, M. M., Vandieken, V., Wieland, A., Kuhl, M., and Ward, D. M., 2002. Microscopic examination of distribution and phenotypic properties of phylogenetically diverse chloroflexaceae-related bacteria in hot spring microbial mats. Applied and Environmental Microbiology, 68, 4593–4603.CrossRefGoogle Scholar
  121. Nielsen, P. H., Daims, H., and Lemmer, H., 2009. FISH handbook for Biological Wastewater Treatment. London: IWA Publishing.Google Scholar
  122. Oerther, D. B., Pernthaler, J., Schramm, A., Amann, R., and Raskin, L., 2000. Monitoring precursor 16S rRNAs of acinetobacter spp. in activated sludge wastewater treatment systems. Applied and Environmental Microbiology, 66, 2154–2165.CrossRefGoogle Scholar
  123. Orphan, V. J., 2009. Methods for unveiling cryptic microbial partnerships in nature. Current Opinion in Microbiology, 12, 231–237.CrossRefGoogle Scholar
  124. Orphan, V. J., and House, C. H., 2009. Geobiological investigations using secondary ion mass spectrometry: microanalysis of extant and paleo-microbial processes. Geobiology, 7, 360–372.CrossRefGoogle Scholar
  125. Ouverney, C., and Fuhrman, J., 1997. Increase in fluorescence intensity of 16S rRNA in situ hybridization in natural samples treated with chloramphenicol. Applied and Environmental Microbiology, 63, 2735–2740.Google Scholar
  126. Ouverney, C. C., and Fuhrman, J. A., 2000. Marine planktonic archaea take up amino acids. Applied and Environmental Microbiology, 66, 4829–4833.CrossRefGoogle Scholar
  127. Rodríguez-castaño, G. P., 2008. Sequence diversity and expression of novel bacterial nitrous oxide reductase (nosz) genes in tropical environments. Master of Science Thesis in Biology. Mayagüez Campus, USA, University of Puerto Rico.Google Scholar
  128. Pavlekovic, M., Schmid, M. C., Schmider-Poignee, N., Spring, S., Pilhofer, M., Gaul, T., Fiandaca, M., Löffler, F. E., Jetten, M., Schleifer, K.-H., and Lee, N. M., 2009. Optimization of three FISH procedures for in situ detection of anaerobic ammonium oxidizing bacteria in biological wastewater treatment. Journal of Microbiological Methods, 78, 119–126.CrossRefGoogle Scholar
  129. Peplies, J., Glockner, F. O., Amann, R., and Ludwig, W., 2004. Comparative sequence analysis and oligonucleotide probe design based on 23S rRNA genes of alphaproteobacteria from North Sea Bacterioplankton. Systematic and Applied Microbiology, 27, 573–580.CrossRefGoogle Scholar
  130. Pernthaler, A., and Amann, R., 2004. Simultaneous fluorescence in situ hybridization of mRNA and rRNA in environmental bacteria. Applied and Environmental Microbiology, 70, 5426–5433.CrossRefGoogle Scholar
  131. Pernthaler, A., and Pernthaler, J., 2005. Diurnal variation of cell proliferation in three bacterial taxa from coastal North Sea waters. Applied and Environmental Microbiology, 71, 4638–4644.CrossRefGoogle Scholar
  132. Pernthaler, J., Glockner, F.-O., Unterholzner, S., Alfreider, A., Psenner, R., and Amann, R., 1998. Seasonal community and population dynamics of pelagic bacteria and archaea in a high mountain lake. Applied and Environmental Microbiology, 64, 4299–4306.Google Scholar
  133. Pernthaler, A., Pernthaler, J., and Amann, R., 2002a. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Applied and Environmental Microbiology, 68, 3094–3101.CrossRefGoogle Scholar
  134. Pernthaler, A., Pernthaler, J., Schattenhofer, M., and Amann, R., 2002b. Identification of DNA-synthesizing bacterial cells in coastal North Sea Plankton. Applied and Environmental Microbiology, 68, 5728–5736.CrossRefGoogle Scholar
  135. Pernthaler, A., Preston, C. M., Pernthaler, J., DeLong, E. F., and Amann, R., 2002c. Comparison of fluorescently labeled oligonucleotide and polynucleotide probes for the detection of pelagic marine bacteria and archaea. Applied and Environmental Microbiology, 68, 661–667.CrossRefGoogle Scholar
  136. Perry-O’Keefe, H., Stender, H., Broomer, A., Oliveira, K., Coull, J., and Hyldig-Nielsen, J. J., 2001. Filter-based PNA in situ hybridization for rapid detection, identification and enumeration of specific micro-organisms. Journal of Applied Microbiology, 90, 180–189.CrossRefGoogle Scholar
  137. Petroni, G., Rosati, G., Vannini, C., Modeo, L., Dini, F., and Verni, F., 2003. In Situ Identification by fluorescently labeled oligonucleotide probes of morphologically similar, closely related ciliate species. Microbial Ecology, 45, 156–162.CrossRefGoogle Scholar
  138. Pilhofer, M., Pavlekovic, M., Lee, N. M., Ludwig, W., and Schleifer, K.-H., 2009. Fluorescence in situ hybridization for intracellular localization of nifH mRNA. Systematic and Applied Microbiology, 32, 186–192.CrossRefGoogle Scholar
  139. Podar, M., Abulencia, C. B., Walcher, M., Hutchison, D., Zengler, K., Garcia, J. A., Holland, T., Cotton, D., Hauser, L., and Keller, M., 2007. Targeted access to the genomes of low-abundance organisms in complex microbial communities. Applied and Environmental Microbiology, 73, 3205–3214.CrossRefGoogle Scholar
  140. Polerecky, L., Bissett, A., Al-Najjar, M., Faerber, P., Osmers, H., Suci, P. A., Stoodley, P., and de Beer, D., 2009. Modular spectral imaging system for discrimination of pigments in cells and microbial communities. Applied and Environmental Microbiology, 75, 758–71CrossRefGoogle Scholar
  141. Pratscher, J., Stichternoth, C., Fichtl, K., Schleifer, K.-H., and Braker, G., 2009. Application of recognition of individual genes-fluorescence in situ hybridization (RING-FISH) to detect nitrite reductase genes (nirK) of denitrifiers in pure cultures and environmental samples. Applied and Environmental Microbiology, 75, 802–810.CrossRefGoogle Scholar
  142. Pruesse, E., Quast, C., Knittel, K., Fuchs, B. M., Ludwig, W., Peplies, J., and Glockner, F. O., 2007. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Research, 35, 7188–7196.CrossRefGoogle Scholar
  143. Ravenschlag, K., Sahm, K., Knoblauch, C., Jorgensen, B. B., and Amann, R., 2000. Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine arctic sediments. Applied and Environmental Microbiology, 66, 3592–3602.CrossRefGoogle Scholar
  144. Rossello-Mora, R., Lee, N., Anton, J., and Wagner, M., 2003. Substrate uptake in extremely halophilic microbial communities revealed by microautoradiography and fluorescence in situ hybridization. Extremophiles, 7, 409–413.CrossRefGoogle Scholar
  145. Rossetti, S., Tomei, M. C., Blackall, L. L., and Tandoi, V., 2007. Bacterial growth kinetics estimation by fluorescence in situ hybridization and spectrofluorometric quantification. Letters in Applied Microbiology, 44, 643–648.CrossRefGoogle Scholar
  146. Rusch, A., and Amend, J. P., 2004. Order-specific 16S rRNA-targeted oligonucleotide probes for (hyper)thermophilic archaea and bacteria. Extremophiles, 8, 357–366.CrossRefGoogle Scholar
  147. Sando, S., and Kool, E. T., 2002. Imaging of RNA in bacteria with self-ligating quenched probes. Journal of the American Chemical Society, 124, 9686–9687.CrossRefGoogle Scholar
  148. Schatz, M. C., Phillippy, A. M., Gajer, P., DeSantis, T. Z., Andersen, G. L., Ravel, J., 2010. Integrated microbial survey analysis of prokaryotic communities for the PhyloChip microarray. Applied and Environmental Microbiology, 76, 5636–5638.CrossRefGoogle Scholar
  149. Schippers, A., Neretin, L. N., Kallmeyer, J., Ferdelman, T. G., Cragg, B. A., John Parkes, R., and Jorgensen, B. B., 2005. Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature, 433, 861–864.CrossRefGoogle Scholar
  150. Schmid, M., Schmitz-Esser, S., Jetten, M., and Wagner, M., 2001. 16S-23S rDNA intergenic spacer and 23S rDNA of anaerobic ammonium-oxidizing bacteria: implications for phylogeny and in situ detection. Environmental Microbiology, 3, 450–459.CrossRefGoogle Scholar
  151. Schmid, M., Selesi, D., Rothballer, M., Schloter, M., Hartmann, A., Lee, N., and Kandeler, E., 2006. Localization and visualization of microbial community structure and activity in soil microhabitats. In König, H., and Varma, A., (ed.), Soil Biology, Berlin Heidelberg: Springer, Vol. 6.Google Scholar
  152. Schmid, M., Rothballer, M., and Hartmann, A., 2007. Analysis of microbial communities in soil microhabitats using fluorescence in situ hybridization. In van Elsas, J. D., Jansson, J. K., and Trevors, J. (eds.), Modern Soil Microbiology, 2nd edn. Boca Raton: CRC-Press, Chap. 12, pp. 317–335.Google Scholar
  153. Schonhuber, W., Le Bourhis, G., Tremblay, J., Amann, R., and Kulakauskas, S., 2001. Utilization of tmRNA sequences for bacterial identification. BMC Microbiology, 1, 20.CrossRefGoogle Scholar
  154. Schramm, A., Fuchs, B. M., Nielsen, J. L., Tonolla, M., and Stahl, D. A., 2002. Fluorescence in situ hybridization of 16S rRNA gene clones (Clone-FISH) for probe validation and screening of clone libraries. Environmental Microbiology, 4, 713–720.CrossRefGoogle Scholar
  155. Schrenk, M. O., Edwards, K. J., Goodman, R. M., Hamers, R. J., and Banfield, J. F., 1998. Distribution of thiobacillus ferrooxidans and lLeptospirillum ferrooxidans: implications for generation of acid mine drainage. Science, 279, 1519–1522.CrossRefGoogle Scholar
  156. Schrenk, M. O., Kelley, D. S., Delaney, J. R., and Baross, J. A., 2003. Incidence and diversity of microorganisms within the walls of an active deep-sea sulfide chimney. Applied and Environmental Microbiology, 69, 3580–3592.CrossRefGoogle Scholar
  157. Sekar, R., Pernthaler, A., Pernthaler, J., Warnecke, F., Posch, T., and Amann, R., 2003. An improved protocol for quantification of freshwater actinobacteria by fluorescence in situ hybridization. Applied and Environmental Microbiology, 69, 2928–2935.CrossRefGoogle Scholar
  158. Shiraishi, F., Zippel, B., Neu, T. R., and Arp, G., 2008. In situ detection of bacteria in calcified biofilms using FISH and CARD-FISH. Journal of Microbiological Methods, 75, 103–108.CrossRefGoogle Scholar
  159. Simbahan, J., Kurth, E., Schelert, J., Dillman, A., Moriyama, E., Jovanovich, S., and Blum, P., 2005. Community analysis of a mercury hot spring supports occurrence of domain-specific forms of mercuric reductase. Applied and Environmental Microbiology, 71, 8836–8845.CrossRefGoogle Scholar
  160. Smith, N. C., and Stribley, D. P., 1994. A new approach to direct extraction of microorganisms from soil. In Dighton, K. R. J., and Giller, K. E. (ed.), Beyond the Biomass. Chichester: British Society of Soil Science (BSSS). A Wiley-Sayce Publication, Vol. 1194.Google Scholar
  161. Smolina, I., Lee, C., and Frank-Kamenetskii, M., 2007.Detection of low-copy-number genomic DNA sequences in individual bacterial cells by using peptide nucleic acid assisted rolling-circle amplification and fluorescence in situ hybridization. Applied and Environmental Microbiology, 73, 2324–2328.CrossRefGoogle Scholar
  162. Stahl, D. A., and Amann, R., 2001. Development and application of nucleic acid probes. In Stackebrandt, E., and Goodfellow, M. (ed.), Nucleic Acid Techniques in Bacterial Systematics. Chichester: Wiley.Google Scholar
  163. Stoecker, K., Dorninger, C., Daims, H., and Michael, W., 2010. Double-labeling of oligonucleotide probes for fluorescence in situ hybridization (DOPE-FISH) improves signal intensity and increases rRNA accessibility. Applied and Environemental Microbiology, 76(3), 922–926.CrossRefGoogle Scholar
  164. Stoffels, M., Ludwig, W., and Schleifer, K. H., 1999. rRNA probe-based cell fishing of bacteria. Environmental Microbiology, 1, 259–271.CrossRefGoogle Scholar
  165. Sunamura, M., and Maruyama, A., 2006. A digital imaging procedure for seven-probe-labeling FISH (Rainbow-FISH) and its application to estuarine microbial communities. FEMS Microbiology Ecology, 55, 159–166.CrossRefGoogle Scholar
  166. Tal, Y., Watts, J. E. M., and Schreier, H. J., 2005. Anaerobic ammonia-oxidizing bacteria and related activity in Baltimore Inner Harbor Sediment. Applied and Environmental Microbiology, 71, 1816–1821.CrossRefGoogle Scholar
  167. Tani, K., Kurokawa, K., and Nasu, M., 1998. Development of a direct in situ PCR method for detection of specific bacteria in natural environments. Applied and Environmental Microbiology, 64, 1536–1540.Google Scholar
  168. Taylor, M. W., Loy, A., and Wagner, M., 2010. Microarrays for studying the composition and function of microbial communities. In Seviour Robert, J., and Nielsen, P.H. (ed.), The Microbiology of Activated Sludge. London: IWA Publishing.Google Scholar
  169. Teira, E., Reinthaler, T., Pernthaler, A., Pernthaler, J., and Herndl, G. J., 2004. Combining catalyzed reporter deposition-fluorescence in situ hybridization and microautoradiography to detect substrate utilization by bacteria and archaea in the deep ocean. Applied and Environmental Microbiology, 70, 4411–4414.CrossRefGoogle Scholar
  170. Tobin, K. J., Onstott, T. C., DeFlaun, M. F., Colwell, F. S., and Fredrickson, J., 1999. In situ imaging of microorganisms in geologic material. Journal of Microbiological Methods, 37, 201–213.CrossRefGoogle Scholar
  171. Trebesius, K., Amann, R., Ludwig, W., Muhlegger, K., and Schleifer, K., 1994. Identification of whole fixed bacterial cells with nonradioactive 23S rRNA-targeted polynucleotide probes. Applied and Environmental Microbiology, 60, 3228–3235.Google Scholar
  172. Tsuchiya, D., and Taga, M., 2001., Application of fibre-FISH (fluorescence in situ hybridization) to filamentous fungi: visualization of the rRNA gene cluster of the ascomycete Cochliobolus heterostrophus. Microbiology, 147, 1183–1187.Google Scholar
  173. Vesey, G., Deere, D., Gauci, M. R., Griffiths, K. R., Williams, K. L., and Veal, D. A., 1997. Evaluation of fluorochromes and excitation sources for immunofluorescence in water samples. Cytometry, 29, 147–154.CrossRefGoogle Scholar
  174. Wagner, M., 2009. Single-cell ecophysiology of microbes as revealed by Raman microspectroscopy or secondary ion mass spectrometry imaging. Annual Review of Microbiology, 63, 411–429.CrossRefGoogle Scholar
  175. Wagner, M., Erhardt, R., Manz, W., Amann, R., Lemmer, H., Wedi, D., and Schleifer, K.-H., 1994. Development of an rRNA-targeted oligonucleotide probe specific for the genus acinetobacter and its application for in situ monitoring in activated sludge. Applied and Environmental Microbiology, 60, 792–800.Google Scholar
  176. Wagner, M., Horn, M., and Daims, H., 2003. Fluorescence in situ hybridisation for the identification and characterisation of prokaryotes. Current Opinion in Microbiology, 6, 302–309.CrossRefGoogle Scholar
  177. Wagner, M., Hutzler, P., and Amann, R., 1998. 3-D Analysis of complex microbial communities by combining confocal laser scanning microscopy and fluorescence in situ hybridization (FISH). In Wilkinson, M. H. F. and Schut, F. (ed.), Digital Image Analysis of Microbes. Chichester: Wiley, pp. 467–486.Google Scholar
  178. Wagner, M., Nielsen, P. H., Loy, A., Nielsen, J. L., and Daims, H., 2006. Linking microbial community structure with function: fluorescence in situ hybridization-microautoradiography and isotope arrays. In van der Meer, J. R., and Murrel, J. C. (eds.), Current Opinion in Biotechnology, Analytical biotechnology, 17, 83–91.Google Scholar
  179. Wagner, M., Rath, G., Amann, R., Koops, H.-P., and Schleifer, K.-H., 1995. In situ identification of ammonia-oxidizing bacteria. Systematic Applied Microbiology, 18, 251–264.CrossRefGoogle Scholar
  180. Wagner, M., Schmid, M., Juretschko, S., Trebesius, K.-H., Bubert, A., Goebel, W., and Schleifer, K.-H., 1998. In situ detection of a virulence factor mRNA and 16S rRNA in Listeria monocytogenes. FEMS Microbiology Letters, 160, 159–168.CrossRefGoogle Scholar
  181. Wallner, G., Amann, R., and Beisker, W., 1993. Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry, 14, 136–143.CrossRefGoogle Scholar
  182. Watanabe, K., Watanabe, K., Kodama, Y., Syutsubo, K., and Harayama, S., 2000. Molecular characterization of bacterial populations in petroleum-contaminated groundwater discharged from underground crude oil storage cavities. Applied and Environmental Microbiology, 66, 4803–4809.CrossRefGoogle Scholar
  183. Weber, S. D., Ludwig, W., Schleifer, K.-H., and Fried, J., 2007. Microbial composition and structure of aerobic granular sewage biofilms. Applied and Environmental Microbiology, 73, 6233–6240.CrossRefGoogle Scholar
  184. Wendeberg, A., 2010. Fluorescence in situ hybridization for the identification of environmental microbes. Cold Spring Harbor Protocols, doi:10.1101/pdb.prot5366.Google Scholar
  185. Weidler, G. W., Gerbl, F. W., and Stan-Lotter, H., 2008. Crenarchaeota and their role in the nitrogen cycle in a subsurface radioactive thermal spring in the Austrian Central Alps. Applied and Environmental Microbiology, 74: 5934–5942.CrossRefGoogle Scholar
  186. Wilhartitz, I., Mach, R. L., Teira, E., Reinthaler, T., Herndl, G. J., and Farnleitner, A. H., 2007. Prokaryotic community analysis with CARD-FISH in comparison with FISH in ultra-oligotrophic ground- and drinking water. Journal of Applied Microbiology, 103, 871–881.CrossRefGoogle Scholar
  187. Xia, Y., Kong, Y., and Nielsen, P. H., 2007. In situ detection of protein-hydrolysing microorganisms in activated sludge. FEMS Microbiology Ecology, 60, 156–165.CrossRefGoogle Scholar
  188. Yarza, P., Richter, M., Peplies, J., Euzeby, J., Amann, R., Schleifer, K.-H., Ludwig, W., Glöckner, F. O., and Rosselló-Móra, R., 2008. The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Systematic and Applied Microbiology, 31, 241–250.CrossRefGoogle Scholar
  189. Yilmaz, L. S., Okten, H. E., and Noguera, D. R., 2006. Making all parts of the 16S rRNA of Escherichia coli accessible in situ to single DNA Oligonucleotides. Applied and Environmental Microbiology, 72, 733–744.CrossRefGoogle Scholar
  190. Yilmaz, L., Parnerkar, S., and Noguera, D., 2010a. Introducing mathfish: a website that runs mathematical models of fluorescent in situ hybridization for thermodynamics-based probe design. In Poster presentation at ISME 13 International Symposium on Microbial Ecology Microbes - Stewards of a Changing Planet, Seattle, WA, USA, 22–27 August 2010. Abstract Category 31 Methodological Developments.Google Scholar
  191. Yilmaz, S., Haroon, M., Rabkin, B., Tyson, G., and Hugenholtz, P., 2010b. Fixation-free fluorescence in situ hybridization for targeted enrichment of microbial populations. The ISME Journal, doi:10.1038/ismej.2010.73.Google Scholar
  192. Zarda, B., Amann, R., Wallner, G., and Schleifer, K.-H., 1991. Identification of single bacterical cells using digoxigenin-labelled, rRNA-targeted oligonucleotides. Journal of General Microbiology, 137, 2823–2830.CrossRefGoogle Scholar
  193. Zarda, B., Hahn, D., Chatzinotas, A., Schönhuber, W., Neef, A., Amann, R. I., and Zeyer, J., 1997. Analysis of bacterial community structure in bulk soil by in situ hybridization. Archives of Microbiology, 168, 185–192.CrossRefGoogle Scholar
  194. Zhang, D., Wu, J., Ye, F., Feng, T., Lee, I., and Yin, B., 2006. Amplification of circularizable probes for the detection of target nucleic acids and proteins. Clinica Chimica Acta (From Real-Time PCR to Nanotechnology: Rapid and/or High-Throughput Diagnostic Methods for Nucleic Acids), 363, 61–70.Google Scholar
  195. Zhou, Z., Pons, M. N., Raskin, L., and Zilles, J. L., 2007. Automated image analysis for quantitative fluorescence in situ hybridization with environmental samples. Applied and Environmental Microbiology, 73, 2956–2962.CrossRefGoogle Scholar
  196. Zimmermann, J., Ludwig, W., and Schleifer, K. H., 2001. DNA polynucleotide probes generated from representatives of the genus acinetobacter and their application in fluorescence in situ hybridization of environmental samples. Systematic and Applied Microbiology, 24, 238–244.CrossRefGoogle Scholar
  197. Zwirglmaier, K., Ludwig, W., and Schleifer, K.-H., 2004a. Improved method for polynucleotide probe-based cell sorting, using DNA-coated microplates. Applied and Environmental Microbiology, 70, 494–497.CrossRefGoogle Scholar
  198. Zwirglmaier, K., Ludwig, W., and Schleifer, K.-H., 2004b. Recognition of individual genes in a single bacterial cell by fluorescence in situ hybridization - RING-FISH. Molecular Microbiology, 51, 89–96.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Natuschka M. Lee
    • 1
  • Daniela B. Meisinger
    • 2
  • Michael Schmid
    • 3
  • Michael Rothballer
    • 4
  • Frank E. Löffler
    • 5
  1. 1.Department of Microbiology Technical University of Munich Emil-Ramann-Str. 4Freising-WeihenstephanGermany
  2. 2.Department of MicrobiologyTechnische Universität MünchenFreisingGermany
  3. 3.Department Microbe-Plant InteractionsHelmholtz Zentrum München, German Research Center for Environmental Health (GmbH)NeuherbergGermany
  4. 4.Research scientist Department Microbe-Plant InteractionsHelmholtz Zentrum München German Research Center for Environmental Health (GmbH)NeuherbergGermany
  5. 5.Department of MicrobiologyUniversity of TennesseeKnoxvilleUSA