Skip to main content

1.5 Electron Transport. Structure, Redox-Coupled Protonmotive Activity, and Pathological Disorders of Respiratory Chain Complexes

  • Reference work entry
  • First Online:
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

This chapter is intended to provide an overview of mitochondrial respiratory chain complexes from protein structure and functional mechanisms to their biogenesis and genetic disorders in neurological and other diseases. The general features and the electron transfer centers of the protonmotive respiratory chain is first dealt with. This section is followed by a description of the protein structure of the four redox complexes of the chain. A section is devoted to mechanism of the proton pump of complexes I, III and IV with particular emphasis to complex IV. The last two sections cover aspects of the biogenesis of the redox complexes and their genetic disorders in human pathology respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahams JP, Leslie AG, Lutter R, Walker JE. 1994. Structure at 2.8 Ã… resolution of F1-ATPase from bovine heart mitochondria. Nature 370: 621–628.

    Article  PubMed  CAS  Google Scholar 

  • Acin-Perez R, Bayona-Bafaluy MP, Fernandez-Silva P, Moreno-Loshuertos R, Perez-Martos A, et al. 2004. Respiratory complex III is required to maintain complex I in mammalian mitochondria. Mol Cell 13: 805–815.

    Article  PubMed  CAS  Google Scholar 

  • Albracht SPJ, van der Linden E, Faber BW. 2003. Quantitative amino acid analysis of bovine NADH: Ubiquinone oxidoreductase (complex I) and related enzymes. Consequence for the number of prosthetic groups. Biochim Biophys Acta 1557: 41–49.

    Article  PubMed  CAS  Google Scholar 

  • Andreu AL, Hanna MG, Reichmann H, Bruno C, Penn AS, et al. 1999. Exercise intolerance due to mutations in the cytochrome b gene of mitochondrial DNA. N Engl J Med 341: 1037–1044.

    Article  PubMed  CAS  Google Scholar 

  • Antonicka H, Mattman A, Carlson CG, Glerum DM, Hoffbuhr KC, et al. 2003a. Mutations in COX15 produce a defect in the mitochondrial heme biosynthetic pathway, causing early-onset fatal hypertrophic cardiomyopathy. Am J Hum Genet 72: 101–114.

    Article  CAS  Google Scholar 

  • Antonicka H, Ogilvie I, Taivassalo T, Anitori RP, Haller RG, et al. 2003b. Identification and characterization of a common set of complex I assembly intermediates in mitochondria from patients with complex I deficiency. J Biol Chem 278: 43081–43088.

    Article  CAS  Google Scholar 

  • Attardi G, Schatz G. 1988. Biogenesis of mitochondria. Annu Rev Cell Biol 4: 289–333.

    Article  PubMed  CAS  Google Scholar 

  • Augustin S, Nolden M, Muller S, Hardt O, Arnold I, et al. 2005. Characterisation of peptides released from mitochondria: Evidence for constant proteolysis and peptide efflux. J Biol Chem 280: 2691–2699.

    Article  PubMed  CAS  Google Scholar 

  • Bamberg E, Butt H-J, Eisenraunch A, Fendler K. 1993. Charge transport of ion pumps on lipid bilayer membranes. Q Rev Biophys 26: 1–25.

    Article  PubMed  CAS  Google Scholar 

  • Bates TE, Almeida A, Heales SJ, Clark JB. 1994. Postnatal development of the complexes of the electron transport chain in isolated rat brain mitochondria. Dev Neurosci 16: 321–327.

    Article  PubMed  CAS  Google Scholar 

  • Baysal BE, Ferrell RE, Willett-Brozick JE, Lawrence EC, Myssiorek D, et al. 2000. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287: 848–851.

    Article  PubMed  CAS  Google Scholar 

  • Beinert H. 1986. Iron–sulphur clusters: Agents of electron transfer and storage, and direct participants in enzymic reactions. Tenth Keilin memorial lecture. Biochem Soc Trans 14: 527–533.

    CAS  Google Scholar 

  • Bender E, Kadenbach B. 2000. The allosteric ATP-inhibition of cytochrome c oxidase activity is reversibly switched on by cAMP-dependent phosphorylation. FEBS Lett 466: 130–134.

    Article  PubMed  CAS  Google Scholar 

  • Benit P, Beugnot R, Chretien D, Giurgea I, De Lonlay-Debeney P, et al. 2003. Mutant NDUFV2 subunit of mitochondrial complex I causes early onset hypertrophic cardiomyopathy and encephalopathy. Hum Mutat 21: 582–586.

    Article  PubMed  CAS  Google Scholar 

  • Berry EA, Guergova-Kuras M, Huang LS, Crofts AR. 2000. Structure and function of cytochrome bc complexes. Annu Rev Biochem 69:1005–1075.

    Article  PubMed  CAS  Google Scholar 

  • Birch-Machin MA, Taylor RW, Cochran B, Ackrell BA, Turnbull DM. 2000. Late-onset optic atrophy, ataxia, and myopathy associated with a mutation of a complex II gene. Ann Neurol 48: 330–335.

    Article  PubMed  CAS  Google Scholar 

  • Bloch D, Belevich I, Jasaitis A, Ribacka C, Puustinen A, et al. 2004. The catalytic cycle of cytochrome c oxidase is not the sum of its two halves. Proc Natl Acad Sci USA 101: 529–533.

    Article  PubMed  CAS  Google Scholar 

  • Bourgeron T, Rustin P, Chretien D, Birch-Machin M, Bourgeois M, et al. 1995. Mutation of a nuclear succinate dehydrogenase gene results in mitochondrial respiratory chain eficiency. Nat Genet 11: 144–149.

    Article  PubMed  CAS  Google Scholar 

  • Bousquet I, Dujardin G, Slonimski PP. 1991. ABC1, a novel yeast nuclear gene has a dual function in mitochondria: It suppresses a cytochrome b mRNA translation defect and is essential for the electron transfer in the bc 1 complex. EMBO J 10: 2023–2031.

    PubMed  CAS  Google Scholar 

  • Brandt U. 1997. Proton-translocation by membrane-bound NADH: Ubiquinone–oxidoreductase (complex I) through redox-gated ligand conduction. Biochim Biophys Acta 1318: 79–91.

    Article  PubMed  CAS  Google Scholar 

  • Brandt U, Djafarzadeh-Andabili R. 1997. Binding of MOA-stilbene to the mitochondrial cytochrome bc 1 complex is affected by the protonation state of a redox-Bohr group of the ‘Rieske’ iron–sulfur protein. Biochim Biophys Acta 1321: 238–242.

    Article  PubMed  CAS  Google Scholar 

  • Brzezinski P, Larsson G. 2003. Redox-driven proton pumping by heme-copper oxidases. Biochim Biophys Acta 1605: 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Bugiani M, Invernizzi F, Alberio S, Briem E, Lamantea E, et al. 2004. Clinical and molecular findings in children with complex I deficiency. Biochim Biophys Acta 1659: 136–147.

    Article  PubMed  CAS  Google Scholar 

  • Canton M, Luvisetto S, Schmehl I, Azione GF. 1995. The nature of mitochondrial respiration and discrimination between membrane and pump properties. Biochem J 310: 477–481.

    PubMed  CAS  Google Scholar 

  • Capitanio N, Capitanio G, Boffoli D, Papa S. 2000a. The proton/electron coupling ratio at heme a and Cu(A) in bovine heart cytochrome c oxidase. Biochemistry 39: 15454–15461.

    Article  CAS  Google Scholar 

  • Capitanio N, Capitanio G, Demarinis DA, De Nitto E, Massari S, et al. 1996. Factors affecting the H+/e− stoichiometry in mitochondrial cytochrome c oxidase: Influence of the rate of electron flow and transmembrane delta pH. Biochemistry 35: 10800–10806.

    Article  PubMed  CAS  Google Scholar 

  • Capitanio N, Capitanio G, Minuto M, De Nitto E, Palese LL, et al. 2000b. Coupling of electron transfer with proton transfer at heme a and Cu(A) (redox Bohr effects) in cytochrome c oxidase. Studies with the carbon monoxide inhibited enzyme. Biochemistry 39: 6373–6379.

    Article  CAS  Google Scholar 

  • Carroll J, Fearnley IM, Shannon RJ, Hirst J, Walker JE. 2003. Analysis of the subunit composition of complex I from bovine heart mitochondria. Mol Cell Proteomics 2: 117–126.

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Ko Y, Delannoy M, Ludtke SJ, Chiu W, et al. 2004. Mitochondrial ATP synthasome. J Biol Chem 279: 31761–31768.

    Article  PubMed  CAS  Google Scholar 

  • Chen R, Fearnley IM, Peak-Chew SY, Walker JE. 2004. The phosphorylation of subunits of complex I from bovine heart mitochondria. J Biol Chem 279: 26036–26045.

    Article  PubMed  CAS  Google Scholar 

  • Chinnery PF, Johnson MA, Wardell TM, Singh-Kler R, Hayes C, et al. 2000. The epidemiology of pathogenic mitochondrial DNA mutations. Ann Neurol 48: 188–193.

    Article  PubMed  CAS  Google Scholar 

  • Coenen MJ, Antonicka H, Ugalde C, Sasarman F, Rossi R, et al. 2004. Mutant mitochondrial elongation factor G1 and combined oxidative phosphorylation deficiency. N Engl J Med 351: 2080–2086.

    Article  PubMed  CAS  Google Scholar 

  • Cole ES, Lepp CA, Holohan PD, Fondy TP. 1978. Isolation and characterization of flavin-linked glycerol-S-phosphate dehydrogenase from rabbit skeletal muscle mitochondria and comparison with the enzyme from rabbit brain. J Biol Chem 253: 7952–7959.

    PubMed  CAS  Google Scholar 

  • Colombo I, Finocchiaro G, Garavaglia B, Garbuglio N, Yamaguchi S, et al. 1994. Mutations and polymorphisms of the gene encoding the beta-subunit of the electron transfer flavoprotein in three patients with glutaric acidemia type II. Hum Mol Genet 3: 429–435.

    Article  PubMed  CAS  Google Scholar 

  • Comi GP, Bordoni A, Salani S, Franceschina L, Sciacco M, et al. 1998. Cytochrome c oxidase subunit I microdeletion in a patient with motor neuron disease. Ann Neurol 43: 110–116.

    Article  PubMed  CAS  Google Scholar 

  • Crane FL, Hatefi Y, Lester RL, Widmer C. 1957. Isolation of a quinone from beef heart mitochondria. Biochim Biophys Acta 25: 220–221.

    Article  PubMed  CAS  Google Scholar 

  • Crivellone MD. 1994. Characterization of CBP4, a new gene essential for the expression of ubiquinol–cytochrome c reductase in Saccharomyces cerevisiae. J Biol Chem 269: 21284–21292.

    PubMed  CAS  Google Scholar 

  • De Lonlay P, Valnot I, Barrientos A, Gorbatyuk M, Tzagoloff A, et al. 2001. A mutant mitochondrial respiratory chain assembly protein causes complex III deficiency in patients with tubulopathy, encephalopathy and liver failure. Nat Genet 29: 57–60.

    Article  PubMed  CAS  Google Scholar 

  • Deng K, Shenoy SK, Tso SC, Yu L, Yu CA. 2001. Reconstitution of mitochondrial processing peptidase from the core proteins (subunits I and II) of bovine heart mitochondrial cytochrome bc(1) complex. J Biol Chem 276: 6499–6505.

    Article  PubMed  CAS  Google Scholar 

  • DiMauro S. 2001. Lessons from mitochondrial DNA mutations. Semin Cell Dev Biol 12: 397–405.

    Article  PubMed  CAS  Google Scholar 

  • DiMauro S. 2004. Mitochondrial medicine. Biochim Biophys Acta 1659: 107–114.

    Article  PubMed  CAS  Google Scholar 

  • Duarte M, Sousa R, Videira A. 1995. Inactivation of genes encoding subunits of the peripheral and membrane arms of Neurospora mitochondrial complex I and effects on enzyme assembly. Genetics 139: 1211–1221.

    PubMed  CAS  Google Scholar 

  • Erecinska M, Silver IA. 1989. ATP and brain function. J Cereb Blood Flow Metab 9: 2–19.

    Article  PubMed  CAS  Google Scholar 

  • Fearnley IM, Carroll J, Shannon RJ, Runswick MJ, Walker JE, et al. 2001. GRIM-19, a cell death regulatory gene product, is a subunit of bovine mitochondrial NADH: Ubiquinone oxidoreductase (complex I). J Biol Chem 276: 38345–38348.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson-Miller S, Babcock GT. 1996. Heme/copper terminal oxidases. Chem Rev 96: 2889–2908.

    Article  PubMed  CAS  Google Scholar 

  • Frerman FE. 1988. Acyl-CoA dehydrogenases, electron transfer flavoprotein and electron transfer flavoprotein dehydrogenase. Biochem Soc Trans 16: 416–418.

    PubMed  CAS  Google Scholar 

  • Friedrich T, Bottcher B. 2004. The gross structure of the respiratory complex I: A Lego system. Biochim Biophys Acta 1608: 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Gakh O, Cavadini P, Isaya G. 2002. Mitochondrial processing peptidases. Biochim Biophys Acta 1592: 63–77.

    Article  PubMed  CAS  Google Scholar 

  • Gelles J, Chan SI. 1985. Chemical modification of the CuA center in cytochrome c oxidase by sodium p-(hydroxymercuri)benzoate. Biochemistry 24: 3963–3972.

    Article  PubMed  CAS  Google Scholar 

  • Gnaiger E, Mendez G, Hand SC. 2000. High phosphorylation efficiency and depression of uncoupled respiration in mitochondria under hypoxia. Proc Natl Acad Sci USA 97: 11080–11085.

    Article  PubMed  CAS  Google Scholar 

  • Grigorieff N. 1999. Structure of the respiratory NADH: Ubiquinone oxidoreductase (complex I). Curr Opin Struct Biol 9: 476–483.

    Article  PubMed  CAS  Google Scholar 

  • Guenebaut V, Schlitt A, Weiss H, Leonard K, Friedrich T. 1998. Consistent structure between bacterial and mitochondrial NADH: Ubiquinone oxidoreductase (complex I). J Mol Biol 276: 105–112.

    Article  PubMed  CAS  Google Scholar 

  • Hatefi Y. 1999. The mitochondrial enzymes of oxidative phosphorylation. Papa S, Guerrieri F, Tager JM, (eds) editors. Frontiers of cellular bioenenergetics: Molecular biology, biochemistry and physiopathology. New York: Kluwer Academy/Plenum Publishers; pp. 23–47.

    Google Scholar 

  • Hess R, Pearse AG. 1961. Histochemical and homogenization studies of mitochondrial alpha-glycerophosphate dehydrogenase in the nervous system. Nature 191: 718–719.

    Article  PubMed  CAS  Google Scholar 

  • Hirst J, Carroll J, Fearnley IM, Shannon RJ, Walker JE. 2003. The nuclear encoded subunits of complex I from bovine heart mitochondria. Biochim Biophys Acta 1604: 135–150.

    Article  PubMed  CAS  Google Scholar 

  • Holt IJ, Harding AE, Morgan-Hughes JA. 1988. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331: 717–719.

    Article  PubMed  CAS  Google Scholar 

  • Horbinski C, Chu CT. 2005. Kinase signaling cascades in the mitochondrion: A matter of life or death. Free Radic Biol Med 38: 2–11.

    Article  PubMed  CAS  Google Scholar 

  • Hunte C, Koepke J, Lange C, Rossmanith T, Michel H. 2000. Structure at 2.3 Ã… resolution of the cytochrome bc(1) complex from the yeast Saccharomyces cerevisiae co-crystallized with an antibody Fv fragment. Structure Fold Des 8: 669–684.

    Article  PubMed  CAS  Google Scholar 

  • Iwata S, Lee JW, Okada K, Lee JK, Iwata M, et al. 1998. Complete structure of the 11-subunit bovine mitochondrial cytochrome bc 1 complex. Science 281: 64–71.

    Article  PubMed  CAS  Google Scholar 

  • Iwata S, Ostermeier C, Ludwig B, Michel H. 1995. Structure at 2.8 Ã… resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376: 660–669.

    Article  PubMed  CAS  Google Scholar 

  • Jansen RP, de Boer K. 1998. The bottleneck: Mitochondrial imperatives in oogenesis and ovarian follicular fate. Mol Cell Endocrinol 145: 81–88.

    Article  PubMed  CAS  Google Scholar 

  • Janssen R, Smeitink J, Smeets R, van den Heuvel L. 2002. CIA30 complex I assembly factor: A candidate for human complex I deficiency? Hum Genet 110: 264–270.

    Article  PubMed  CAS  Google Scholar 

  • Janssen RJ, van den Heuvel LP, Smeitink JA. 2004 Genetic defects in the oxidative phosphorylation (OXPHOS) system. Expert Rev Mol Diagn 4: 143–156.

    Article  PubMed  CAS  Google Scholar 

  • Kadenbach B, Huttemann M, Arnold S, Lee I, Bender E. 2000. Mitochondrial energy metabolism is regulated via nuclear-coded subunits of cytochrome c oxidase. Free Radic Biol Med 29: 211–221.

    Article  PubMed  CAS  Google Scholar 

  • Karadimas CL, Greenstein P, Sue CM, Joseph JT, Tanji K, et al. 2000. Recurrent myoglobinuria due to a nonsense mutation in the COX I gene of mitochondrial DNA. Neurology 55: 644–649.

    PubMed  CAS  Google Scholar 

  • Kaser M, Langer T. 2000. Protein degradation in mitochondria. Semin Cell Dev Biol 11: 181–190.

    Article  PubMed  CAS  Google Scholar 

  • Keightley JA, Hoffbuhr KC, Burton MD, Salas VM, Johnston WS, et al. 1996. A microdeletion in cytochrome c oxidase (COX) subunit III associated with COX deficiency and recurrent myoglobinuria. Nat Genet 12: 410–416.

    Article  PubMed  CAS  Google Scholar 

  • Keilin D. 1966. Keilin J, editor. The history of cell respiration and cytochromes. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Kirby DM, Crawford M, Cleary MA, Dahl HH, Dennett X, et al. 1999. Respiratory chain complex I deficiency: An underdiagnosed energy generation disorder. Neurology 52: 1255–1264.

    PubMed  CAS  Google Scholar 

  • Knox C, Sass E, Neupert W, Pines O. 1998. Import into mitochondria, folding and retrograde movement of fumarase in yeast. J Biol Chem 273: 25587–25593.

    Article  PubMed  CAS  Google Scholar 

  • Koehler CM. 2004. New developments in mitochondrial assembly. Annu Rev Cell Dev Biol 20: 309–335.

    Article  PubMed  CAS  Google Scholar 

  • Komiya T, Rospert S, Koehler C, Looser R, Schatz G, et al. 1998. Interaction of mitochondrial targeting signals with acidic receptor domains along the protein import pathway: Evidence for the ‘acid chain’ hypothesis. EMBO J 17: 3886–3898.

    Article  PubMed  CAS  Google Scholar 

  • Kuffner R, Rohr A, Schmiede A, Krull C, Schulte U. 1998. Involvement of two novel chaperones in the assembly of mitochondrial NADH: Ubiquinone oxidoreductase (complex I). J Mol Biol 283: 409–417.

    Article  PubMed  CAS  Google Scholar 

  • Kuznetsov AV, Janakiraman M, Margreiter R, Troppmair J. 2004. Regulating cell survival by controlling cellular energy production: Novel functions for ancient signaling pathways? FEBS Lett 577: 1–4.

    Article  PubMed  CAS  Google Scholar 

  • Lamperti C, Naini A, Hirano M, De Vivo DC, Bertini E, et al. 2003. Cerebellar ataxia and coenzyme Q10 deficiency. Neurology 60: 1206–1208.

    PubMed  CAS  Google Scholar 

  • Lancaster CR, Kröger A. 2000. Succinate: Quinone oxidoreductases: New insights from X-ray crystal structures. Biochim Biophys Acta 1459: 422–431.

    Article  PubMed  CAS  Google Scholar 

  • Lancaster CRD. 2001. Handbook of metalloproteins. Messerschmidt A, et al., editors. Chichester, UK: John Wiley and Sons; pp. 379–395.

    Google Scholar 

  • Langley B, Ratan RR. 2004. Oxidative stress-induced death in the nervous system: Cell cycle dependent or independent? J Neurosci Res 77: 621–629.

    Article  PubMed  CAS  Google Scholar 

  • Lawford HG, Garland PB. 1972. Proton translocation coupled to quinone reduction by reduced nicotinamide—adenine dinucleotide in rat liver and ox heart mitochondria. Biochem J 130: 1029–1044.

    PubMed  CAS  Google Scholar 

  • Leigh D. 1951. Subacute necrotizing encephalomyelopathy in an infant. J Neurochem 14: 216–221.

    CAS  Google Scholar 

  • Loeffen JL, Smeitink JA, Trijbels JM, Janssen AJ, Triepels RH, et al. 2000. Isolated complex I deficiency in children: Clinical, biochemical and genetic aspects. Hum Mutat 15: 123–134.

    Article  PubMed  CAS  Google Scholar 

  • Lorusso M, Cocco T, Minuto M, Capitanio N, Papa S. 1995. Proton/electron stoichiometry of mitochondrial bc1 complex. Influence of pH and transmembrane delta pH. J Bioenerg Biomembr 27: 101–118.

    CAS  Google Scholar 

  • Maj MC, Raha S, Myint T, Robinson BH. 2004. Regulation of NADH/CoQ oxidoreductase: Do phosphorylation events affect activity? Protein J 23: 25–32.

    Article  PubMed  CAS  Google Scholar 

  • Mamedova AA, Holt PJ, Carroll J, Sazanov LA. 2004. Substrate-induced conformational change in bacterial complex I. J Biol Chem 279: 23830–23836.

    Article  PubMed  CAS  Google Scholar 

  • Manfredi G, Schon EA, Moraes CT, Bonilla E, Berry GT, et al. 1995. A new mutation associated with MELAS is located in a mitochondrial DNA polypeptide-coding gene. Neuromuscul Disord 5: 391–398.

    Article  PubMed  CAS  Google Scholar 

  • Matsuno-Yagi A, Hatefi Y. 2001. Ubiquinol: Cytochrome c oxidoreductase (complex III). Effect of inhibitors on cytochrome b reduction in submitochondrial particles and the role of ubiquinone in complex III. J Biol Chem 276: 19006–19011.

    Article  PubMed  CAS  Google Scholar 

  • Meinhardt SW, Yang XH, Trumpower BL, Ohnishi T. 1987. Identification of a stable ubisemiquinone and characterization of the effects of ubiquinone oxidation–reduction status on the Rieske iron–sulfur protein in the three-subunit ubiquinol–cytochrome c oxidoreductase complex of Paracoccus denitrificans. J Biol Chem 262: 8702–8706.

    PubMed  CAS  Google Scholar 

  • Michel H. 1998. The mechanism of proton pumping by cytochrome c oxidase. Proc Natl Acad Sci USA 95: 12819–12824.

    Article  PubMed  CAS  Google Scholar 

  • Michel H. 1999. Cytochrome c oxidase: Catalytic cycle and mechanisms of proton pumping—a discussion. Biochemistry 38: 15129–15140.

    Article  PubMed  CAS  Google Scholar 

  • Miller C, Saada A, Shaul N, Shabtai N, Ben-Shalom E, et al. 2004. Defective mitochondrial translation caused by a ribosomal protein (MRPS16) mutation. Ann Neurol 56: 734–738.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell P. 1961. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191: 144–148.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell P. 1966. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev Camb Philos Soc 41: 445–502.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell P 1976. Possible molecular mechanisms of the protonmotive function of cytochrome systems. J Theor Biol 62: 327–367.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell P. 1979. Keilin's respiratory chain concept and its chemiosmotic consequences Science 206: 1148–1159.

    CAS  Google Scholar 

  • Monod J, Wyman J, Changeux JP. 1965. On the nature of allosteric transitions: A plausible model. J Mol Biol 12: 88–118.

    Article  PubMed  CAS  Google Scholar 

  • Mootha VK, Lepage P, Miller K, Bunkenborg J, Reich M, et al. 2003. Identification of a gene causing human cytochrome c oxidase deficiency by integrative genomics. Proc Natl Acad Sci USA 100: 605–610.

    Article  PubMed  CAS  Google Scholar 

  • Neupert W, Brunner M. 2002. The protein import motor of mitochondria. Nat Rev Mol Cell Biol 3: 555–565.

    Article  PubMed  CAS  Google Scholar 

  • Nicholls P. 1999. The mitochondrial and bacterial respiratory chains from MacMunn and Keilin to current concepts. Frontiers of cellular bioenenergetics: Molecular biology, biochemistry and physiopathology. Papa S, Guerrieri F, Tager JM, editors. New York: Kluwer Academy/Plenum Publishers; pp. 1–22.

    Google Scholar 

  • Niemann S, Muller U. 2000. Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat Genet 26: 268–270.

    Article  PubMed  CAS  Google Scholar 

  • Nijtmans LG, Taanman JW, Muijsers AO, Speijer D, Van den Bogert C. 1998. Assembly of cytochrome-c oxidase in cultured human cells. Eur J Biochem 254: 389–394.

    Article  PubMed  CAS  Google Scholar 

  • Nisoli E, Clementic E, Moncada S, Carruba MO. 2004. Mitochondrial biogenesis as a cellular signaling framework. Biochem Pharmacol 67: 1–15.

    Article  PubMed  CAS  Google Scholar 

  • Nobrega FG, Nobrega MP, Tzagoloff A. 1992. BCS1, a novel gene required for the expression of functional Rieske iron–sulfur protein in Saccharomyces cerevisiae. EMBO J 11: 3821–3829.

    PubMed  CAS  Google Scholar 

  • Ohnishi T. 1998. Iron–sulfur clusters/semiquinones in complex I. Biochim Biophys Acta 1364: 186–206.

    Article  PubMed  CAS  Google Scholar 

  • Orth M, Schapira AH. 2001. Mitochondria and degenerative disorders. Am J Med Genet 106: 27–36.

    Article  PubMed  CAS  Google Scholar 

  • Papa S. 1976. Proton translocation reactions in the respiratory chains. Biochim Biophys Acta 456: 39–84.

    PubMed  CAS  Google Scholar 

  • Papa S. 1996. Mitochondrial oxidative phosphorylation changes in the life span. Molecular aspects and physiopathological implications. Biochim Biophys Acta 1276: 87–105.

    Google Scholar 

  • Papa S. 2002. The NDUFS4 nuclear gene of complex I of mitochondria and the cAMP cascade. Biochim Biophys Acta 1555: 147–153.

    Article  PubMed  CAS  Google Scholar 

  • Papa S. 2005. Role of cooperative H+/e− linkage (redox Bohr effect) at heme a/CuA and heme a, 3 /CuB in the proton pump of cytochrome c oxidase. Biochemistry (Mosc) 70: 178–186.

    Article  CAS  Google Scholar 

  • Papa S, Capitanio N. 1998. Redox Bohr effects (cooperative coupling) and the role of heme a in the proton pump of cytochrome c oxidase. J Bioenerg Biomembr 30: 109–119.

    Article  PubMed  CAS  Google Scholar 

  • Papa S, Capitanio N, Capitanio G, Palese LL. 2004b. Protonmotive cooperativity in cytochrome c oxidase. Biochim Biophys Acta 1658: 95–105.

    Article  CAS  Google Scholar 

  • Papa S, Capitanio N, Villani G. 1998. A cooperative model for protonmotive heme-copper oxidases. The role of heme a in the proton pump of cytochrome c oxidase. FEBS Letters 439: 1–8.

    CAS  Google Scholar 

  • Papa S, Capitanio N, Villani G. 1999a. Proton pumps of respiratory chain enzymes. Frontiers of cellular bioenenergetics. Molecular biology, biochemistry and physiopathology. Papa S, Guerrieri F, Tager JM, editors. New York: Kluwer Academy/Plenum Publishers; pp. 49–87.

    Google Scholar 

  • Papa S, Guerrieri F, Izzo G. 1986. Cooperative proton-transfer reactions in the respiratory chain: Redox Bohr effects. Methods Enzymol 126: 331–343.

    Article  PubMed  CAS  Google Scholar 

  • Papa S, Guerrieri F, Lorusso M. 1974. Mechanism of respiration-driven proton translocation in the inner mitochondrial membrane. Analysis of proton translocation associated to oxido-reductions of the oxygen-terminal respiratory carriers. Biochim Biophys Acta 357: 181–92.

    CAS  Google Scholar 

  • Papa S, Guerrieri F, Lorusso M, Simone S. 1973. Proton translocation and energy transduction in mitochondria. Biochimie 55: 703–716.

    Article  PubMed  CAS  Google Scholar 

  • Papa S, Lorusso M, Capitanio N. 1995. On the mechanism of proton pumps in respiratory chains. Biochemistry of cell membranes. Papa S, Tager JM, editors. Switzerland: Birkhäuser Verlag Basel; pp. 151–166.

    Chapter  Google Scholar 

  • Papa S, Lorusso M, Capitanio N, Zanotti F. 1996a. Liposomes in reconstitution of proton-motive proteins. Handbook of nonmedical applications of liposomes, vol II. Barenholtz Y, Lasic DD, editors. Boca Raton, FL: CRC Press; pp. 245–259.

    Google Scholar 

  • Papa S, Lorusso M, Cocco T, Boffoli D, Lombardo M. 1990. Protonmotive ubiquinol–cytochrome c oxidoreductase of mitochondria. A possible example of co-operative anisotropy of protolytic redox catalysis. Lenaz G, Barnabei O, Rabbi A, Battino M. editors. London, New York, Philadelphia: Highlights in ubiquinone research. Taylor & Francis; pp. 122–135.

    Google Scholar 

  • Papa S, Petruzzella V, Scacco S, Vergari R, Panelli D, et al. 2004a. Respiratory complex I in brain development and genetic disease. Neurochem Res 29: 547–560.

    Article  CAS  Google Scholar 

  • Papa S, Sardanelli AM, Cocco T, Speranza F, Scacco SC, et al. 1996b. The nuclear-encoded 18 kDa (IP) AQDQ subunit of bovine heart complex I is phosphorylated by the mitochondrial cAMP-dependent protein kinase. FEBS Lett 379: 299–301.

    Article  CAS  Google Scholar 

  • Papa S, Sardanelli AM, Scacco S, Technikova-Dobrova Z. 1999b. cAMP-dependent protein kinase and phosphoproteins in mammalian mitochondria. An extension of the cAMP-mediated intracellular signal transduction. FEBS Lett 444: 245–249.

    Article  CAS  Google Scholar 

  • Papadopoulou LC, Sue CM, Davidson MM, Tanji K, Nishino I, et al. 1999. Fatal infantile cardioencephalomyopathy with COX deficiency and mutations in SCO2, a COX assembly gene. Nat Genet 23: 333–337.

    Article  PubMed  CAS  Google Scholar 

  • Parfait B, Chretien D, Rötig A, Marsac C, Munnich A, et al. 2000. Compound heterozygous mutations in the flavoprotein gene of the respiratory chain complex II in a patient with Leigh syndrome. Hum Genet 106: 236–243.

    Article  PubMed  CAS  Google Scholar 

  • Pasdois P, Deveaud C, Voisin P, Bouchaud V, Rigoulet M, et al. 2003. Contribution of the phosphorylable complex I in the growth phase-dependent respiration of C6 glioma cells in vitro. J Bioenerg Biomembr 35: 439–450.

    Article  PubMed  CAS  Google Scholar 

  • Pereira MM, Santana M, Teixeira M. 2001. A novel scenario for the evolution of haem-copper oxygen reductases. Biochim Biophys Acta 1505: 185–208.

    Article  PubMed  CAS  Google Scholar 

  • Perutz MF. 1976. Haemoglobin: Structure, function and synthesis. Br Med Bull 32: 193–194.

    PubMed  CAS  Google Scholar 

  • Petruzzella V, Papa S. 2002. Mutations in nuclear genes encoding for subunits of mitochondrial respiratory complex I: The NDUFS4 gene. Gene 286: 149–154.

    Article  PubMed  CAS  Google Scholar 

  • Petruzzella V, Tiranti V, Fernandez P, Ianna P, Carrozzo R, et al. 1998. Identification and characterization of human cDNAs specific to BCS1, PET112, SCO1, COX15, and COX11, five genes involved in the formation and function of the mitochondrial respiratory chain. Genomics 54: 494–504.

    Article  PubMed  CAS  Google Scholar 

  • Pulkes T, Eunson L, Patterson V, Siddiqui A, Wood NW, et al. 1999. The mitochondrial DNA G13513A transition in ND5 is associated with a LHON/MELAS overlap syndrome and may be a frequent cause of MELAS. Ann Neurol 46: 916–919.

    Article  PubMed  CAS  Google Scholar 

  • Rahman S, Blok RB, Dahl HH, Danks DM, Kirby DM, et al. 1996. Leigh syndrome: Clinical features and biochemical and DNA abnormalities. Ann Neurol 39: 343–351.

    Article  PubMed  CAS  Google Scholar 

  • Rehling P, Brandner K, Pfanner N. 2004. Mitochondrial import and the twin-pore translocase. Nat Rev Mol Cell Biol 5: 519–530.

    Article  PubMed  CAS  Google Scholar 

  • Richter OM, Ludwig B. 2003. Cytochrome c oxidase—structure, function, and physiology of a redox-driven molecular machine. Rev Physiol Biochem Pharmacol 147: 47–74.

    Article  PubMed  CAS  Google Scholar 

  • Ricquier D, Bouillaud F. 2000. The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem J 345: 161–179.

    Article  PubMed  CAS  Google Scholar 

  • Rieske JS. 1986. Experimental observations on the structure and function of mitochondrial complex III that are unresolved by the protonmotive ubiquinone-cycle hypothesis. J Bioenerg Biomembr 18: 235–257.

    Article  PubMed  CAS  Google Scholar 

  • Robinson BH. 1998. Human complex I deficiency: Clinical spectrum and involvement of oxygen free radicals in the pathogenicity of the defect. Biochim Biophys Acta 1364: 271–286.

    Article  PubMed  CAS  Google Scholar 

  • Rotig A, Appelkvist EL, Geromel V, Chretien D, Kadhom N, et al. 2000. Quinone-responsive multiple respiratory-chain dysfunction due to widespread coenzyme Q10 deficiency. Lancet 356: 391–395.

    Article  PubMed  CAS  Google Scholar 

  • Rubinstein JL, Walker JE, Henderson R. 2003. Structure of the mitochondrial ATP synthase by electron cryomicroscopy. EMBO J 22: 6182–6192.

    Article  PubMed  CAS  Google Scholar 

  • Santorelli FM, Tanji K, Kulikova R, Shanske S, Vilarinho L, et al. 1997. Identification of a novel mutation in the mtDNA ND5 gene associated with MELAS. Biochem Biophys Res Commun 238:326–328.

    Article  PubMed  CAS  Google Scholar 

  • Saraste M. 1999. Oxidative phosphorylation at the fin de siecle. Science 283: 1488–1493.

    Article  PubMed  CAS  Google Scholar 

  • Scacco S, Petruzzella V, Budde S, Vergari R, Tamborra R, et al. 2003. Pathological mutations of the human NDUFS4 gene of the 18-kDa (AQDQ) subunit of complex I affect the expression of the protein and the assembly and function of the complex. J Biol Chem 278: 44161–44167.

    Article  PubMed  CAS  Google Scholar 

  • Schaefer AM, Taylor RW, Turnbull DM, Chinnery PF. 2004. The epidemiology of mitochondrial disorders—past, present and future. Biochim Biophys Acta 1659: 115–120.

    Article  PubMed  CAS  Google Scholar 

  • Schagger H. 2001. Blue-native gels to isolate protein complexes from mitochondria. Meth Cell Biol 65:231–244.

    Article  CAS  Google Scholar 

  • Schagger H. 2002. Respiratory chain supercomplexes of mitochondria and bacteria. Biochim Biophys Acta 1555: 154–159.

    Article  PubMed  CAS  Google Scholar 

  • Schagger H, de Coo R, Bauer MF, Hofmann S, Godinot C, et al. 2004. Significance of respirasomes for the assembly/stability of human respiratory chain complex I. J Biol Chem 279: 36349–36353.

    Article  PubMed  CAS  Google Scholar 

  • Scheffler IE, Yadava N, Potluri P. 2004. Molecular genetics of complex I-deficient Chinese hamster cell lines. Biochim Biophys Acta 1659: 160-171.

    Article  PubMed  CAS  Google Scholar 

  • Schulte U, Haupt V, Abelmann A, Fecke W, Brors B, et al. 1999. A reductase/isomerase subunit of mitochondrial NADH: Ubiquinone oxidoreductase (complex I) carries an NADPH and is involved in the biogenesis of the complex. J Mol Biol 292: 569–580.

    Article  PubMed  CAS  Google Scholar 

  • Soulimane T, Buse G, Bourenkov GP, Bartunik HD, Huber R, et al. 2000. Structure and mechanism of the aberrant ba(3)-cyto-chrome c oxidase from Thermus thermophilus. EMBO J 19: 1766–1776.

    Article  PubMed  CAS  Google Scholar 

  • Stock D, Leslie AG, Walker JE. 1999. Molecular architecture of the rotary motor in ATP synthase. Science 286: 1700–1705.

    Article  PubMed  CAS  Google Scholar 

  • Sutovsky P, Van Leyen K, McCauley T, Day BN, Sutovsky M. 2004. Degradation of paternal mitochondria after fertilization: Implications for heteroplasmy, assisted reproductive technologies and mtDNA inheritance. Reprod Biomed Online 8: 24–33.

    Article  PubMed  CAS  Google Scholar 

  • Svensson-Ek M, Abramson J, Larsson G, Tornroth S, Brzezinski P, et al. 2002. The X-ray crystal structures of wild-type and EQ(I-286) mutant cytochrome c oxidases from Rhodobacter sphaeroides. J Mol Biol 321: 329–339.

    Article  PubMed  CAS  Google Scholar 

  • Taylor SW, Fahy E, Zhang B, Glenn GM, Warnock DE, et al. 2003. Characterization of the human heart mitochondrial proteome. Nat Biotechnol 21: 281–286.

    Article  PubMed  CAS  Google Scholar 

  • Technikova-Dobrova Z, Sardanelli AM, Speranza F, Scacco S, Signorile A, et al. 2001. Cyclic adenosine monophosphate-dependent phosphorylation of mammalian mitochondrial proteins: Enzyme and substrate characterization and functional role. Biochemistry 40: 13941–13947.

    Article  PubMed  CAS  Google Scholar 

  • Thomson M. 2002. Evidence of undiscovered cell regulatory mechanisms: Phosphoproteins and protein kinases in mitochondria. Cell Mol Life Sci 59: 213–219.

    Article  PubMed  CAS  Google Scholar 

  • Thorpe C. 1991. Muller F, editor. Chemistry and biochemistry of flavoenzymes. vol II. Boca Raton, FL: CRC Press; pp. 471–486.

    Google Scholar 

  • Tiranti V, Corona P, Greco M, Taanman JW, Carrara F, et al. 2000. A novel frameshift mutation of the mtDNA COXIII gene leads to impaired assembly of cytochrome c oxidase in a patient affected by Leigh-like syndrome. Hum Mol Genet 9: 2733–2742.

    Article  PubMed  CAS  Google Scholar 

  • Tiranti V, Hoertnagel K, Carrozzo R, Galimberti C, Munaro M, et al. 1998. Mutations of SURF-1 in Leigh disease associated with cytochrome c oxidase deficiency, Am J Hum Genet 63: 1609–1621.

    Article  PubMed  CAS  Google Scholar 

  • Toogood HS, van A, Thiel J, Basran Sutcliffe MJ, Scrutton NS, et al. 2004 Extensive domain motion and electron transfer in the human electron transferring flavoprotein-medium chain Acyl-CoA dehydrogenase complex. J Biol Chem 279: 32904–32912.

    Article  PubMed  CAS  Google Scholar 

  • Trumpower BL. 1999. Energy transduction in mitochondrial respiration by the proton-motive Q-cycle mechanism of the cytochrome bc 1 complex. Frontiers of cellular bioenergetics. Molecular biology, biochemistry, and physiopathology. Papa S, Guerrieri F, Tager JM, editors. New York: Kluwer Academic/Plenum Publishers; pp. 233–261.

    Google Scholar 

  • Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, et al. 1996. The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. Science 272: 1136–1144.

    Article  PubMed  CAS  Google Scholar 

  • Tsukihara T, Shimokata K, Katayama Y, Shimada H, Muramoto K, et al. 2003. The low-spin heme of cytochrome c oxidase as the driving element of the proton-pumping process. Proc Natl Acad Sci U S A 100: 15304–15309.

    Article  PubMed  CAS  Google Scholar 

  • Tuschen G, Sackmann U, Nehls U, Haiker H, Buse G, et al. 1990 Assembly of NADH-ubiquinone reductase (complex I) in Neurospora mitochondria. Independent pathways of nuclear-encoded and mitochondrially encoded subunits. J Mol Biol 213: 845–857.

    Article  PubMed  CAS  Google Scholar 

  • Tzagoloff A, Dieckmann CL. 1990. PET genes of Saccharomyces cerevisiae. Microbiol Rev 54: 211–225.

    PubMed  CAS  Google Scholar 

  • Ugalde C, Vogel R, Huijbens R, Van Den Heuvel B, Smeitink J, et al. 2004. Human mitochondrial complex I assembles through the combination of evolutionary conserved modules: A framework to interpret complex I deficiencies. Hum Mol Genet 13: 2461–2472.

    Article  PubMed  CAS  Google Scholar 

  • Urban PF, Klingenberg M. 1969. On the redox potentials of ubiquinone and cytochrome b in the respiratory chain. Eur J Biochem 9: 519–525.

    Article  PubMed  CAS  Google Scholar 

  • Valnot I, Osmond S, Gigarel N, Mehaye B, Amiel J, et al. 2000. Mutations of the SCO1 gene in mitochondrial cytochrome c oxidase deficiency with neonatal-onset hepatic failure and encephalopathy. Am J Hum Genet 67: 1104–1109.

    PubMed  CAS  Google Scholar 

  • Videira A, Duarte M. 2001. On complex I and other NADH: Ubiquinone reductases of Neurospora crassa mitochondria. J Bioenerg Biomembr 33: 197–203.

    Article  CAS  Google Scholar 

  • Vinogradov AD. 2001. Respiratory complex I: Structure, redox components, and possible mechanisms of energy transduction. Biochemistry (Mosc) 66: 1086–1097.

    Article  CAS  Google Scholar 

  • Visapaa I, Fellman V, Vesa J, Dasvarma A, Hutton JL, et al. 2002. GRACILE syndrome, a lethal metabolic disorder with iron overload, is caused by a point mutation in BCS1L. Am J Hum Genet 71: 863–876.

    Article  PubMed  Google Scholar 

  • Wallace DC, Singh G, Lott MT, Hodge JA, Schurr TG, et al. 1988. Mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy. Science 242: 1427–1430.

    Article  PubMed  CAS  Google Scholar 

  • White RA, Dowler LL, Angeloni SV, Koeller DM. 1996. Assignment of Etfdh, Etfb, and Etfa to chromosomes 3, 7, and 13: The mouse homologs of genes responsible for glutaric acidemia Type II in human. Genomics 33: 131–134.

    Article  PubMed  CAS  Google Scholar 

  • Wiedemann N, Frazier AE, Pfanner N. 2004. The protein import machinery of mitochondria. J Biol Chem 279: 14473–14476.

    Article  PubMed  CAS  Google Scholar 

  • Wielburski A, Nelson BD. 1983. Evidence for the sequential assembly of cytochrome oxidase subunits in rat liver mitochondria. Biochem J 212: 829–834.

    PubMed  CAS  Google Scholar 

  • Wikstrom M. 2004. Cytochrome c oxidase: 25 years of the elusive proton pump. Biochim Biophys Acta 1655: 241–247.

    Article  PubMed  CAS  Google Scholar 

  • Wikstrom M, Krab K, Saraste M. 1981. Proton-translocating cytochrome complexes. Annu Rev Biochem 50: 623–655.

    Article  PubMed  CAS  Google Scholar 

  • Wikstrom MK, Berden JA. 1972. Oxidoreduction of cytochrome b in the presence of antimycin. Biochim Biophys Acta 283: 403–420.

    Article  PubMed  CAS  Google Scholar 

  • Williams RJ. 2002. The problem of proton transfer in membranes. J Theor Biol 219: 389–396.

    Article  PubMed  CAS  Google Scholar 

  • Wong W, Scott J.D. 2004. AKAP signalling complexes: Focal points in space and time. Nat Rev Mol Cell Biol 5: 959–970.

    Article  PubMed  CAS  Google Scholar 

  • Wu M, Tzagoloff A. 1989. Identification and characterization of a new gene (CBP3) required for the expression of yeast coenzyme QH2-cytochrome c reductase. J Biol Chem 264: 11122–11130.

    PubMed  CAS  Google Scholar 

  • Xia D, Yu CA, Kim H, Xia JZ, Kachurin AM, et al. 1997. Crystal structure of the cytochrome bc 1 complex from bovine heart mitochondria. Science 277: 60–66.

    Article  PubMed  CAS  Google Scholar 

  • Yagi T, Matsuno-Yagi A. 2003. The proton-translocating NADH-quinone oxidoreductase in the respiratory chain: The secret unlocked. Biochemistry 42: 2266–2274.

    Article  PubMed  CAS  Google Scholar 

  • Yano M, Terada K, Mori M. 2003. AIP is a mitochondrial import mediator that binds to both import receptor Tom20 and preproteins. J Cell Biol 163: 45–56.

    Article  PubMed  CAS  Google Scholar 

  • Young JC, Hoogenraad NJ, Hartl FU. 2003. Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 112: 41–50.

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa S. 2002. Cytochrome c oxidase. Adv Protein Chem 60: 341–395.

    Article  PubMed  CAS  Google Scholar 

  • Zhu Z, Yao J, Johns T, Fu K, De Bie I, et al. 1998. SURF1, encoding a factor involved in the biogenesis of cytochrome c oxidase, is mutated in Leigh syndrome. Nat Genet 20: 337–343.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Project on Bioenergetics: functional genetics, functional mechanisms, and physiopathological aspects, 2003, MIUR, Italy, and the Center of Excellence on Comparative Genomics, University of Bari.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC.

About this entry

Cite this entry

Papa, S., Petruzzella, V., Scacco, S. (2007). 1.5 Electron Transport. Structure, Redox-Coupled Protonmotive Activity, and Pathological Disorders of Respiratory Chain Complexes. In: Lajtha, A., Gibson, G.E., Dienel, G.A. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30411-3_5

Download citation

Publish with us

Policies and ethics