Skip to main content

Vehicle Biofuels

  • Reference work entry
  • First Online:
Electric, Hybrid, and Fuel Cell Vehicles
  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, © Springer Science+Business Media LLC, 2012

Glossary

Biodiesel:

Methyl or ethyl ester of fatty acids.

Biomass:

Biological material from living or recently living organisms.

Bio-oil:

The liquid resulting from biomass pyrolysis.

Equivalence ratio:

The actual oxygen fed to the reactor divided by the stoichiometric oxygen needed for complete combustion.

Gasohol:

A mixture of gasoline and ethanol, typically 90% gasoline and 10% ethanol.

Lignocellulose:

Biomass composed of lignin, cellulose, and hemicellulose.

Oleaginous microorganisms:

Microorganisms that accumulate triacylglycerol (TAG) within their cells.

Saccharification:

Hydrolysis of polysaccharides to produce sugar.

Synthesis gas:

Mixture of carbon monoxide and hydrogen.

Triacylglycerol (TAG):

A natural product containing three fatty acids linked to glycerol via ester bonds.

Definition of the Subject

Vehicle biofuelsare solid, liquid, and gaseous fuels derived from biomass (e.g., corn, sugarcane, grasses, and wood) used for transportation (e.g., automobiles, trucks, planes,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

Primary Literature

  1. Renewable Fuels Association. http://www.ethanolrfa.org/pages/statistics#A

  2. Energy Information Administration. http://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=MGFUPUS2&f=A

  3. Renewable Fuels Association (2010) Ethanol industry outlook: climate of opportunity. http://www.ethanolrfa.org/page/-/objects/pdf/outlook/RFAoutlook2010_fin.pdf?nocdn=1

  4. Energy Information Administration. http://www.eia.doe.gov/cneaf/solar.renewables/page/biodiesel/biodiesel.html

  5. Energy Information Administration. http://www.eia.gov/dnav/pet/pet_cons_psup_dc_nus_mbblpd_a.htm

  6. Zhang RD, He H, Shi XY, Zhang CB, He BQ, Wang JX (2004) Preparation and emission characteristics of ethanol diesel fuel blends. J Environ Sci (China) 16:793–796

    Google Scholar 

  7. Subbaiah GV, Gopal KR, Hussain SA, Prasad BD, Reddy KT (2010) Rice bran oil biodiesel as an additive in dieselethanol blend for diesel engines. Int J Res Rev Appl Sci 3:334–342

    Google Scholar 

  8. Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. Oak Ridge National Laboratory, Oak Ridge. DOE/GO-102995–2135, ORNL/TM-2005/66

    Google Scholar 

  9. US Environmental Protection Agency (2010) Municipal solid waste generation, recycling, and disposal in the United States: facts and figures for 2009. Franklin Associates, EPA530-R-10–012. http://www.epa.gov/epawaste/nonhaz/municipal/pubs/msw2009-fs.pdf

  10. Tilman D, Hill J, Lehman C (2006) Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314:1598–1600

    Article  Google Scholar 

  11. Schmer MR, Vogel KP, Mitchell RB, Perrin RK (2008) Net energy of cellulosic ethanol from switchgrass. Proc Natl Acad Sci U S A 105:464–469

    Article  Google Scholar 

  12. McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37–46

    Article  Google Scholar 

  13. McCollum III T, McCuistion K, Brent B (2005) Brown mid-rib and photoperiod-sensitive forage sorghums. AREC 05–20. Agricultural Program, Texas A&M University, Amarillo

    Google Scholar 

  14. Waclawovsky AJ, Sato PM, Lembke CG, Moore PH, Souza GM (2010) Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content. Plant Biotechnol J 8:263–276

    Article  Google Scholar 

  15. Westlake DF (1963) Comparisons of plant productivity. Biol Rev 38:385–425

    Article  Google Scholar 

  16. Alexander AG (1985) The energy cane alternative, Sugar series, vol 6. Elsevier, Amsterdam

    Google Scholar 

  17. Klass DL (1998) Biomass for renewable energy, fuels, and chemicals, vol 70. Academic, San Diego

    Google Scholar 

  18. Spencer W, Bowes G (1986) Photosynthesis and growth of water hyacinth under CO2 enrichment. Plant Physiol 82:528–533

    Article  Google Scholar 

  19. http://waterquality.montana.edu/docs/irrigation/sugarbeet101.shtml

  20. Freeman KC, Broadhead DM, Zummo N, Westbrook FE (1986) Sweet sorghum culture and syrup production. U.S. Department of Agriculture, Washington, DC, Handbook no. 611, 55 pp

    Google Scholar 

  21. Reddy BVS, Ramesh S, Reddy PS, Ramaiah B, Salimath PM, Kachapur R (2005) Sweet sorghum – a potential alternate raw material for bio-ethanol and bioenergy. SAT eJournal 1(1). www.ejournal.icrisat.org

  22. US Department of Agriculture, National Agricultural Statistics Service. http://www.nass.usda.gov/

  23. Tickell J (2000) From the fryer to the fuel tank: the complete guide to using vegetable oil as an alternative fuel, 3rd edn. Tickell Energy Consulting, Tallahassee, 162

    Google Scholar 

  24. Breitenbeck GA (2008) Chinese tallow trees a potential bioenergy crop for Louisiana. Louisiana Agr 51:10–12

    Google Scholar 

  25. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energy Rev 14:217–232

    Article  Google Scholar 

  26. Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Article  Google Scholar 

  27. Piskorz J, Scott DS, Radlein D (1988) Composition of oils obtained by fast pyrolysis of different woods. In: Soltes EJ, Milne TA (eds) Pyrolysis oils from biomass, ACS symposium series, vol 376. American Chemical Society, Washington, DC, pp 167–178

    Chapter  Google Scholar 

  28. Emsley AM, Stevens GC (1994) Kinetics and mechanisms of the low-temperature degradation of cellulose. Cellulose 1:26–56

    Article  Google Scholar 

  29. Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26

    Article  Google Scholar 

  30. Wu X, McLaren J, Madl R, Wang D (2010) Biofuels from lingo-cellulosic biomass. In: Singh OV, Harvey SP (eds) Sustainable biotechnology: sources of renewable energy. Springer, New York, pp 19–41

    Chapter  Google Scholar 

  31. Reed TB (1981) Biomass gasification: principles and technology. Noyes Data Corporation, Park Ridge

    Google Scholar 

  32. Woo HC, Park KY, Kim YG, Nam I-S, Chung JS, Lee JS (1991) Mixed alcohol synthesis from carbon monoxide and dihydrogen over potassium-promoted molybdenum carbide catalysts. Appl Catal 75:267–280

    Article  Google Scholar 

  33. Xu M, Lunsford JH, Goodman DW, Bhattacharyya A (1997) Synthesis of dimethyl ether (DME) from methanol over solid-acid catalysts. Appl Catal A Gen 149:289–301

    Article  Google Scholar 

  34. Semelsberger TA, Borup RL, Greene HL (2006) Dimethyl ether (DME) as an alternative fuel. J Power Sources 156:497–511

    Article  Google Scholar 

  35. Bridgwater AV, Meier D, Radlein D (1999) An overview of fast pyrolysis of biomass. Org Geochem 30:1479–1493

    Article  Google Scholar 

  36. Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuel 18:590–598

    Article  Google Scholar 

  37. Bozell JJ, Moens L, Elliott DC, Wang Y, Neuenscwander GG, Fitzpatrick SW, Bilski RJ, Jarnefeld JL (2000) Production of levulinic acid and use as a platform chemical for derived products. Resour Conserv Recycl 28:227–239

    Article  Google Scholar 

  38. Balat M, Balat H (2010) Progress in biodiesel processing. Appl Energy 87:1815–1835

    Article  Google Scholar 

  39. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  Google Scholar 

  40. Rein PW (1995) A comparison of cane diffusion and milling. In: Proceedings of the South African sugar technologists’ association, pp 196–200

    Google Scholar 

  41. Granda CB, Holtzapple MT (2006) Low-pressure sugar extraction with screw-press conveyors. Int Sugar J 108:555–568

    Google Scholar 

  42. Wheals AE, Basso LC, Alves DMG, Amorim HV (1999) Fuel ethanol after 25 years. Trends Biotechnol 17:482–487

    Article  Google Scholar 

  43. Kwiatkowski JR, McAloon AJ, Taylor F, Johnston DB (2006) Modeling the process and costs of fuel ethanol production by the corn dry-grind process. Ind Crop Prod 23:288–296

    Article  Google Scholar 

  44. Ramirez EC, Johnston DB, McAloon AJ, Yee W, Singh V (2008) Engineering process and cost model for a conventional corn wet milling facility. Ind Crop Prod 27:91–97

    Article  Google Scholar 

  45. Manzer LE (2010) Recent developments in the conversion of biomass to renewable fuels and chemicals. Top Catal 53:1193–1196

    Article  Google Scholar 

  46. Sierra R, Smith A, Granda C, Holtzapple MT (2008) Producing fuels and chemicals from lignocellulosic biomass. Chem Eng Prog 104:S10–S18

    Google Scholar 

  47. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  Google Scholar 

  48. Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17–34

    Article  Google Scholar 

  49. Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583

    Article  Google Scholar 

  50. Warnick TA, Methe BA, Leschine SB (2002) Clostridium phytofermentans sp. nov., a cellulolytic mesophile from forest soil. Int J Syst Evol Microbiol 52:1155–1160

    Article  Google Scholar 

  51. Lee YY, Iyer P, Torget RW (1999) Dilute-acid hydrolysis of lignocellulosic biomass. Adv Biochem Eng Biotechnol 65:93–114

    Google Scholar 

  52. Lindsey TC (2010) Conversion of existing dry – mill ethanol operations to biorefineries. In: Blaschek HP, Ezeji TC, Scheffran J (eds) Biofuels from agricultural wastes and byproducts. Wiley-Blackwell, Oxford

    Google Scholar 

  53. Agler MT, Wrenn BA, Zinder SH, Angenent LT (2011) Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform. Trends Biotechnol 29:70–78

    Article  Google Scholar 

  54. Chang HN, Kim N-J, Kang J, Jeong CM (2010) Biomass-derived volatile fatty acid platform for fuels and chemicals. Biotechnol Bioprocess Eng 15:1–10

    Article  Google Scholar 

  55. Verser D, Eggeman T (2003) Process for producing ethanol. US Patent 6,509,180 B1

    Google Scholar 

  56. Pham V, Holtzapple M, El-Halwagi M (2010) Techno-economic analysis of biomass to fuel conversion via the MixAlco process. J Ind Microbiol Biotechnol 37:1157–1168

    Article  Google Scholar 

  57. Granda CB, Holtzapple MT, Luce G, Searcy K, Mamrosh DL (2009) Carboxylate platform: the MixAlco process. Part 2: process economics. Appl Biochem Biotechnol 156:537–554

    Article  Google Scholar 

  58. Datar RP, Shenkman RM, Cateni BG, Huhnke RL, Lewis RS (2004) Fermentation of biomass-generated producer gas to ethanol. Biotechnol Bioeng 86:587–594

    Article  Google Scholar 

  59. Younesi H, Najafpour G, Mohamed AR (2005) Ethanol and acetate production from synthesis gas via fermentation processes using anaerobic bacterium, Clostridium ljungdahlii. Biochem Eng J 27:110–119

    Article  Google Scholar 

  60. Vega JL, Prieto S, Elmore BB, Clausen EC, Gaddy JL (1989) The biological production of ethanol from synthesis gas. Appl Biochem Biotechnol 20(21):781–797

    Article  Google Scholar 

  61. Santosh Y, Sreekrishnan TR, Kohli S, Rana V (2004) Enhancement of biogas production from solid substrates using different techniques – a review. Bioresour Technol 95:1–10

    Article  Google Scholar 

  62. Oudejans JC, Van den Oosterkamp PF, Van Bekkum H (1982) Conversion of ethanol over zeolite H-ZSM-5 in the presence of water. Appl Catal 3:109–115

    Article  Google Scholar 

  63. Holtzapple MT, Granda CB (2009) Carboxylate platform: the MixAlco process. Part 1: comparison of three biomass conversion platforms. Appl Biochem Biotechnol 156:525–536

    Article  Google Scholar 

  64. Li Q, Du W, Liu D (2008) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80:749–756

    Article  Google Scholar 

  65. Rude MA, Schirmer A (2009) New microbial fuels: a biotech perspective. Curr Opin Microbiol 12:274–281

    Article  Google Scholar 

  66. Hui L, Wan C, Hai-tao D, Xue-jiao C, Qi-fa Z, Yu-hua Z (2010) Direct microbial conversion of wheat straw into lipid by a cellulolytic fungus of Aspergillus oryzae A-4 in solid-state fermentation. Bioresour Technol 101:7556–7562

    Article  Google Scholar 

  67. Manilla-Pérez E, Lange AB, Hetzler S, Steinbüchel A (2010) Occurrence, production, and export of lipophilic compounds by hydrocarbonoclastic marine bacteria and their potential use to produce bulk chemicals from hydrocarbons. Appl Microbiol Biotechnol 86:1693–1706

    Article  Google Scholar 

Books and Reviews

  • Bungay HR (1981) Energy, the biomass options. Wiley-Interscience, New York

    Google Scholar 

  • Cheremisinoff NP, Cheremisinoff PN, Ellerbusch F (1980) Biomass: applications, technology, and production, Energy, power, and environment, vol 5. Marcel Dekker, New York

    Google Scholar 

  • Klass DL (1981) Biomass as a nonfossil fuel source, ACS symposium series, vol 144. American Chemical Society, Washington, DC

    Book  Google Scholar 

  • Klass DL (1998) Biomass for renewable energy, fuels, and chemicals. Academic, San Diego

    Google Scholar 

  • Moo-Young M, Blanch HW, Drew S, Wang DIC (1985) Comprehensive biotechnology, The practice of biotechnology: current commodity products, vol 3. Pergamon, New York

    Google Scholar 

  • Saha BC, Woodward J (1997) Fuels and chemicals from biomass, ACS symposium series, vol 666. American Chemical Society, Washington, DC

    Book  Google Scholar 

  • Sarkanen KV, Tillman DA (1979) Progress in biomass conversion, vol 1. Academic, New York

    Google Scholar 

  • Smil V (1983) Biomass energies: resources, links, constraints. Plenum, New York

    Book  Google Scholar 

  • Stafford DA, Hawkes DL, Horton R (1980) Methane production from waste organic matter. CRC Press, Boca Raton

    Google Scholar 

  • Waldron K (2010) Bioalcohol production: biochemical conversion of lignocellulosic biomass, Woodhead publishing series in energy, vol 3. CRC Press, Boca Raton

    Book  Google Scholar 

  • Zaborsky OR, McClure TA, Lipinsky ES (1981) Handbook of biosolar resources, Resource materials, vol II. CRC Press, Boca Raton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Holtzapple, M. (2012). Vehicle Biofuels. In: Elgowainy, A. (eds) Electric, Hybrid, and Fuel Cell Vehicles. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-0716-1492-1_871

Download citation

Publish with us

Policies and ethics