Skip to main content
Log in

Role of cooperative H+/e Linkage (redox Bohr effect) at heme a/CuA and heme a 3/CuB in the proton pump of cytochrome c oxidase

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

It is a pleasure to contribute to the special issue published in honor of Vladimir Skulachev, a distinguished scientist who greatly contributes to maintain a high standard of biochemical research in Russia. A more particular reason can be found in his work (Artzabanov, V. Y., Konstantinov, A. A., and Skulachev, V. P. (1978) FEBS Lett., 87, 180–185), where observations anticipating some ideas presented in my article were reported. Cytochrome c oxidase exhibits protonmotive, redox linked allosteric cooperativity. Experimental observations on soluble bovine cytochrome c oxidase are presented showing that oxido-reduction of heme a/CuA and heme a 3/CuB is linked to deprotonation/protonation of two clusters of protolytic groups, A1 and A2, respectively. This cooperative linkage (redox Bohr effect) results in the translocation of 1 H+/oxidase molecule upon oxido-reduction of heme a/CuA and heme a 3/CuB, respectively. Results on liposome-reconstituted oxidase show that upon oxidation of heme a/CuA and heme a 3/CuB protons from A1 and A2 are released in the outer aqueous phase. A1 but not A2 appears to take up protons from the inner aqueous space upon reduction of the respective redox center. A cooperative model is presented in which the A1 and A2 clusters, operating in close sequence, constitute together the gate of the proton pump in cytochrome c oxidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Monod, J., Wyman, J., and Changeux, I. P. (1965) J. Mol. Biol., 12, 88–118.

    Article  PubMed  CAS  Google Scholar 

  2. Perutz, M. F. (1976) Br. Med. Bull., 32, 193–194.

    PubMed  CAS  Google Scholar 

  3. Perutz, M. F., Kilmartin, J. V., Nishikura, K., Fogg, J. H., Butler, P. J., and Rollema, H. S. (1980) J. Mol. Biol., 138, 649–668.

    PubMed  CAS  Google Scholar 

  4. Kilmartin, J. V., and Rossi Bernardi, L. (1973) Physiol. Rev., 53, 836–890.

    PubMed  CAS  Google Scholar 

  5. Dutton, P. L., and Wilson, D. F. (1974) Biochim. Biophys. Acta, 346, 165–212.

    PubMed  CAS  Google Scholar 

  6. Clark, W. M. (1960) Oxidation-Reduction Potentials of Organic Systems, William and Wilkins Co, Baltimore, USA.

    Google Scholar 

  7. Papa, S. (1976) Biochim. Biophys. Acta, 456, 39–84.

    PubMed  CAS  Google Scholar 

  8. Papa, S., Guerrieri, F., Lorusso, M., Izzo, G., Boffoli, D., and Maida, I. (1981) in Vectorial Reactions in Electron and Ion Transport (Palmieri, F., et al., eds.) Elsevier/North Holland Biomedical Press, p. 57.

  9. Rousseau, D., Sassaroli, M., Ching, Y., and Dasgupta, S. (1988) Ann. N. Y. Acad. Sci., 550, 223–237.

    PubMed  CAS  Google Scholar 

  10. Brzezinski, P., and Larsson, G. (2003) Biochim. Biophys. Acta, 1605, 1–13.

    PubMed  CAS  Google Scholar 

  11. Brzezinski, P. (2004) Trends Biochem. Sci., 29, 380–387.

    PubMed  CAS  Google Scholar 

  12. Tsukihara, T., Shimokata, K., Katayama, Y., Shimada, H., Muramoto, K., Aoyama, H., Mochizuki, M., Shinzawa-Itoh, K., Yamashita, E., Yao, M., Ishimura, Y., and Yoshikawa, S. (2003) PNAS, 100, 15304–15309.

    PubMed  CAS  Google Scholar 

  13. Papa, S. (1989) Highlights in Modern Biochemistry (Kotyk, A., et al., eds.), Vol. 1, pp. 781–796.

  14. Heberle, J. (2000) Biochim. Biophys. Acta, 1458, 135–147.

    PubMed  CAS  Google Scholar 

  15. Wikstrom, M., Krab, K., and Saraste, M. (1981) Cytochrome c Oxidase. A Synthesis, Academic Press, London, pp. 111–115.

    Google Scholar 

  16. Van Gelder, B. F., van Rijin, J. L. M. L., Schilder, G. J. A., and Wilms, J. (1977) in Structure and Function of Energy-Transduction Membranes (van Dam, K., and van Gelder, B. F., eds.) Elsevier/North Holland, Amsterdam, pp. 61–68.

    Google Scholar 

  17. Ellis, W. R., Wang, H., Blair, D. F., Gray, H. B., and Chan, S. I. (1986) Biochemistry, 25, 161–167.

    PubMed  CAS  Google Scholar 

  18. Nicholls, P., and Petersen, L. C. (1974) Biochim. Biophys. Acta, 357, 462–467.

    PubMed  CAS  Google Scholar 

  19. Yoshikawa, S., Shinzawa-Itoh, K., Nakashima, R., Yaono, R., Yamashita, E., Inoue, N., Yao, M., Fei, M., Libeu, C. P., Mizushima, T., Yamaguchi, H., Tomizaki, T., and Tsukihara, T. (1998) Science, 280, 1723–1729.

    PubMed  CAS  Google Scholar 

  20. Kanti Das, T., and Mazundar, S. (2000) Biopolymers (Biospectroscopy), 57, 316–322.

    Google Scholar 

  21. Capitanio, N., Piccoli, C., Capitanio, G., Perna, G., Boffoli, D., Capozzi, V., and Papa, S. (2005) Physica Scripta, in press.

  22. Callahan, P. M., and Babcock, G. T. (1983) Biochemistry, 22, 452–461.

    PubMed  CAS  Google Scholar 

  23. Capitanio, N., Capitanio, G., Minuto, M., De Nitto, E., Palese, L. L., Nicholls, P., and Papa, S. (2000) Biochemistry, 39, 6373–6379.

    PubMed  CAS  Google Scholar 

  24. Forte, E., Barone, M. C., Brunori, M., Sarti, P., and Giuffre, A. (2002) Biochemistry, 41, 13046–13052.

    PubMed  CAS  Google Scholar 

  25. Forte, E., Scandurra, F. M., Richter, O. M. H., D’Itri, E., Sarti, P., Brunori, M., Ludvig, B., and Giuffre, A. (2004) Biochemistry, 43, 2957–2963.

    PubMed  CAS  Google Scholar 

  26. Louro, R. O., Catarino, T., Le Gall, J., Turner, D. L., and Xavier, A. V. (2001) Chem. Biochem., 2, 22–28.

    Google Scholar 

  27. Papa, S., Capitanio, N., and Capitanio, G. (2004) Biochim. Biophys. Acta, 1655, 353–364.

    PubMed  CAS  Google Scholar 

  28. Xavier, A. V. (2004) Biochim. Biophys. Acta, 1658, 23–30.

    PubMed  CAS  Google Scholar 

  29. Capitanio, N., Capitanio, G., Boffoli, D., and Papa, S. (2000) Biochemistry, 39, 15454–15461.

    PubMed  CAS  Google Scholar 

  30. Capitanio, N., Capitanio, G., Demarinis, D. A., De Nitto, E., Massari, S., and Papa, S. (1996) Biochemistry, 35, 10800–10806.

    PubMed  CAS  Google Scholar 

  31. Papa, S., Capitanio, N., Capitanio, G., and Palese, L. L. (2004) Biochim. Biophys. Acta, 1658, 95–105.

    PubMed  CAS  Google Scholar 

  32. Artzabanov, V. Y., Konstantinov, A. A., and Skulachev, V. P. (1978) FEBS Lett., 87, 180–185.

    Google Scholar 

  33. Capitanio, N., Capitanio, G., De Nitto, E., Boffoli, D., and Papa, S. (2003) Biochemistry, 42, 4607–4612.

    PubMed  CAS  Google Scholar 

  34. Traber, R., Kramer, H. E., and Hemmerich, P. (1982) Biochemistry, 21, 1687–1693.

    PubMed  CAS  Google Scholar 

  35. Verkhovsky, M. I., Morgan, J. E., and Wikstrom, M. (1995) Biochemistry, 34, 7483–7491.

    PubMed  CAS  Google Scholar 

  36. Verkhosvsky, M. I., Jasaitis, A., Verkhovskaya, M. L., Morgan, J. E., and Wikstrom, M. (1999) Nature, 400, 480–483.

    Google Scholar 

  37. Michel, H. (1999) Biochemistry, 38, 15129–15140.

    PubMed  CAS  Google Scholar 

  38. Mitchell, R., and Rich, P. R. (1994) Biochim. Biophys. Acta, 1186, 19–26.

    PubMed  CAS  Google Scholar 

  39. Ostermeier, C., Harrenga, A., Ermler, U., and Michel, H. (1997) Proc. Natl. Acad. Sci. USA, 94, 10547–10553.

    PubMed  CAS  Google Scholar 

  40. Proshlyakov, D. A., Pressler, M. A., and Babcock, G. T. (1998) Proc. Natl. Acad. Sci. USA, 95, 8020–8025.

    PubMed  CAS  Google Scholar 

  41. Budiman, K., Kannt, A., Lyubenova, S., Richter, H. O. M., Ludwig, B., Michel, H., and MacMillan, F. (2004) Biochemistry, 43, 11709–11716.

    PubMed  CAS  Google Scholar 

  42. Van Eps, N., Szundi, I., and Einarsdottir, O. (2003) Biochemistry, 42, 5065–5073.

    PubMed  Google Scholar 

  43. Ruitenberg, M., Kannt, A., Bamberg, E., Ludwig, B., Michel, H., and Fendler, K. (2000) PNAS, 97, 4632–4636.

    PubMed  CAS  Google Scholar 

  44. Verkhosvsky, M. I., Tuukkanen, A., Backgren, C., Puustinen, A., and Wikstrom, M. (2001) Biochemistry, 40, 7077–7083.

    Google Scholar 

  45. Ruitenberg, M., Kannt, A., Bamberg, E., Fendler, K., and Michel, H. (2002) Nature, 417, 99–102.

    PubMed  CAS  Google Scholar 

  46. Rich, P. R. (1995) Aust. J. Plant. Physiol., 22, 479–486.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Biokhimiya, Vol. 70, No. 2, 2005, pp. 220–230.

Original Russian Text Copyright © 2005 by Papa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papa, S. Role of cooperative H+/e Linkage (redox Bohr effect) at heme a/CuA and heme a 3/CuB in the proton pump of cytochrome c oxidase. Biochemistry (Moscow) 70, 178–186 (2005). https://doi.org/10.1007/s10541-005-0099-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10541-005-0099-y

Key words

Navigation