Skip to main content

The Neuroendocrinology, Neurochemistry and Molecular Biology of Thirst and Salt Appetite

  • Reference work entry
  • First Online:
Handbook of Neurochemistry and Molecular Neurobiology

1 Introduction

1.1 Homeostatic Reflexes and Behaviors Maintain Body Fluid Balance

The maintenance of the internal milieu requires coordinated efforts of autonomic and endocrine reflexes and behaviors. Terrestrial animals constantly lose water and sodium to the environment. Thus, the volumes and constituents of the various body fluids are always in flux. Renal losses of sodium and water are minimized by autonomic and endocrine responses [e.g., activation of the sympathetic nervous system; release of aldosterone and the antidiuretic hormone, vasopressin (VP)]. Behavioral responses include the seeking out and ingestion of water and salty substances. The consumption of water and sodium is required to replenish the body with these substances. The motivational states that drive animals to find and consume water and salty substances are thirst and salt appetite and are defined operationally by measuring their consumption under specified experimental conditions.

Homeostatic reflexes and...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A large molecular weight substance that remains in a depot in the intersitial subcompartment but that does not enter the systemic circulation or the cellular compartment.

  2. 2.

    There is a unique species specificity of renin-AGT interaction. Human renin does not cleave mouse AGT and vice versa. To enhance the formation of ANG, it is necessary to cross a mouse carrying the human renin gene with a mouse carrying the human AGT gene (i.e., produce a double transgenic model).

Abbreviations

11β-HSD:

11β-hydroxysteroid dehydrogenase

5-HT:

serotonin

8-OH-DPAT:

8-hydroxy-2-(di-n-propylamine) tetralin

ACE:

angiotensin converting enzyme

ACTH:

adrenocorticotropic hormone

ADH:

antidiuretic hormone

AdMnSOD:

adenoviral-vector encoding human mitochondrial superoxide dismutase

AGT:

angiotensinogen

ANG:

angiotensin

ANP:

atrial natriuretic peptide

AP:

area postrema

AT1 :

angiotensin Type 1

AV3V:

anteroventral third ventricle

CAP:

captopril

CeA:

amygdala

CNS:

central nervous system

CSF:

cerebrospinal fluid

CVOs:

circumventricular organs

DOCA:

deoxycorticosterone

DOI:

2,5-dimethoxy-4-iodoamphetamine bromide

ECF:

extracellular fluid compartment

FURO:

furosemide

i.p.:

intraperitoneal

ICF:

intracellular fluid compartment

icv:

intracerebroventricular

iv:

intravenously

LPBN:

lateral parabrachial nucleus

MePO:

median preoptic nucleus

Methy:

methyseride

NE:

Norepinephrine

NTS:

nucleus of the solitary tract

OT:

oxytocin

OVLT:

organum vasculosum of the lamina terminalis

PVN:

paraventricular nucleus

RAS:

renin-angiotensin system

s.c.:

subcutaneous

SAD:

sinoaortic baroreceptor denervation

SCVOs:

sensory circumventricular organs

SFO:

subfornical organ

SON:

supraoptic nucleus

TRPV1:

transient receptor potential channel, vanilloid subfamily Type 1

TRPV4:

transient receptor potential channel, vanilloid subfamily Type 4

trpv4-/-:

trpv4 null or knockout

VP:

Vasopressin

VR-OAC:

vanilloid receptor-related osmotically activated channel

References

  • Abraham SF, Baker RM, Blaine EH, Denton DA, McKinley MJ. 1975. Water drinking induced in sheep by angiotensin–a physiological or pharmacological effect? J Comp Physiol Psychol 88: 503–518.

    Article  PubMed  CAS  Google Scholar 

  • Adachi A, Niijima A, Jacobs HL. 1976. An hepatic osmoreceptor mechanism in the rat: electrophysiological and behavioral studies. Am J Physiol 231: 1043–1049.

    Article  PubMed  CAS  Google Scholar 

  • Adolph EF, Barker JP, Hoy PA. 1954. Multiple factors in thirst. Am J Physiol 178: 538–562.

    Article  PubMed  CAS  Google Scholar 

  • Alheid GF, de Olmos JS, Beltramino CA. 1985. Amygdala and extended amygdala. The Rat Nervous System, 2nd edn. editor. Paxinos G, New York: Academic Press; pp. 495–578.

    Google Scholar 

  • Andersen JL, Andersen LJ, Thrasher TN, Keil LC, Ramsay DJ. 1994. Left heart and arterial baroreceptors interact in control of plasma vasopressin, renin, and cortisol in awake dogs. Am J Physiol Regul Integr Comp Physiol 266: R879–R888.

    Article  CAS  Google Scholar 

  • Andersen LJ, Andersen JL, Thrasher TN, Keil LC, Ramsay DJ. 1995. Effect of loading right atrial and ventricular receptors on stimulated AVP, ACTH, and renin secretion in awake dogs. Am J Physiol Regul Integr Comp Physiol 268: R1069–R1077.

    Article  CAS  Google Scholar 

  • Andersson B. 1952. Polydipsia caused by intrahypothalamic injections of hypertonic NaCl solutions. Experientia 8: 157–158.

    Article  PubMed  CAS  Google Scholar 

  • Andersson B. 1971. Thirst--and brain control of water balance. Am Sci 59: 408–415.

    PubMed  CAS  Google Scholar 

  • Andersson B, McCann SM. 1955. A further study of polydipsia evoked by hypothalamic stimulation in the goat. Acta Physiol Scand 33: 333–346.

    Article  PubMed  CAS  Google Scholar 

  • Andersson B, Olsson K, Warner RG. 1967. Dissimilarities between the central control of thirst and the release of antidiuretic hormone (ADH). Acta Physiol Scand 71: 57–64.

    Article  PubMed  CAS  Google Scholar 

  • Andrade CA, Barbosa SP, De Luca LA Jr, Menani JV. 2004. Activation of alpha2-adrenergic receptors into the lateral parabrachial nucleus enhances NaCl intake in rats. Neuroscience 129: 25–34.

    Article  PubMed  CAS  Google Scholar 

  • Andrews WH, Orbach J. 1974. Sodium receptors activating some nerves of perfused rabbit livers. Am J Physiol 227: 1273–1275.

    Article  PubMed  CAS  Google Scholar 

  • Anke J, Van Eekelen M, Phillips MI. 1988. Plasma angiotensin II levels at moment of drinking during angiotensin II intravenous infusion. Am J Physiol Regul Integr Comp Physiol 255: R500–R506.

    Article  CAS  Google Scholar 

  • Antunes-Rodrigues J, McCann SM, Rogers LC, Samson WK. 1985. Atrial natriuretic factor inhibits dehydration- and angiotensin II-induced water intake in the conscious, unrestrained rat. Proc Natl Acad Sci USA 82: 8720–8723.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Atkinson J, Kaesermann HP, Lambelet J, Peters G, Peters-Haefeli L. 1979. The role of circulating renin in drinking in response to isoprenaline. J Physiol (Lond) 291: 61–73.

    Article  CAS  Google Scholar 

  • Avrith DB, Fitzsimons JT. 1980. Increased sodium appetite in the rat induced by intracranial administration of components of the renin-angiotensin system. J Physiol (Lond) 301: 349–364.

    Article  CAS  Google Scholar 

  • Bartanusz V, Jezova D. 1994. Angiotensin II induces reduced oxytocin but normal corticotropin release in rats with lesions of the subfornical organ. Fundam Clin Pharmacol 8: 539–545.

    Article  PubMed  CAS  Google Scholar 

  • Baylis C, Handa RK, Sorkin M. 1990. Glucocorticoids and control of glomerular filtration rate. Semin Nephrol 10: 320–329.

    PubMed  CAS  Google Scholar 

  • Bellin SI, Bhatnagar RK, Johnson AK. 1987a. Periventricular noradrenergic systems are critical for angiotensin-induced drinking and blood pressure responses. Brain Res 403: 105–112.

    Article  PubMed  CAS  Google Scholar 

  • Bellin SI, Landas SK, Johnson AK. 1987b. Localized injections of 6-hydroxydopamine into lamina terminalis-associated structures: effects on experimentally induced drinking and pressor responses. Brain Res 416: 75–83.

    Article  PubMed  CAS  Google Scholar 

  • Bellin SI, Landas SK, Johnson AK. 1988. Selective catecholamine depletion of structures along the ventral lamina terminalis: effects on experimentally-induced drinking and pressor responses. Brain Res 456: 9–16.

    Article  PubMed  CAS  Google Scholar 

  • Bernard C. 1856. Leçons de physiologie expérimentale appliquée à la médecine faites au Collège de France. Cours du Semestre d'été. Henri Lefèvre, editor. Paris: Baillière; pp. 49–52.

    Google Scholar 

  • Black RM, Weingarten HP, Epstein AN, Maki R, Schulkin J. 1992. Transection of the stria terminalis without damage to the medial amygdala does not alter behavioural sodium regulation in rats. Acta Neurobiol Exp (Warsz) 52: 9–15.

    CAS  Google Scholar 

  • Blackburn RE, Stricker EM, Verbalis JG. 1992a. Central oxytocin mediates inhibition of sodium appetite by naloxone in hypovolemic rats. Neuroendocrinology 56: 255–263.

    Article  PubMed  CAS  Google Scholar 

  • Blackburn RE, Stricker EM, Verbalis JG. 1994. Acute effects of ethanol on ingestive behavior in rats. Alcohol Clin Exp Res 18: 924–930.

    Article  PubMed  CAS  Google Scholar 

  • Blackburn RE, Demko AD, Hoffman GE, Stricker EM, Verbalis JG. 1992b. Central oxytocin inhibition of angiotensin-induced salt appetite in rats. Am J Physiol Regul Integr Comp Physiol 263: R1347–R1353.

    Article  CAS  Google Scholar 

  • Blackburn RE, Samson WK, Fulton RJ, Stricker EM, Verbalis JG. 1995. Central oxytocin and ANP receptors mediate osmotic inhibition of salt appetite in rats. Am J Physiol Regul Integr Comp Physiol 269: R245–R251.

    Article  CAS  Google Scholar 

  • Blaine EH, Covelli MD, Denton DA, Nelson JF, Shulkes AA. 1975. The role of ACTH and adrenal glucocorticoids in the salt appetite of wild rabbits (Oryctolagus cuniculus (L)). Endocrinology 97: 793–801.

    Article  PubMed  CAS  Google Scholar 

  • Blair-West JR, Denton DA, McBurnie MI, Weisinger RS. 1996. The effect of adrenocorticotrophic hormone on water intake in mice. Physiol Behav 60: 1053–1056.

    Article  PubMed  CAS  Google Scholar 

  • Blair-West JR, Denton DA, McKinley MJ, Weisinger RS. 1988. Angiotensin-related sodium appetite and thirst in cattle. Am J Physiol Regul Integr Comp Physiol 255: R205–R211.

    Article  CAS  Google Scholar 

  • Blair-West JR, Denton DA, McBurnie M, Tarjan E, Weisinger RS. 1995. Influence of adrenal steroid hormones on sodium appetite of Balb/c mice. Appetite 24: 11–24.

    Article  PubMed  CAS  Google Scholar 

  • Blake WD, Lin KK. 1978. Hepatic portal vein infusion of glucose and sodium solutions on the control of saline drinking in the rat. J Physiol (Lond) 274: 129–139.

    Article  CAS  Google Scholar 

  • Blass EM, Epstein AN. 1971. A lateral preoptic osmosensitive zone for thirst in the rat. J Comp Physiol Psychol 76: 378–394.

    Article  PubMed  CAS  Google Scholar 

  • Blass EM, Fitzsimons JT. 1970. Additivity of effect and interaction of a cellular and an extracellular stimulus of drinking. J Comp Physiol Psychol 70: 200–205.

    Article  PubMed  CAS  Google Scholar 

  • Bott E, Denton DA, Weller S. 1967. The effect of angiotensin II infusion, renal hypertension and nephrectomy on salt appetite of sodium-deficient sheep. Aust J Exp Biol Med Sci 45: 595–612.

    Article  PubMed  CAS  Google Scholar 

  • Bourque CW, Richard D. 2001. Axonal projections from the organum vasculosum lamina terminalis to the supraoptic nucleus: functional analysis and presynaptic modulation. Clin Exp Pharmacol Physiol 28: 570–574.

    Article  PubMed  CAS  Google Scholar 

  • Bourque CW, Oliet SH, Richard D. 1994. Osmoreceptors, osmoreception, and osmoregulation. Front Neuroendocrinol 15: 231–274.

    Article  PubMed  CAS  Google Scholar 

  • Bourque CW, Voisin DL, Chakfe Y. 2002. Stretch-inactivated cation channels: cellular targets for modulation of osmosensitivity in supraoptic neurons. Prog Brain Res 139: 85–94.

    Article  PubMed  CAS  Google Scholar 

  • Brody MJ, Johnson AK. 1980. Role of the anteroventral third ventricle region in fluid and electrolyte balance, arterial pressure regulation, and hypertension. Frontiers in Neuroendocrinology, Vol. 6. Martini L, Ganong WF, editors. New York: Raven Press; pp. 249–292.

    Google Scholar 

  • Bryant RW, Epstein AN, Fitzsimons JT, Fluharty SJ. 1980. Arousal of a specific and persistent sodium appetite in the rat with continuous intracerebroventricular infusion of angiotensin II. J Physiol (Lond) 301: 365–382.

    Article  CAS  Google Scholar 

  • Buggy J, Fisher AE. 1974. Evidence for a dual central role for angiotensin in water and sodium intake. Nature 250: 733–735.

    Article  PubMed  CAS  Google Scholar 

  • Buggy J, Fisher AE. 1976. Anteroventral third ventricle site of action for angiotensin induced thirst. Pharmacol Biochem Behav 4: 651–660.

    Article  PubMed  CAS  Google Scholar 

  • Buggy J, Johnson AK. 1977. Preoptic-hypothalamic periventricular lesions: thirst deficits and hypernatremia. Am J Physiol Regul Integr Comp Physiol 233: R44–R52.

    Article  CAS  Google Scholar 

  • Buggy J, Johnson AK. 1978. Angiotensin-induced thirst: effects of third ventricle obstruction and periventricular ablation. Brain Res 149: 117–128.

    Article  PubMed  CAS  Google Scholar 

  • Buggy J, Jonklaas J. 1984. Sodium appetite decreased by central angiotensin blockade. Physiol Behav 32: 737–742.

    Article  PubMed  CAS  Google Scholar 

  • Buggy J, Hoffman WE, Phillips MI, Fisher AE, Johnson AK. 1979. Osmosensitivity of rat third ventricle and interactions with angiotensin. Am J Physiol Regul Integr Comp Physiol 236: R75–R82.

    Article  CAS  Google Scholar 

  • Buijs RM. 1978. Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Pathways to the limbic system, medulla oblongata and spinal cord. Cell Tissue Res 192: 423–435.

    CAS  Google Scholar 

  • Burrell LM, Lambert HJ, Baylis PH. 1991. Effect of atrial natriuretic peptide on thirst and arginine vasopressin release in humans. Am J Physiol Regul Integr Comp Physiol 260: R475–R479.

    Article  CAS  Google Scholar 

  • Callera JC, Oliveira LB, Barbosa SP, Colombari DS, De Luca LA Jr. et al. 2005. GABA(A) receptor activation in the lateral parabrachial nucleus induces water and hypertonic NaCl intake. Neuroscience 134: 725–735.

    Article  PubMed  CAS  Google Scholar 

  • Cannon WB. 1918. The physiological basis of thirst. Proc Roy Soc London B 90: 283–301.

    Article  CAS  Google Scholar 

  • Chiaraviglio E. 1976. Effect of renin-angiotensin system on sodium intake. J Physiol (Lond) 255: 57–66.

    Article  CAS  Google Scholar 

  • Chiaraviglio E, Perez Guaita MF. 1984. Anterior third ventricle (A3V) lesions and homeostasis regulation. J Physiol (Paris) 79: 446–452.

    CAS  Google Scholar 

  • Ciriello J, Lawrence D, Pittman QJ. 1984. Electrophysiological identification of neurons in the parabrachial nucleus projecting directly to the hypothalamus in the rat. Brain Res 322: 388–392.

    Article  PubMed  CAS  Google Scholar 

  • Cizek LJ, Semple RE, Huang KC, Gregersen MI. 1951. Effect of extracellular electrolyte depletion on water intake in dogs. Am J Physiol 164: 415–422.

    Article  PubMed  CAS  Google Scholar 

  • Clemente CD, Sutin J, Silverstone JT. 1957. Changes in electrical activity of the medulla on the intravenous injection of hypertonic solutions. Am J Physiol 188: 193–198.

    Article  PubMed  CAS  Google Scholar 

  • Colombari DS, Menani JV, Johnson AK. 1996. Forebrain angiotensin type 1 receptors and parabrachial serotonin in the control of NaCl and water intake. Am J Physiol Regul Integr Comp Physiol 271: R1470–R1476.

    Article  CAS  Google Scholar 

  • Contreras RJ, Stetson PW. 1981. Changes in salt intake lesions of the area postrema and the nucleus of the solitary tract in rats. Brain Res 211: 355–366.

    Article  PubMed  CAS  Google Scholar 

  • Cooling MJ, Day MD. 1975. Angiotensin-induced drinking in the cat. Control of Mechanisms of Drinking. Peters G, Fitzsimons JT, Peters-Haefeli L, editors. New York: Springer-Verlag; pp. 132–137.

    Chapter  Google Scholar 

  • Corbit JD. 1968. Cellular dehydration and hypovolaemia are additive in producing thirst. Nature 218: 886–887.

    Article  Google Scholar 

  • Cunningham ET Jr, Miselis RR, Sawchenko PE. 1994. The relationship of efferent projections from the area postrema to vagal motor and brain stem catecholamine-containing cell groups: an axonal transport and immunohistochemical study in the rat. Neuroscience 58: 635–648.

    Article  PubMed  Google Scholar 

  • Cunningham JT, Johnson AK. 1989. Decreased norepinephrine in the ventral lamina terminalis region is associated with angiotensin II drinking response deficits following local 6-hydroxydopamine injections. Brain Res 480: 65–71.

    Article  PubMed  CAS  Google Scholar 

  • Cushny AR. 1926. The Secretion of the Urine. London: Longmans Green; pp. 135–137.

    Google Scholar 

  • Daniels D, Fluharty SJ. 2004. Salt appetite: a neurohormonal viewpoint. Physiol Behav 81: 319–337.

    Article  PubMed  CAS  Google Scholar 

  • Darrow DC, Yannet H. 1935. The changes in the distribution of body water accompanying increase and decrease in extracellular electrolyte. J Clin Invest 14: 266–275.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Darrow DC, Yannet H. 1936. Metabolic studies of the changes in body electrolyte and distribution of body water induced experimentally by deficit of extracellular electrolyte. J Clin Invest 15: 419–427.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Davisson RL, Oliverio MI, Coffman TM, Sigmund CD. 2000. Divergent functions of angiotensin II receptor isoforms in the brain. J Clin Invest 106: 103–106.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Davisson RL, Yang G, Beltz TG, Cassell MD, Johnson AK, et al. 1998. The brain renin-angiotensin system contributes to the hypertension in mice containing both the human renin and human angiotensinogen transgenes. Circ Res 83: 1047–1058.

    Article  PubMed  CAS  Google Scholar 

  • de Bold AJ, Borenstein HB, Veress AT, Sonnenberg H. 1981. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Life Sci 28: 89–94.

    Article  PubMed  CAS  Google Scholar 

  • De Castro e Silva E, Fregoneze JB, Johnson AK. 2006. Corticotropin-releasing hormone in the lateral parabrachial nucleus inhibits sodium appetite in rats. Am J Physiol Regul Integr Comp Physiol 290: R1136–R1141.

    Article  PubMed  CAS  Google Scholar 

  • De Gobbi JIF, De Luca LA Jr, Menani JV. 2000. Serotonergic mechanisms of the lateral parabrachial nucleus on DOCA-induced sodium intake. Brain Res 880: 131–138.

    Article  PubMed  CAS  Google Scholar 

  • De Gobbi JIF, De Luca LA Jr, Johnson AK, Menani JV. 2001. Interaction of serotonin and cholecystokinin in the lateral parabrachial nucleus to control sodium intake. Am J Physiol Regul Integr Comp Physiol 280: R1301–R1307.

    Article  CAS  Google Scholar 

  • De Gobbi JIF, Barbosa SP, De Luca LA Jr, Thunhorst RL, Johnson AK, et al. 2005. Activation of serotonergic 5-HT(1A) receptors in the lateral parabrachial nucleus increases NaCl intake. Brain Res 1066: 1–9.

    Article  PubMed  CAS  Google Scholar 

  • de Kloet ER, Vreugdenhil E, Oitzl MS, Joels M. 1998. Brain corticosteroid receptor balance in health and disease. Endocr Rev 19: 269–301.

    PubMed  CAS  Google Scholar 

  • De Luca LA Jr, Barbosa SP, Menani JV. 2003. Brain serotonin blockade and paradoxical salt intake in rats. Neuroscience 121: 1055–1061.

    Article  PubMed  CAS  Google Scholar 

  • De Luca LA Jr, Galaverna O, Schulkin J, Yao SZ, Epstein AN. 1992. The anteroventral wall of the third ventricle and the angiotensinergic component of need-induced sodium intake in the rat. Brain Res Bull 28: 73–87.

    Article  PubMed  Google Scholar 

  • De Nicola AF, Seltzer A, Tsutsumi K, Saavedra JM. 1993. Effects of deoxycorticosterone acetate (DOCA) and aldosterone on Sar1-angiotensin II binding and angiotensin-converting enzyme binding sites in brain. Cell Mol Neurobiol 13: 529–539.

    Article  PubMed  CAS  Google Scholar 

  • de Olmos J, Alheid GF, Beltramino CA. 1985. Amygdala. The Rat Nervous System, Volume 1, Forebrain and Midbrain. Paxinos G, editor. Orlando: Academic Press; pp. 223–334.

    Google Scholar 

  • Denton D. 1982. The Hunger for Salt. New York: Springer-Verlag.

    Google Scholar 

  • Denton DA, Blair-West JR, McBurnie M, Osborne PG, Tarjan E, et al. 1990. Angiotensin and salt appetite of BALB/c mice. Am J Physiol Regul Integr Comp Physiol 259: R729–R735.

    Article  CAS  Google Scholar 

  • Denton DA, Blair-West JR, McBurnie MI, Miller JA, Weisinger RS, et al. 1999. Effect of adrenocorticotrophic hormone on sodium appetite in mice. Am J Physiol Regul Integr Comp Physiol 277: R1033–R1040.

    Article  CAS  Google Scholar 

  • DiBona GF. 1982. The functions of the renal nerves. Rev Physiol Biochem Pharmacol 94: 75–181.

    Article  Google Scholar 

  • Diereckx K. 1963. The subfornical organ, a specialized osmoreceptor. Naturwissenschaften 50: 163–164.

    Article  Google Scholar 

  • Dill DB. 1938. Life, Heat, and Altitude. Cambridge: Harvard University Press.

    Book  Google Scholar 

  • Edwards GL, Johnson AK. 1991. Enhanced drinking after excitotoxic lesions of the parabrachial nucleus in the rat. Am J Physiol Regul Integr Comp Physiol 261: R1039–R1044.

    Article  CAS  Google Scholar 

  • Edwards GL, Ritter RC. 1982. Area postrema lesions increase drinking to angiotensin and extracellular dehydration. Physiol Behav 29: 943–947.

    Article  PubMed  CAS  Google Scholar 

  • Edwards GL, Beltz TG, Power JD, Johnson AK. 1993. Rapid-onset “need-free” sodium appetite after lesions of the dorsomedial medulla. Am J Physiol Regul Integr Comp Physiol 264: R1242–R1247.

    Article  CAS  Google Scholar 

  • Epstein AN. 1973. Epilogue: retrospect and prognosis. The Neuropsychology of Thirst: New Findings and Advances in Concepts. Epstein AN, Kissileff HR, Stellar E, editors. Washington DC: VH Winston; pp. 315–332.

    Google Scholar 

  • Epstein AN. 1982. Mineralocorticoids and cerebral angiotensin may act together to produce sodium appetite. Peptides 3: 493–494.

    Article  PubMed  CAS  Google Scholar 

  • Epstein AN. 1984. The dependence of the salt appetite of the rat on the hormonal consequences of sodium deficiency. J Physiol (Paris) 79: 496–498.

    CAS  Google Scholar 

  • Epstein AN, Fitzsimons JT, Rolls BJ. 1970. Drinking induced by injection of angiotensin into the brain of the rat. J Physiol (Lond) 210: 457–474.

    Article  CAS  Google Scholar 

  • Evered MD. 1992. Investigating the role of angiotensin II in thirst: interactions between arterial pressure and the control of drinking. Can J Physiol Pharmacol 70: 791–797.

    Article  PubMed  CAS  Google Scholar 

  • Evered MD, Robinson MM, Rose PA. 1988. Effect of arterial pressure on drinking and urinary responses to angiotensin II. Am J Physiol Regul Integr Comp Physiol 254: R69–R74.

    Article  CAS  Google Scholar 

  • Falk JL. 1961. The behavioral regulation of water-electrolyte balance. Nebraska Symposium on Motivation. Jones MR, editor. Lincoln: University of Nebraska Press; pp. 1–37.

    Google Scholar 

  • Falk JL. 1965. Water intake and NaCl appetite in sodium depletion. Psychol Rev 16: 315–325.

    CAS  Google Scholar 

  • Falk JL. 1966. Serial sodium depletion and NaCl solution. Physiol Behav 1: 75–77.

    Article  CAS  Google Scholar 

  • Ferguson AV, Kasting NW. 1987. Activation of subfornical organ efferents stimulates oxytocin secretion in the rat. Regul Pept 18: 93–100.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson AV, Kasting NW. 1988. Angiotensin acts at the subfornical organ to increase plasma oxytocin concentrations in the rat. Regul Pept 23: 343–352.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson AV, Renaud LP. 1986. Systemic angiotensin acts at subfornical organ to facilitate activity of neurohypophysial neurons. Am J Physiol Regul Integr Comp Physiol 251: R712–R717.

    Article  CAS  Google Scholar 

  • Ferrari P. 2003. Cortisol and the renal handling of electrolytes: role in glucocorticoid-induced hypertension and bone disease. Baillieres Best Pract Res Clin Endocrinol Metab 17: 575–589.

    Article  CAS  Google Scholar 

  • Ferrario CM, Gildenberg PL, McCubbin JW. 1972. Cardiovascular effects of angiotensin mediated by the central nervous system. Circ Res 30: 257–262.

    Article  PubMed  CAS  Google Scholar 

  • Findlay AL, Epstein AN. 1980. Increased sodium intake is somehow induced in rats by intravenous angiotensin II. Horm Behav 14: 86–92.

    Article  PubMed  CAS  Google Scholar 

  • Fischer-Ferraro C, Nahmod VE, Goldstein DJ, Finkielman S. 1971. Angiotensin and renin in rat and dog brain. J Exp Med 133: 353–361.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fisher AE. 1973. Relationships between cholinergic and other dipsogens in the central mediation of thirst. The Neuropsychology of Thirst: New Findings and Advances in Concepts. Epstein AN, Kissileff HR, Stellar E, editors. Washington DC: VH Winston & Sons; pp. 243–278.

    Google Scholar 

  • Fisher AE, Coury JN. 1962. Cholinergic tracing of a central neural circuit underlying the thirst drive. Science 138: 691–693.

    Article  PubMed  CAS  Google Scholar 

  • Fitts DA. 1991. Effects of lesions of the ventral ventral median preoptic nucleus or subfornical organ on drinking and salt appetite after deoxycorticosterone acetate or yohimbine. Behav Neurosci 105: 721–726.

    Article  PubMed  CAS  Google Scholar 

  • Fitts DA, Freece JA, Van Bebber JE, Zierath DK, Bassett JE. 2004. Effects of forebrain circumventricular organ ablation on drinking or salt appetite after sodium depletion or hypernatremia. Am J Physiol Regul Integr Comp Physiol 287: R1325–R1334.

    Article  PubMed  CAS  Google Scholar 

  • Fitts DA, Masson DB. 1989. Forebrain sites of action for drinking and salt appetite to angiotensin or captopril. Behav Neurosci 103: 865–872.

    Article  PubMed  CAS  Google Scholar 

  • Fitts DA, Masson DB. 1990. Preoptic angiotensin and salt appetite. Behav Neurosci 104: 643–650.

    Article  PubMed  CAS  Google Scholar 

  • Fitts DA, Thunhorst RL. 1996. Rapid elicitation of salt appetite by an intravenous infusion of angiotensin II in rats. Am J Physiol Regul Integr Comp Physiol 270: R1092–R1098.

    Article  CAS  Google Scholar 

  • Fitts DA, Thunhorst RL, Simpson JB. 1985a. Diuresis and reduction of salt appetite by lateral ventricular infusions of atriopeptin II. Brain Res 348: 118–124.

    Article  PubMed  CAS  Google Scholar 

  • Fitts DA, Thunhorst RL, Simpson JB. 1985b. Modulation of salt appetite by lateral ventricular infusions of angiotensin II and carbachol during sodium depletion. Brain Res 346: 273–280.

    Article  PubMed  CAS  Google Scholar 

  • Fitts DA, Tjepkes DS, Bright RO. 1990. Salt appetite and lesions of the ventral part of the ventral median preoptic nucleus. Behav Neurosci 104: 818–827.

    Article  PubMed  CAS  Google Scholar 

  • Fitzsimons JT. 1961. Drinking by rats depleted of body fluid without increase in osmotic pressure. J Physiol (Lond) 159: 297–309.

    Article  CAS  Google Scholar 

  • Fitzsimons JT. 1964. Drinking caused by constriction of the inferior vena cava in the rat. Nature 204: 479–480.

    Article  PubMed  CAS  Google Scholar 

  • Fitzsimons JT. 1966. Hypovolaemic drinking and renin. J Physiol (Lond) 186: 130P–131P.

    CAS  Google Scholar 

  • Fitzsimons JT. 1969a. Effect of nephrectomy on the additivity of certain stimuli of drinking in the rat. J Comp Physiol Psychol 68: 308–314.

    Article  PubMed  CAS  Google Scholar 

  • Fitzsimons JT. 1969b. The role of a renal thirst factor in drinking induced by extracellular stimuli. J Physiol (Lond) 201: 349–368.

    Article  CAS  Google Scholar 

  • Fitzsimons JT. 1972. Thirst. Physiol Rev 52: 468–561.

    Article  PubMed  CAS  Google Scholar 

  • Fitzsimons JT. 1973. Some historical perspectives in the physiology of thirst. The Neuropsychology of Thirst: New Findings and Advances in Concepts. Epstein AN, Kissileff HR, Stellar E, editors. Washington DC: VH Winston; pp. 3–33.

    Google Scholar 

  • Fitzsimons JT. 1975. The renin-angiotensin system and drinking behavior. Prog Brain Res 42: 215–233.

    Article  PubMed  CAS  Google Scholar 

  • Fitzsimons JT. 1979. The Physiology of Thirst and Sodium Appetite. Cambridge: Cambridge University Press.

    Google Scholar 

  • Fitzsimons JT. 1980. Angiotensin and other peptides in the control of water and sodium intake. Proc R Soc Lond B Biol Sci 210: 165–182.

    Article  PubMed  CAS  Google Scholar 

  • Fitzsimons JT. 1998. Angiotensin, thirst, and sodium appetite. Physiol Rev 78: 583–686.

    Article  PubMed  CAS  Google Scholar 

  • Fitzsimons JT, Elfont RM. 1982. Angiotensin does contribute to drinking induced by caval ligation in rat. Am J Physiol Regul Integr Comp Physiol 243: R558–R562.

    Article  CAS  Google Scholar 

  • Fitzsimons JT, Moore-Gillon MJ. 1980. Drinking and antidiuresis in response to reductions in venous return in the dog: neural and endocrine mechanisms. J Physiol (Lond) 308: 403–416.

    Article  CAS  Google Scholar 

  • Fitzsimons JT, Oatley K. 1968. Additivity of stimuli for drinking in rats. J Comp Physiol Psychol 66: 450–455.

    Article  PubMed  CAS  Google Scholar 

  • Fitzsimons JT, Simons BJ. 1969. The effect on drinking in the rat of intravenous infusion of angiotensin, given alone or in combination with other stimuli of thirst. J Physiol (Lond) 203: 45–57.

    Article  CAS  Google Scholar 

  • Fitzsimons JT, Stricker EM. 1971. Sodium appetite and the renin-angiotensin system. Nat New Biol 231: 58–60.

    Article  PubMed  CAS  Google Scholar 

  • Fitzsimons JT, Wirth JB. 1978. The renin-angiotensin system and sodium appetite. J Physiol (Lond) 274: 63–80.

    Article  CAS  Google Scholar 

  • Fluharty SJ. 2002. Neuroendocrinology of body fluid homeostasis. Hormones, Brain, and Behavior. Pfaff DW, Arnold A, Etgen A, Fahrbach S, Rubin R, editors. Boston: Academic Press; pp. 525–570.

    Chapter  Google Scholar 

  • Fluharty SJ, Epstein AN. 1983. Sodium appetite elicited by intracerebroventricular infusion of angiotensin II in the rat: II. Synergistic interaction with systemic mineralocorticoids. Behav Neurosci 97: 746–758.

    Article  PubMed  CAS  Google Scholar 

  • Fluharty SJ, Manaker S. 1983. Sodium appetite elicited by intracerebroventricular infusion of angiotensin II in the rat: I. Relation to urinary sodium excretion. Behav Neurosci 97: 738–745.

    Article  PubMed  CAS  Google Scholar 

  • Fluharty SJ, Sakai RR. 1995. Behavioral and cellular analysis of adrenal steroid and angiotensin interactions mediating salt appetite. Progress in Psychobiology and Physiological Psychology. Fluharty SJ, Morrison AR, Sprague JM, Stellar E, editors. San Diego: Academic Press; pp. 177–212.

    Google Scholar 

  • Flynn FW, Kirchner TR, Clinton ME. 2002. Brain vasopressin and sodium appetite. Am J Physiol Regul Integr Comp Physiol 282: R1236–R1244.

    Article  PubMed  CAS  Google Scholar 

  • Franchini LF, Johnson AK, de Olmos J, Vivas L. 2002. Sodium appetite and Fos activation in serotonergic neurons. Am J Physiol Regul Integr Comp Physiol 282: R235–R243.

    Article  PubMed  CAS  Google Scholar 

  • Fregly MJ, Rowland NE. 1985. Role of renin-angiotensin-aldosterone system in NaCl appetite of rats. Am J Physiol Regul Integr Comp Physiol 248: R1–R11.

    Article  CAS  Google Scholar 

  • Fregly MJ, Waters IW. 1966. Effect of mineralocorticoids on spontaneous sodium chloride appetite of adrenalectomized rats. Physiol Behav 1: 65–74.

    Article  CAS  Google Scholar 

  • Fregly MJ, Kelleher DL, Greenleaf JE. 1981. Antidipsogenic effect of clonidine on angiotensin II-, hypertonic saline-, pilocarpine- and dehydration-induced water intakes. Brain Res Bull 7: 661–664.

    Article  PubMed  CAS  Google Scholar 

  • Fulwiler CE, Saper CB. 1984. Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat. Brain Res 319: 229–259.

    Article  PubMed  CAS  Google Scholar 

  • Galaverna O, De Luca LA Jr, Schulkin J, Yao SZ, Epstein AN. 1992. Deficits in NaCl ingestion after damage to the central nucleus of the amygdala in the rat. Brain Res Bull 28: 89–98.

    Article  PubMed  CAS  Google Scholar 

  • Galaverna OG, Seeley RJ, Berridge KC, Grill HJ, Epstein AN, et al. 1993. Lesions of the central nucleus of the amygdala. I: Effects on taste reactivity, taste aversion learning and sodium appetite. Behav Brain Res 59: 11–17.

    Article  PubMed  CAS  Google Scholar 

  • Ganesan R, Sumners C. 1989. Glucocorticoids potentiate the dipsogenic action of angiotensin II. Brain Res 499: 121–130.

    Article  PubMed  CAS  Google Scholar 

  • Ganong WF. 2005. Review of Medical Physiology. New York: McGraw-Hill.

    Google Scholar 

  • Ganten D, Marquez-Julio A, Granger P, Hayduk K, Karsunky KP, et al. 1971a. Renin in dog brain. Am J Physiol Regul Integr Comp Physiol 221: 1733–1737.

    CAS  Google Scholar 

  • Ganten D, Minnich JL, Granger P, Hayduk K, Brecht HM, et al. 1971b. Angiotensin-forming enzyme in brain tissue. Science 173: 64–65.

    Article  PubMed  CAS  Google Scholar 

  • Gardiner SM, Bennett T. 1986. Pressor contributions from angiotensin and vasopressin after polyethylene glycol. Am J Physiol Regul Integr Comp Physiol 251: R769–R774.

    Article  CAS  Google Scholar 

  • Geerling JC, Kawata M, Loewy AD. 2006b. Aldosterone-sensitive neurons in the rat central nervous system. J Comp Neurol 494: 515–527.

    Article  PubMed  Google Scholar 

  • Geerling JC, Engeland WC, Kawata M, Loewy AD. 2006a. Aldosterone target neurons in the nucleus tractus solitarius drive sodium appetite. J Neurosci 26: 411–417.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gilman A. 1934. Experimental sodium loss analogous to adrenal insufficiency: the resulting water shift and sensitivity to hemorrhage. Am J Physiol 108: 662–669.

    Article  CAS  Google Scholar 

  • Gilman A. 1937. The relation between blood osmotic pressure, fluid distribution and voluntary water intake. Am J Physiol 120: 323–328.

    Article  CAS  Google Scholar 

  • Gregersen MI. 1941. Total water balance: thirst, dehydration and water intoxication. MacLeod's Physiology in Modern Medicine. Bard P, editor. St. Louis: CV Mosby Co; pp. 1072–1083.

    Google Scholar 

  • Grob M, Drolet G, Mouginot D. 2004. Specific Na+ sensors are functionally expressed in a neuronal population of the median preoptic nucleus of the rat. J Neurosci 24: 3974–3984.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Grossman SP. 1960. Eating or drinking elicited by direct adrenergic or cholinergic stimulation of hypothalamus. Science 132: 301–302.

    Article  PubMed  CAS  Google Scholar 

  • Grossman SP. 1962. Direct adrenergic and cholinergic stimulation of hypothalamic mechanisms. Am J Physiol 202: 872–882.

    Article  PubMed  CAS  Google Scholar 

  • Grossman SP. 1967. Physiological mechanisms of thirst. A Textbook of Physiological Psychology. Grossman SP, editor. New York: John Wiley & Sons, Inc; pp. 395–445.

    Google Scholar 

  • Haberich FJ. 1968. Osmoreception in the portal circulation. Fed Proc 27: 1137–1141.

    PubMed  CAS  Google Scholar 

  • Haller, Albrecht von. 1747. Primae lineae physiologiae in usum praelectionem academicarum Göttingen.

    Google Scholar 

  • Harland D, Gardiner SM, Bennett T. 1988. Cardiovascular and dipsogenic effects of angiotensin II administered i.c.v. in Long-Evans and Brattleboro rats. Brain Res 455: 58–64.

    Article  PubMed  CAS  Google Scholar 

  • Hein L, Barsh GS, Pratt RE, Dzau VJ, Kobilka BK. 1995. Behavioural and cardiovascular effects of disrupting the angiotensin II type-2 receptor in mice. Nature 377: 744–747.

    Article  PubMed  CAS  Google Scholar 

  • Hiyama TY, Watanabe E, Okado H, Noda M. 2004. The subfornical organ is the primary locus of sodium-level sensing by Na(x) sodium channels for the control of salt-intake behavior. J Neurosci 24: 9276–9281.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hiyama TY, Watanabe E, Ono K, Inenaga K, Tamkun MM, et al. 2002. Na(x) channel involved in CNS sodium-level sensing. Nat Neurosci 5: 511–512.

    Article  PubMed  CAS  Google Scholar 

  • Holmes JH. 1960. Mechanisms producing the hyponatremic syndrome. Edema, Mechanisms and Management. Moyer JH, Fuchs M, editors. Philadelphia: WB Saunders Co; pp. 166–171.

    Google Scholar 

  • Holmes JH, Cizek LJ. 1951. Observations on sodium chloride depletion in the dog. Am J Physiol 164: 407–414.

    Article  PubMed  CAS  Google Scholar 

  • Holmes JH, Montgomery AV. 1951. Observations on relation of hemorrhage to thirst. Am J Physiol 167: 796.

    Google Scholar 

  • Holmes JH, Montgomery AV. 1953. Thirst as a symptom. Am J Med Sci 225: 281–286.

    Article  PubMed  CAS  Google Scholar 

  • Holstege G, Meiners L, Tan K. 1985. Projections of the bed nucleus of the stria terminalis to the mesencephalon, pons, and medulla oblongata in the cat. Exp Brain Res 58: 379–391.

    Article  PubMed  CAS  Google Scholar 

  • Honda K, Negoro H, Dyball RE, Higuchi T, Takano S. 1990. The osmoreceptor complex in the rat: evidence for interactions between the supraoptic and other diencephalic nuclei. J Physiol (Lond) 431: 225–241.

    Article  CAS  Google Scholar 

  • Hosutt JA, Rowland N, Stricker EM. 1981. Impaired drinking responses of rats with lesions on the subfornical organ. J Comp Physiol Psychol 95: 104–113.

    Article  PubMed  CAS  Google Scholar 

  • Hsiao S, Epstein AN. 1973. Additivity of dipsogens: angiotensin plus cell dehydration. Fed Proc 32: 384.

    Google Scholar 

  • Hsiao S, Epstein AN, Camardo JS. 1977. The dipsogenic potency of peripheral angiotensin II. Horm Behav 8: 129–140.

    Article  PubMed  CAS  Google Scholar 

  • Huang KC. 1955. Effect of salt depletion and fasting on water exchange in the rabbit. Am J Physiol 181: 609–615.

    Article  PubMed  CAS  Google Scholar 

  • Hyde TM, Miselis RR. 1984. Area postrema and adjacent nucleus of the solitary tract in water and sodium balance. Am J Physiol Regul Integr Comp Physiol 247: R173–R182.

    Article  CAS  Google Scholar 

  • Jewell PA, Verney EB. 1957. An experimental attempt to determine the site of the neurohypophysial osmoreceptors in the dog. Philos Trans R Soc Lond B 240: 197–324.

    Article  Google Scholar 

  • Jhamandas JH, Harris KH, Petrov T, Krukoff TL. 1992. Characterization of the parabrachial input to the hypothalamic paraventricular nucleus in the rat. J Neuroendocrinol 4: 461–471.

    Article  PubMed  CAS  Google Scholar 

  • Jhamandas JH, Petrov T, Harris KH, Vu T, Krukoff TL. 1996. Parabrachial nucleus projection to the amygdala in the rat: electrophysiological and anatomical observations. Brain Res Bull 39: 115–126.

    Article  PubMed  CAS  Google Scholar 

  • Johnson AK. 1985a. Role of the periventricular tissue surrounding the anteroventral third ventricle (AV3V) in the regulation of body fluid homeostasis. Vasopressin. Schrier RW, editor. New York: Raven Press; pp. 319–331.

    Google Scholar 

  • Johnson AK. 1985b. The periventricular anteroventral third ventricle (AV3V): its relationship with the subfornical organ and neural systems involved in maintaining body fluid homeostasis. Brain Res Bull 15: 595–601.

    Article  PubMed  CAS  Google Scholar 

  • Johnson AK. 1990. Brain mechanisms in the control of body fluid homeostasis. Perspectives in Exercise Science and Sports Medicine: Fluid Homeostasis During Exercise. Gisolfi CV, Lamb DR, editors. Carmel: Benchmark Press; pp. 347–419.

    Google Scholar 

  • Johnson AK, Buggy J. 1978. Periventricular preoptic-hypothalamus is vital for thirst and normal water economy. Am J Physiol Regul Integr Comp Physiol 234: R122–R129.

    Article  CAS  Google Scholar 

  • Johnson AK, Buggy J. 1977. A critical analysis of the site of action for the diposgenic effect of angiotensin II. Central Actions of Angiotensin and Related Hormones. Buckley JP, Ferrario CM, Lokhandwala MF, editors. New York: Pergamon Press; pp. 357–386.

    Chapter  Google Scholar 

  • Johnson AK, Cunningham JT, Thunhorst RL. 1996. Integrative role of the lamina terminalis in the regulation of cardiovascular and body fluid homeostasis. Clin Exp Pharmacol Physiol 23: 183–191.

    Article  PubMed  CAS  Google Scholar 

  • Johnson AK, de Olmos J, Pastuskovas CV, Zardetto-Smith AM, Vivas L. 1999. The extended amygdala and salt appetite. Ann NY Acad Sci 877: 258–280.

    Article  PubMed  CAS  Google Scholar 

  • Johnson AK, Edwards GL. 1990. The neuroendocrinology of thirst: afferent signaling and mechanisms of central integration. Current Topics in Neuroendocrinology, Vol. 10. Pfaff DW, Ganten D, editors. Heidelberg: Springer-Verlag; pp. 149–190.

    Google Scholar 

  • Johnson AK, Edwards GL. 1991. Central projections of osmotic and hypovolaemic signals in homeostatic thirst. Thirst. Ramsay DJ, Booth DA, editors. London: Springer-Verlag; pp. 149–175.

    Chapter  Google Scholar 

  • Johnson AK, Epstein AN. 1975. The cerebral ventricles as the avenue for the dipsogenic action of intracranial angiotensin. Brain Res 86: 399–418.

    Article  PubMed  CAS  Google Scholar 

  • Johnson AK, Gross PM. 1993. Sensory circumventricular organs and brain homeostatic pathways. FASEB J 7: 678–686.

    Article  PubMed  CAS  Google Scholar 

  • Johnson AK, Hoffman WE, Buggy J. 1978. Attenuated pressor responses to intracranially injected stimuli and altered antidiuretic activity following preoptic-hypothalamic periventricular ablation. Brain Res 157: 161–166.

    Article  PubMed  CAS  Google Scholar 

  • Johnson AK, Mann JF, Rascher W, Johnson JK, Ganten D. 1981. Plasma angiotensin II concentrations and experimentally induced thirst. Am J Physiol Regul Integr Comp Physiol 240: R229–R234.

    Article  CAS  Google Scholar 

  • Johnson AK, Phillips MI, Mohring J, Ganten D. 1977. Angiotensin-induced drinking in rats wth hereditary hypothalamic diabetes insipidus. Neurosci Lett 4: 327–330.

    Article  PubMed  CAS  Google Scholar 

  • Johnson AK, Thunhorst RL. 1995. Sensory mechanisms in the behavioral control of body fluid balance: thirst and salt appetite. Prog Psychobiol Physiol Psychol 16: 145–176.

    PubMed  CAS  Google Scholar 

  • Johnson AK, Thunhorst RL. 1997. The neuroendocrinology of thirst and salt appetite: visceral sensory signals and mechanisms of central integration. Front Neuroendocrinol 18: 292–353.

    Article  PubMed  CAS  Google Scholar 

  • Johnson AK, Wilkin LD. 1987. The lamina terminalis. Circumventricular Organs and Body Fluids. Gross P, editor. Boca Raton: CRC Press; pp. 125–141.

    Google Scholar 

  • Johnston JB. 1923. Further contributions to the study of the evolution of the forebrain. J Comp Neurol 35: 337–481.

    Article  Google Scholar 

  • Joy MD, Lowe RD. 1970. Evidence that the area postrema mediates the central cardiovascular response to angiotensin II. Nature 228: 1303–1304.

    Article  PubMed  CAS  Google Scholar 

  • Kadekaro M, Creel M, Terrell ML, Lekan HA, Gary HE Jr, et al. 1989. Effects of sinoaortic denervation on glucose utilization in the subfornical organ and pituitary neural lobe during administration of angiotensin II. Peptides 10: 103–108.

    Article  PubMed  CAS  Google Scholar 

  • Kaufman S. 1984. Role of right atrial receptors in the control of drinking in the rat. J Physiol (Lond) 349: 389–396.

    Article  CAS  Google Scholar 

  • Kerpel-Fronius E. 1935. über die Beziehungen zwischen Salz- and Wasserhaushalt bei experimentellen Wasserverlusten. Z Kinderheilkd 57: 489–504.

    Article  CAS  Google Scholar 

  • King SJ, Harding JW, Moe KE. 1988. Elevated salt appetite and brain binding of angiotensin II in mineralocorticoid-treated rats. Brain Res 448: 140–149.

    Article  PubMed  CAS  Google Scholar 

  • Klingbeil CK, Brooks VL, Quillen EW Jr, Reid IA. 1991. Effect of baroreceptor denervation on stimulation of drinking by angiotensin II in conscious dogs. Am J Physiol 260: E333–E337.

    PubMed  CAS  Google Scholar 

  • Kosten T, Contreras RJ, Stetson PW, Ernest MJ. 1983. Enhanced saline intake and decreased heart rate after area postrema ablations in rat. Physiol Behav 31: 777–785.

    Article  PubMed  CAS  Google Scholar 

  • Kraly FS, Kim YM, Dunham LM, Tribuzio RA. 1995. Drinking after intragastric NaCl without increase in systemic plasma osmolality in rats. Am J Physiol Regul Integr Comp Physiol 269: R1085–R1092.

    Article  CAS  Google Scholar 

  • Krause JE, Chirgwin JM, Carter MS, Xu ZS, Hershey AD. 1987. Three rat preprotachykinin mRNAs encode the neuropeptides substance P and neurokinin A. Proc Natl Acad Sci USA 84: 881–885.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Krukoff TL, Harris KH, Jhamandas JH. 1993. Efferent projections from the parabrachial nucleus demonstrated with the anterograde tracer Phaseolus vulgaris leucoagglutinin. Brain Res Bull 30: 163–172.

    Article  PubMed  CAS  Google Scholar 

  • Kucharczyk J. 1988. Inhibition of angiotensin-induced water intake following hexamethonium pretreatment in the dog. Eur J Pharmacol 148: 213–219.

    Article  PubMed  CAS  Google Scholar 

  • Lança AJ, D. van der Kooy 1985. A serotonin-containing pathway from the area postrema to the parabrachial nucleus in the rat. Neuroscience 14: 1117–1126.

    Article  PubMed  Google Scholar 

  • Levin ER, Gardner DG, Samson WK. 1998. Natriuretic peptides. N Engl J Med 339: 321–328.

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Iwai M, Wu L, Shiuchi T, Jinno T, et al. 2003. Role of AT2 receptor in the brain in regulation of blood pressure and water intake. Am J Physiol Heart Circ Physiol 284: H116–H121.

    Article  PubMed  CAS  Google Scholar 

  • Liedtke W, Friedman JM. 2003. Abnormal osmotic regulation in trpv4-/- mice. Proc Natl Acad Sci USA 100: 13698–13703.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liedtke W, Choe Y, Marti-Renom MA, Bell AM, Denis CS, et al. 2000. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103: 525–535.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lind RW. 1988. Angiotensin and the lamina terminalis: illustrations of a complex unity. Clin Exp Hypertens A 10 Suppl 1: 79–105.

    PubMed  Google Scholar 

  • Lind RW, Johnson AK. 1983. A further characterization of the effects of AV3V lesions on ingestive behavior. Am J Physiol Regul Integr Comp Physiol 245: R83–R90.

    Article  CAS  Google Scholar 

  • Lind RW, Thunhorst RL, Johnson AK. 1984. The subfornical organ and the integration of multiple factors in thirst. Physiol Behav 32: 69–74.

    Article  PubMed  CAS  Google Scholar 

  • Loewy AD, Burton H. 1978. Nuclei of the solitary tract: efferent projections to the lower brain stem and spinal cord of the cat. J Comp Neurol 181: 421–449.

    Article  PubMed  CAS  Google Scholar 

  • Ma LY, McEwen BS, Sakai RR, Schulkin J. 1993. Glucocorticoids facilitate mineralocorticoid-induced sodium intake in the rat. Horm Behav 27: 240–250.

    Article  PubMed  CAS  Google Scholar 

  • MacDonald MR, McCourt DW, Krause JE, MacDonald MR, McCourt DW, et al. 1988. Posttranslational processing of alpha-, beta-, and gamma-preprotachykinins. Cell-free translation and early posttranslational processing events. J Biol Chem 263: 15176–15183.

    Article  PubMed  CAS  Google Scholar 

  • MacGregor GA, de Wardener HE. 1998. Salt, Diet and Health. Cambridge: Cambridge University Press.

    Google Scholar 

  • Maggi CA, Giuliani S, Santicioli P, Regoli D, Meli A. 1987. Peripheral effects of neurokinins: functional evidence for the existence of multiple receptors. J Auton Pharmacol 7: 11–32.

    Article  PubMed  CAS  Google Scholar 

  • Malmo RB, Mundl WJ. 1975. Osmosensitive neurons in the rat's preoptic area: medial-lateral comparison. J Comp Physiol Psychol 88: 161–175.

    Article  PubMed  CAS  Google Scholar 

  • Mann JF, Johnson AK, Ganten D. 1980. Plasma angiotensin II: dipsogenic levels and angiotensin-generating capacity of renin. Am J Physiol Regul Integr Comp Physiol 238: R372–R377.

    Article  CAS  Google Scholar 

  • Marriott HL. 1950. Water and Salt Depletion. Springfield: Charles C. Thomas.

    Google Scholar 

  • Masson DB, Fitts DA. 1989. Subfornical organ connectivity and drinking to captopril or carbachol in rats. Behav Neurosci 103: 873–880.

    Article  PubMed  CAS  Google Scholar 

  • Mason WT. 1980. Supraoptic neurones of rat hypothalamus are osmosensitive. Nature 287: 154–157.

    Article  PubMed  CAS  Google Scholar 

  • Massi M, Epstein AN. 1990. Angiotensin/aldosterone synergy governs the salt appetite of the pigeon. Appetite 14: 181–192.

    Article  PubMed  CAS  Google Scholar 

  • Massi M, Gentili L, Perfumi M, de Caro G, Schulkin J. 1990. Inhibition of salt appetite in the rat following injection of tachykinins into the medial amygdala. Brain Res 513: 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Massi M, Perfumi M, de Caro G, Epstein AN. 1988a. Inhibitory effect of kassinin on salt intake induced by different natriorexigenic treatments in the rat. Brain Res 440: 232–242.

    Article  PubMed  CAS  Google Scholar 

  • Massi M, Polidori C, Gentili L, Perfumi M, de Caro G, et al. 1988b. The tachykinin NH2-senktide, a selective neurokinin B receptor agonist, is a very potent inhibitor of salt appetite in the rat. Neurosci Lett 92: 341–346.

    Article  PubMed  CAS  Google Scholar 

  • Mayer A. 1900. Variations de la tension osmotique du sang chez les animaux privés de liquides. CR Seances Soc Biol Fil 52: 153–155.

    Google Scholar 

  • McCance RA. 1936a. Experimental sodium chloride deficiency in man. Proc R Soc Lond B Biol Sci 119: 245–268.

    Article  CAS  Google Scholar 

  • McCance RA. 1936b. Medical problems in mineral metabolism. Lancet 227: 823–830.

    Article  Google Scholar 

  • McKinley MJ, Blaine EH, Denton DA. 1974. Brain osmoreceptors, cerebrospinal fluid electrolyte composition and thirst. Brain Res 70: 532–537.

    Article  PubMed  CAS  Google Scholar 

  • McKinley MJ, Denton DA, Weisinger RS. 1978. Sensors for antidiuresis and thirst--osmoreceptors or CSF sodium detectors? Brain Res 141: 89–103.

    Article  PubMed  CAS  Google Scholar 

  • McKinley MJ, Denton DA, Park RG, Weisinger RS. 1986. Ablation of subfornical organ does not prevent angiotensin-induced water drinking in sheep. Am J Physiol Regul Integr Comp Physiol 250: R1052–R1059.

    Article  CAS  Google Scholar 

  • McKinley MJ, Mathai ML, Pennington G, Rundgren M, Vivas L. 1999. Effect of individual or combined ablation of the nuclear groups of the lamina terminalis on water drinking in sheep. Am J Physiol Regul Integr Comp Physiol 276: R673–R683.

    Article  CAS  Google Scholar 

  • McKinley MJ, Burns P, Colvill LM, Oldfield BJ, Wade JD, et al. 1997. Distribution of Fos immunoreactivity in the lamina terminalis and hypothalamus induced by centrally administered relaxin in conscious rats. J Neuroendocrinol 9: 431–437.

    Article  PubMed  CAS  Google Scholar 

  • McKinley MJ, Denton DA, Leksell LG, Mouw DR, Scoggins BA, et al. 1982. Osmoregulatory thirst in sheep is disrupted by ablation of the anterior wall of the optic recess. Brain Res 236: 210–215.

    Article  PubMed  CAS  Google Scholar 

  • McKinley MJ, McAllen RM, Davern P, Giles ME, Penschow J, et al. 2003. The sensory circumventricular organs of the mammalian brain. Adv Anat Embryol Cell Biol 172: 1–127.

    Article  Google Scholar 

  • McRae-Degueurce A, Bellin SI, Landas SK, Johnson AK. 1986. Fetal noradrenergic transplants into amine-depleted basal forebrain nuclei restore drinking to angiotensin. Brain Res 374: 162–166.

    Article  PubMed  CAS  Google Scholar 

  • Menani JV, Johnson AK. 1995. Lateral parabrachial serotonergic mechanisms: angiotensin-induced pressor and drinking responses. Am J Physiol Regul Integr Comp Physiol 269: R1044–R1049.

    Article  CAS  Google Scholar 

  • Menani JV, Johnson AK. 1998. Cholecystokinin actions in the parabrachial nucleus: effects on thirst and salt appetite. Am J Physiol Regul Integr Comp Physiol 275: R1431–R1437.

    Article  CAS  Google Scholar 

  • Menani JV, Beltz TG, Johnson AK. 1995. Effects of lidocaine injections into the lateral parabrachial nucleus on dipsogenic and pressor responses to central angiotensin II in rats. Brain Res 695: 250–252.

    Article  PubMed  CAS  Google Scholar 

  • Menani JV, De Luca LA Jr, Johnson AK. 1998b. Lateral parabrachial nucleus serotonergic mechanisms and salt appetite induced by sodium depletion. Am J Physiol Regul Integr Comp Physiol 274: R555–R560.

    Article  CAS  Google Scholar 

  • Menani JV, Thunhorst RL, Johnson AK. 1996. Lateral parabrachial nucleus and serotonergic mechanisms in the control of salt appetite in rats. Am J Physiol Regul Integr Comp Physiol 270: R162–R168.

    Article  CAS  Google Scholar 

  • Menani JV, De Luca LA Jr, Thunhorst RL, Johnson AK. 2000. Hindbrain serotonin and the rapid induction of sodium appetite. Am J Physiol Regul Integr Comp Physiol 279: R126–R131.

    Article  PubMed  CAS  Google Scholar 

  • Menani JV, Barbosa SP, De Luca LA Jr, De Gobbi JI, Johnson AK. 2002. Serotonergic mechanisms of the lateral parabrachial nucleus and cholinergic-induced sodium appetite. Am J Physiol Regul Integr Comp Physiol 282: R837–R841.

    Article  PubMed  CAS  Google Scholar 

  • Menani JV, Barbosa SP, McKinley MJ, Wade JD, De Luca LA Jr. 2004. Serotonergic mechanism of the lateral parabrachial nucleus and relaxin-induced sodium intake. Brain Res 1030: 74–80.

    Article  PubMed  CAS  Google Scholar 

  • Menani JV, Colombari DS, Beltz TG, Thunhorst RL, Johnson AK. 1998a. Salt appetite: interaction of forebrain angiotensinergic and hindbrain serotonergic mechanisms. Brain Res 801: 29–35.

    Article  PubMed  CAS  Google Scholar 

  • Menani JV, Sato MA, Haikel L, Vieira AA, de Andrade CA, et al. 1999. Central moxonidine on water and NaCl intake. Brain Res Bull 49: 273–279.

    Article  PubMed  CAS  Google Scholar 

  • Michell AR. 1995. The Clinical Biology of Sodium: The Physiology and Pathophysiology of Sodium in Mammals. New York: Elsevier Science.

    Google Scholar 

  • Miyakubo H, Yamamoto K, Hatakenaka S, Hayashi Y, Tanaka J. 2003. Drinking decreases the noradrenaline release in the median preoptic area caused by hypovolemia in the rat. Behav Brain Res 145: 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Mizuno A, Matsumoto N, Imai M, Suzuki M. 2003. Impaired osmotic sensation in mice lacking TRPV4. Am J Physiol Cell Physiol 285: C96–C101.

    Article  PubMed  CAS  Google Scholar 

  • Moe KE, Weiss ML, Epstein AN. 1984. Sodium appetite during captopril blockade of endogenous angiotensin II formation. Am J Physiol Regul Integr Comp Physiol 247: R356–R365.

    Article  CAS  Google Scholar 

  • Moga MM, Saper CB, Gray TS. 1989. Bed nucleus of the stria terminalis: cytoarchitecture, immunohistochemistry, and projection to the parabrachial nucleus in the rat. J Comp Neurol 283: 315–332.

    Article  PubMed  CAS  Google Scholar 

  • Mohring J, Petri M, Mohring B. 1975. Salt appetite during the early phase of renal hypertension in rats. Pflugers Archiv - Eur J Physiol 356: 153–158.

    Article  CAS  Google Scholar 

  • Moore-Gillon MJ, Fitzsimons JT. 1982. Pulmonary vein-atrial junction stretch receptors and the inhibition of drinking. Am J Physiol Regul Integr Comp Physiol 242: R452–R457.

    Article  CAS  Google Scholar 

  • Morimoto S, Cassell MD, Sigmund CD. 2002. Neuron-specific expression of human angiotensinogen in brain causes increased salt appetite. Physiol Genomics 9: 113–120.

    Article  PubMed  CAS  Google Scholar 

  • Morimoto S, Cassell MD, Beltz TG, Johnson AK, Davisson RL, et al. 2001. Elevated blood pressure in transgenic mice with brain-specific expression of human angiotensinogen driven by the glial fibrillary acidic protein promoter. Circ Res 89: 365–372.

    Article  PubMed  CAS  Google Scholar 

  • Morris M, Li P, Barrett C, Callahan MF. 1995. Oxytocin antisense reduces salt intake in the baroreceptor-denervated rat. Regul Pept 59: 261–266.

    Article  PubMed  CAS  Google Scholar 

  • Morris MJ, Wilson WL, Starbuck EM, Fitts DA. 2002. Forebrain circumventricular organs mediate salt appetite induced by intravenous angiotensin II in rats. Brain Res 949: 42–50.

    Article  PubMed  CAS  Google Scholar 

  • Mullins JJ, Peters J, Ganten D. 1990. Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene. Nature 344: 541–544.

    Article  PubMed  CAS  Google Scholar 

  • Nachman M, Ashe JH. 1974. Effects of basolateral amygdala lesions on neophobia, learned taste aversions, and sodium appetite in rats. J Comp Physiol Psychol 87: 622–643.

    Article  PubMed  CAS  Google Scholar 

  • Nadal JW, Pedersen S, Maddock WG. 1941. A comparison between dehydration from salt loss and from water deprivation. J Clin Invest 20: 691–703.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Naeini RS, Witty MF, Seguela P, Bourque CW. 2006. An N-terminal variant of Trpv1 channel is required for osmosensory transduction. Nat Neurosci 9: 93–98.

    Article  CAS  Google Scholar 

  • Niijima A. 1969. Afferent discharges from osmoreceptors in the liver of the guinea pig. Science 166: 1519–1520.

    Article  PubMed  CAS  Google Scholar 

  • Nitabach MN, Schulkin J, Epstein AN. 1989. The medial amygdala is part of a mineralocorticoid-sensitive circuit controlling NaCl intake in the rat. Behav Brain Res 35: 127–134.

    Article  PubMed  CAS  Google Scholar 

  • Norgren R. 1978. Projections from the nucleus of the solitary tract in the rat. Neuroscience 3: 207–218.

    Article  PubMed  CAS  Google Scholar 

  • Norgren R. 1981. The central organization of the gustatory and visceral afferent systems in the nucleus of the solitary tract. Brain Mechanisms of Sensation. Katsuki Y, Norgren R, Sato M, editors. New York: Wiley & Sons; pp. 143–160.

    Google Scholar 

  • Oatley K. 1964. Changes in blood volume and osmotic pressure in the production of thirst. Nature 202: 1341–1342.

    Article  PubMed  CAS  Google Scholar 

  • Ohman LE, Johnson AK. 1989. Brain stem mechanisms and the inhibition of angiotensin-induced drinking. Am J Physiol Regul Integr Comp Physiol 256: R264–R269.

    Article  CAS  Google Scholar 

  • Ohman LE, Johnson AK. 1986. Lesions in lateral parabrachial nucleus enhance drinking to angiotensin II and isoproterenol. Am J Physiol Regul Integr Comp Physiol 251: R504–R509.

    Article  CAS  Google Scholar 

  • Ohman LE, Johnson AK. 1995. Role of lateral parabrachial nucleus in the inhibition of water intake produced by right atrial stretch. Brain Res 695: 275–278.

    Article  PubMed  CAS  Google Scholar 

  • Okuno T, Suzuki H, Saruta T. 1981. Dexamethasone hypertension in rats. Clin Exp Hypertens 3: 1075–1086.

    Article  PubMed  CAS  Google Scholar 

  • Oliet SH, Bourque CW. 1993. Mechanosensitive channels transduce osmosensitivity in supraoptic neurons. Nature 364: 341–343.

    Article  PubMed  CAS  Google Scholar 

  • Olsson K. 1969. Studies on central regulation of secretion of antidiuretic hormone (ADH) in the goat. Acta Physiol Scand 77: 465–474.

    Article  PubMed  CAS  Google Scholar 

  • Palkovits M. 1966. The role of the subfornical organ in the salt and water balance. Naturwissenschaften 53: 336.

    Article  PubMed  CAS  Google Scholar 

  • Pawloski CM, Fink GD. 1990. Circulating angiotensin II and drinking behavior in rats. Am J Physiol Regul Integr Comp Physiol 259: R531–R538.

    Article  CAS  Google Scholar 

  • Peck JW, Novin D. 1971. Evidence that osmoreceptors mediating drinking in rabbits are in the lateral preoptic area. J Comp Physiol Psychol 74: 134–147.

    Article  PubMed  CAS  Google Scholar 

  • Pompei P, Lucas LR, Angeletti S, Massi M, McEwen BS. 1997. In situ hybridization analysis of preprotachykinin-A and -B mRNA levels in short-term sodium depletion. Brain Res Mol Brain Res 49: 149–156.

    Article  PubMed  CAS  Google Scholar 

  • Price JL, Russchen FT, Amaral DG. 1987. The limbic region. II: The amygdaloid complex. Handbook of Chemical Neuroanatomy. Björklund A, Hokfelt T, Swanson LW, editors. New York: Elsevier. pp. 279–388.

    Google Scholar 

  • Quillen EW Jr, Keil LC, Reid IA. 1990. Effects of baroreceptor denervation on endocrine and drinking responses to caval constriction in dogs. Am J Physiol Regul Integr Comp Physiol 259: R618–R626.

    Article  CAS  Google Scholar 

  • Quillen EW Jr, Reid IA, Keil LC. 1988. Cardiac and arterial baroreceptor influences on plasma vasopressin and drinking. Vasopressin: Cellular and Integrative Functions. Cowley AW Jr, Liard J-F, Ausiello DA, editors. New York: Raven Press; pp. 405–411.

    Google Scholar 

  • Radford EP Jr. 1959. Factors modifying water metabolism in rats fed dry diets. Am J Physiol 196: 1098–1108.

    Article  PubMed  CAS  Google Scholar 

  • Ramsay DJ, Reid IA. 1975. Some central mechanisms of thirst in the dog. J Physiol (Lond) 253: 517–525.

    Article  CAS  Google Scholar 

  • Rettig R, Johnson AK. 1986. Aortic baroreceptor deafferentation diminishes saline-induced drinking in rats. Brain Res 370: 29–37.

    Article  PubMed  CAS  Google Scholar 

  • Ricardo JA, Koh ET. 1978. Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat. Brain Res 153: 1–26.

    Article  PubMed  CAS  Google Scholar 

  • Rice KK, Richter CP. 1943. Increased sodium chloride and water intake of normal rats treated with desoxycorticosterone acetate. Endocrinology 33: 106–115.

    Article  CAS  Google Scholar 

  • Richard D, Bourque CW. 1995. Synaptic control of rat supraoptic neurones during osmotic stimulation of the organum vasculosum lamina terminalis in vitro. J Physiol (Lond) 489: 567–577.

    Article  CAS  Google Scholar 

  • Richter CP. 1936. Increased salt appetite in adrenalectomized rats. Am J Physiol 115: 155–161.

    Article  CAS  Google Scholar 

  • Robinson MM, Evered MD. 1987. Pressor action of intravenous angiotensin II reduces drinking response in rats. Am J Physiol Regul Integr Comp Physiol 252: R754–R759.

    Article  CAS  Google Scholar 

  • Rocha MJ, Callahan MF, Morris M. 1997. Baroreceptor regulation of salt intake. Brain Res Bull 42: 147–151.

    Article  PubMed  CAS  Google Scholar 

  • Rocha MJ, Callahan MF, Sundberg DK, Morris M. 1993. Sinoaortic denervation alters the molecular and endocrine responses to salt loading. Neuroendocrinology 57: 729–737.

    Article  PubMed  CAS  Google Scholar 

  • Rogers RC, Novin D, Butcher LL. 1979. Electrophysiological and neuroanatomical studies of hepatic portal osmo- and sodium-receptive afferent projections within the brain. J Auton Nerv Syst 1: 183–202.

    Article  PubMed  CAS  Google Scholar 

  • Routtenberg A, Simpson JB. 1971. Carbachol-induced drinking at ventricular and subfornical organ sites of application. Life Sci I 10: 481–490.

    Article  PubMed  CAS  Google Scholar 

  • Rowland NE, Fregly MJ. 1988a. Characteristics of thirst and sodium appetite in mice (Mus musculus). Behav Neurosci 102: 969–974.

    Article  PubMed  CAS  Google Scholar 

  • Rowland NE, Fregly MJ. 1988b. Sodium appetite: species and strain differences and role of renin-angiotensin-aldosterone system. Appetite 11: 143–178.

    Article  PubMed  CAS  Google Scholar 

  • Rowland NE, Morian KR. 1999. Roles of aldosterone and angiotensin in maturation of sodium appetite in furosemide-treated rats. Am J Physiol Regul Integr Comp Physiol 276: R1453–R1460.

    Article  CAS  Google Scholar 

  • Ruhf AA, Starbuck EM, Fitts DA. 2001. Effects of SFO lesions on salt appetite during multiple sodium depletions. Physiol Behav 74: 629–636.

    Article  PubMed  CAS  Google Scholar 

  • Sakai RR. 1986. The hormones of renal sodium conservation act synergistically to arouse a sodium appetite in the rat. The Physiology of Thirst and Sodium Appetite. de Caro G, Epstein AN, Massi M, editors. New York: Plenum Press; pp. 425–430.

    Chapter  Google Scholar 

  • Sakai RR, Chow SY, Epstein AN. 1990. Peripheral angiotensin II is not the cause of sodium appetite in the rat. Appetite 15: 161–170.

    Article  PubMed  CAS  Google Scholar 

  • Sakai RR, Nicolaidis S, Epstein AN. 1986. Salt appetite is suppressed by interference with angiotensin II and aldosterone. Am J Physiol Regul Integr Comp Physiol 251: R762–R768.

    Article  CAS  Google Scholar 

  • Sakai RR, Fine WB, Epstein AN, Frankmann SP. 1987. Salt appetite is enhanced by one prior episode of sodium depletion in the rat. Behav Neurosci 101: 724–731.

    Article  PubMed  CAS  Google Scholar 

  • Sakai RR, Ma LY, Zhang DM, McEwen BS, Fluharty SJ. 1996. Intracerebral administration of mineralocorticoid receptor antisense oligonucleotides attenuate adrenal steroid-induced salt appetite in rats. Neuroendocrinology 64: 425–429.

    Article  PubMed  CAS  Google Scholar 

  • Sakai RR, McEwen BS, Fluharty SJ, Ma LY. 2000. The amygdala: site of genomic and nongenomic arousal of aldosterone-induced sodium intake. Kidney Int 57: 1337–1345.

    Article  PubMed  CAS  Google Scholar 

  • Salisbury JJ, Rowland NE. 1990. Sham drinking in rats: osmotic and volumetric manipulations. Physiol Behav 47: 625–630.

    Article  PubMed  CAS  Google Scholar 

  • Samson WK. 2004. The posterior pituitary and water metabolism. Textbook of Endocrine Physiology. Griffin JE, Ojeda SR, editors. New York: Oxford University Press.

    Google Scholar 

  • Saper CB, Reis DJ, Joh T. 1983. Medullary catecholamine inputs to the anteroventral third ventricular cardiovascular regulatory region in the rat. Neurosci Lett 42: 285–291.

    Article  PubMed  CAS  Google Scholar 

  • Sato MA, Yada MM, De Luca LA Jr. 1996. Antagonism of the renin-angiotensin system and water deprivation-induced NaCl intake in rats. Physiol Behav 60: 1099–1104.

    Article  PubMed  CAS  Google Scholar 

  • Scheuer DA, Bechtold AG. 2001. Glucocorticoids potentiate central actions of angiotensin to increase arterial pressure. Am J Physiol Regul Integr Comp Physiol 280: R1719–R1726.

    Article  PubMed  CAS  Google Scholar 

  • Schoorlemmer GHM, Johnson AK, Thunhorst RL. 2000. Effect of hyperosmotic solutions on salt excretion and thirst in rats. Am J Physiol Regul Integr Comp Physiol 278: R917–R923.

    Article  PubMed  CAS  Google Scholar 

  • Schoorlemmer GHM, Johnson AK, Thunhorst RL. 2001. Circulating angiotensin II mediates sodium appetite in adrenalectomized rats. Am J Physiol Regul Integr Comp Physiol 281: R723–R729.

    Article  PubMed  CAS  Google Scholar 

  • Schreihofer AM, Stricker EM, Sved AF. 2000. Nucleus of the solitary tract lesions enhance drinking, but not vasopressin release, induced by angiotensin. Am J Physiol Regul Integr Comp Physiol 279: R239–R247.

    Article  PubMed  CAS  Google Scholar 

  • Schreihofer AM, Anderson BK, Schiltz JC, Xu L, Sved AF, et al. 1999. Thirst and salt appetite elicited by hypovolemia in rats with chronic lesions of the nucleus of the solitary tract. Am J Physiol Regul Integr Comp Physiol 276: R251–R258.

    Article  CAS  Google Scholar 

  • Schulkin J, Eng R, Miselis RR. 1983. The effects of disconnecting the subfornical organ on behavioral and physiological responses to alterations of body sodium. Brain Res 263: 351–355.

    Article  PubMed  CAS  Google Scholar 

  • Schwob JE, Johnson AK. 1977. Angiotensin-induced dipsogenesis in domestic fowl (Gallus gallus). J Comp Physiol Psychol 91: 182–188.

    Article  PubMed  CAS  Google Scholar 

  • Seeley RJ, Galaverna O, Schulkin J, Epstein AN, Grill HJ. 1993. Lesions of the central nucleus of the amygdala. II: Effects on intraoral NaCl intake. Behav Brain Res 59: 19–25.

    Article  PubMed  CAS  Google Scholar 

  • Semple RE. 1952. Compensatory changes in the rat following removal of electrolytes by intraperitoneal dialysis. Am J Physiol 168: 55–65.

    Article  PubMed  CAS  Google Scholar 

  • Severs WB, Summy-Long J, Daniels-Severs A. 1974. Angiotensin interaction with thirst mechanisms. Am J Physiol 226: 340–344.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro RE, Miselis RR. 1985. The central neural connections of the area postrema of the rat. J Comp Neurol 234: 344–364.

    Article  PubMed  CAS  Google Scholar 

  • Shelat SG, Flanagan-Cato LM, Fluharty SJ. 1999a. Glucocorticoid and mineralocorticoid regulation of angiotensin II type 1 receptor binding and inositol triphosphate formation in WB cells. J Endocrinol 162: 381–391.

    Article  PubMed  CAS  Google Scholar 

  • Shelat SG, Fluharty SJ, Flanagan-Cato LM. 1998. Adrenal steroid regulation of central angiotensin II receptor subtypes and oxytocin receptors in rat brain. Brain Res 807: 135–146.

    Article  PubMed  CAS  Google Scholar 

  • Shelat SG, King JL, Flanagan-Cato LM, Fluharty SJ. 1999b. Mineralocorticoids and glucocorticoids cooperatively increase salt intake and angiotensin II receptor binding in rat brain. Neuroendocrinology 69: 339–351.

    Article  PubMed  CAS  Google Scholar 

  • Simpson JB, Routtenberg A. 1973. Subfornical organ: site of drinking elicitation by angiotensin II. Science 181: 1172–1175.

    Article  PubMed  CAS  Google Scholar 

  • Simpson JB, Epstein AN, Camardo JS Jr. 1978. Localization of receptors for the dipsogenic action of angiotensin II in the subfornical organ of rat. J Comp Physiol Psychol 92: 581–601.

    Article  PubMed  CAS  Google Scholar 

  • Sinnayah P, Burns P, Wade JD, Weisinger RS, McKinley MJ. 1999. Water drinking in rats resulting from intravenous relaxin and its modification by other dipsogenic factors. Endocrinology 140: 5082–5086.

    Article  PubMed  CAS  Google Scholar 

  • Smith HW. 1957. Salt and water volume receptors: an exercise in physiologic apologetics. Am J Med 23: 623–652.

    Article  PubMed  CAS  Google Scholar 

  • Smith ME, Flynn FW. 1994. Tachykinin NK3 receptor agonist blocks sodium deficiency-induced shift in taste reactivity. Brain Res 665: 123–126.

    Article  PubMed  CAS  Google Scholar 

  • Sofroniew MV. 1983. Direct reciprocal connections between the bed nucleus of the stria terminalis and dorsomedial medulla oblongata: evidence from immunohistochemical detection of tracer proteins. J Comp Neurol 213: 399–405.

    Article  PubMed  CAS  Google Scholar 

  • Starling EH. 1909. The Fluids of the Body. Chicago: WT Keener & Co.

    Google Scholar 

  • Stein L, Seifter J. 1962. Muscarinic synapses in the hypothalamus. Am J Physiol 202: 751–756.

    Article  PubMed  CAS  Google Scholar 

  • Stella A, Zanchetti A. 1991. Functional role of renal afferents. Physiol Rev 71: 659–682.

    Article  PubMed  CAS  Google Scholar 

  • Stevenson JA, Welt LG, Orloff J. 1950. Abnormalities of water and electrolyte metabolism in rats with hypothalamic lesions. Am J Physiol 161: 35–39.

    Article  PubMed  CAS  Google Scholar 

  • Stocker SD, Stricker EM, Sved AF. 2001. Acute hypertension inhibits thirst stimulated by ANG II, hyperosmolality, or hypovolemia in rats. Am J Physiol Regul Integr Comp Physiol 280: R214–R224.

    Article  PubMed  CAS  Google Scholar 

  • Stocker SD, Stricker EM, Sved AF. 2002. Arterial baroreceptors mediate the inhibitory effect of acute increases in arterial blood pressure on thirst. Am J Physiol Regul Integr Comp Physiol 282: R1718–R1729.

    Article  PubMed  CAS  Google Scholar 

  • Strauss MB. 1957. Body Water in Man. The Acquisition and Maintenance of the Body Fluids. Boston: Little, Brown & Co.

    Google Scholar 

  • Stricker EM. 1966. Extracellular fluid volume and thirst. Am J Physiol 211: 232–238.

    Article  PubMed  CAS  Google Scholar 

  • Stricker EM. 1969. Osmoregulation and volume regulation in rats: inhibition of hypovolemic thirst by water. Am J Physiol 217: 98–105.

    Article  PubMed  CAS  Google Scholar 

  • Stricker EM. 1977. The renin-angiotensin system and thirst: a reevaluation. II. Drinking elicited in rats by caval ligation or isoproterenol. J Comp Physiol Psychol 91: 1220–1231.

    Article  PubMed  CAS  Google Scholar 

  • Stricker EM. 1978. The renin-angiotensin system and thirst: some unanswered questions. Fed Proc 37: 2704–2710.

    PubMed  CAS  Google Scholar 

  • Stricker EM. 1981. Thirst and sodium appetite after colloid treatment in rats. J Comp Physiol Psychol 95: 1–25.

    Article  PubMed  CAS  Google Scholar 

  • Stricker EM. 1983. Thirst and sodium appetite after colloid treatment in rats: role of the renin-angiotensin-aldosterone system. Behav Neurosci 97: 725–737.

    Article  PubMed  CAS  Google Scholar 

  • Stricker EM. 1991. Central control of water and sodium chloride intake in rats during hypovolaemia. Thirst: Physiological and Psychological Aspects. Ramsay DJ, Booth DA, editors. New York: Springer-Verlag; pp. 194–206.

    Chapter  Google Scholar 

  • Stricker EM, Jalowiec JE. 1970. Restoration of intravascular fluid volume following acute hypovolemia in rats. Am J Physiol 218: 191–196.

    Article  PubMed  CAS  Google Scholar 

  • Stricker EM, Verbalis JG. 1987. Central inhibitory control of sodium appetite in rats: correlation with pituitary oxytocin secretion. Behav Neurosci 101: 560–567.

    Article  PubMed  CAS  Google Scholar 

  • Stricker EM, Verbalis JG. 1990. Sodium appetite. Handbook of Behavioral Neurobiology, Vol. 10, Neurobiology of Food and Fluid Intake. Stricker EM, editor. New York: Plenum Press; pp. 387–419.

    Google Scholar 

  • Stricker EM, Wolf G. 1966. Blood volume and tonicity in relation to sodium appetite. J Comp Physiol Psychol 62: 275–279.

    Article  PubMed  CAS  Google Scholar 

  • Stricker EM, Gannon KS, Smith JC. 1992. Thirst and salt appetite induced by hypovolemia in rats: analysis of drinking behavior. Physiol Behav 51: 27–37.

    Article  PubMed  CAS  Google Scholar 

  • Stricker EM, Hosutt JA, Verbalis JG. 1987. Neurohypophyseal secretion in hypovolemic rats: inverse relation to sodium appetite. Am J Physiol Regul Integr Comp Physiol 252: R889–R896.

    Article  CAS  Google Scholar 

  • Stricker EM, Schreihofer AM, Verbalis JG. 1994. Sodium deprivation blunts hypovolemia-induced pituitary secretion of vasopressin and oxytocin in rats. Am J Physiol Regul Integr Comp Physiol 267: R1336–R1341.

    Article  CAS  Google Scholar 

  • Stricker EM, Vagnucci AH, McDonald RH Jr, Leenen FH. 1979. Renin and aldosterone secretions during hypovolemia in rats: relation to NaCl intake. Am J Physiol Regul Integr Comp Physiol 237: R45–R51.

    Article  CAS  Google Scholar 

  • Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant TD. 2000. OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2: 695–702.

    Article  PubMed  CAS  Google Scholar 

  • Summerlee AJ, Robertson GL. 1995. Central administration of porcine relaxin stimulates drinking behaviour in rats: an effect mediated by central angiotensin II. Endocr J 3: 377–387.

    Article  CAS  Google Scholar 

  • Summerlee AJ, Hornsby DJ, Ramsey DG. 1998. The dipsogenic effects of rat relaxin: The effect of photoperiod and the potential role of relaxin on drinking in pregnancy. Endocrinology 139: 2322–2328.

    Article  PubMed  CAS  Google Scholar 

  • Sumners C, Fregly MJ. 1989. Modulation of angiotensin II binding sites in neuronal cultures by mineralocorticoids. Am J Physiol 256: C121–C129.

    Article  PubMed  CAS  Google Scholar 

  • Sumners C, Gault TR, Fregly MJ. 1991. Potentiation of angiotensin II-induced drinking by glucocorticoids is a specific glucocorticoid type II receptor (GR)-mediated event. Brain Res 552: 283–290.

    Article  PubMed  CAS  Google Scholar 

  • Sunn N, McKinley MJ, Oldfield BJ. 2001. Identification of efferent neural pathways from the lamina terminalis activated by blood-borne relaxin. J Neuroendocrinol 13: 432–437.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki H, Handa M, Kondo K, Saruta T. 1982. Role of renin-angiotensin system in glucocorticoid hypertension in rats. Am J Physiol 243: E48–E51.

    PubMed  CAS  Google Scholar 

  • Suzuki M, Sato J, Kutsuwada K, Ooki G, Imai M. 1999. Cloning of a stretch-inhibitable nonselective cation channel. J Biol Chem 274: 6330–6335.

    Article  PubMed  CAS  Google Scholar 

  • Swanson PP, Timson GH, Frazier E. 1935. Some observations on the physiological adjustment of the albino rat to a diet poor in salts when edestin is the source of dietary protein. J Biol Chem 109: 729–737.

    Article  CAS  Google Scholar 

  • Szczepanska-Sadowska E, Paczwa P, Dobruch J. 2003. Enhanced food and water intake in renin transgenic rats. J Physiol Pharmacol 54: 81–88.

    PubMed  CAS  Google Scholar 

  • Szczepanska-Sadowska E, Sobocinska J, Sadowski B. 1982. Central dipsogenic effect of vasopressin. Am J Physiol Regul Integr Comp Physiol 242: R372–R379.

    Article  CAS  Google Scholar 

  • Takamata A, Mack GW, Gillen CM, Nadel ER. 1994. Sodium appetite, thirst, and body fluid regulation in humans during rehydration without sodium replacement. Am J Physiol Regul Integr Comp Physiol 266: R1493–R1502.

    Article  CAS  Google Scholar 

  • Takei Y. 1977. The role of the subfornical organ in drinking induced by angiotensin in the Japanese quail, Coturnix coturnix japonica. Cell Tissue Res 185: 175–181.

    Article  PubMed  CAS  Google Scholar 

  • Tarjan E, Denton DA. 1991. Sodium/water intake of rabbits following administration of hormones of stress. Brain Res Bull 26: 133–136.

    Article  PubMed  CAS  Google Scholar 

  • Tarjan E, Denton DA, Weisinger RS. 1991. Corticotropin-releasing factor enhances sodium and water intake/excretion in rabbits. Brain Res 542: 219–224.

    Article  PubMed  CAS  Google Scholar 

  • Tarjan E, Denton DA, McBurnie MI, Weisinger RS. 1988. Water and sodium intake of wild and New Zealand Rabbits following angiotensin. Peptides 9: 677–679.

    Article  PubMed  CAS  Google Scholar 

  • Tarjan E, Ferraro T, May C, Weisinger RS. 1993. Converting enzyme inhibition in rabbits: effects on sodium and water intake/excretion and blood pressure. Physiol Behav 53: 291–299.

    Article  PubMed  CAS  Google Scholar 

  • Thornton SM, Fitzsimons JT. 1995. The effects of centrally administered porcine relaxin on drinking behaviour in male and female rats. J Neuroendocrinol 7: 165–169.

    Article  PubMed  CAS  Google Scholar 

  • Thrasher TN, Keil LC. 1987. Regulation of drinking and vasopressin secretion: role of organum vasculosum laminae terminalis. Am J Physiol Regul Integr Comp Physiol 253: R108–R120.

    Article  CAS  Google Scholar 

  • Thrasher TN, Keil LC, Ramsay DJ. 1982a. Hemodynamic, hormonal, and drinking responses to reduced venous return in the dog. Am J Physiol Regul Integr Comp Physiol 243: R354–R362.

    Article  CAS  Google Scholar 

  • Thrasher TN, Keenan CR, Ramsay DJ. 1999. Cardiovascular afferent signals and drinking in response to hypotension in dogs. Am J Physiol Regul Integr Comp Physiol 277: R795–R801.

    Article  CAS  Google Scholar 

  • Thrasher TN, Simpson JB, Ramsay DJ. 1982b. Lesions of the subfornical organ block angiotensin-induced drinking in the dog. Neuroendocrinology 35: 68–72.

    Article  PubMed  CAS  Google Scholar 

  • Thrasher TN, Brown CJ, Keil LC, Ramsay DJ. 1980. Thirst and vasopressin release in the dog: an osmoreceptor or sodium receptor mechanism? Am J Physiol Regul Integr Comp Physiol 238: R333–R339.

    Article  CAS  Google Scholar 

  • Thunhorst RL, Fitts DA. 1994. Peripheral angiotensin causes salt appetite in rats. Am J Physiol Regul Integr Comp Physiol 267: R171–R177.

    Article  CAS  Google Scholar 

  • Thunhorst RL, Johnson AK. 1993. Effects of arterial pressure on drinking and urinary responses to intracerebroventricular angiotensin II. Am J Physiol Regul Integr Comp Physiol 264: R211–R217.

    Article  CAS  Google Scholar 

  • Thunhorst RL, Johnson AK. 1994a. Renin-angiotensin, arterial blood pressure, and salt appetite in rats. Am J Physiol Regul Integr Comp Physiol 266: R458–R465.

    Article  CAS  Google Scholar 

  • Thunhorst RL, Johnson AK. 1994b. The role of arterial pressure and arterial baroreceptors in the modulation of the drinking response to centrally-administered angiotensin II. Integrative and Cellular Aspects of Autonomic Functions: Temperature and Osmoregulation. Pleschka R, Gerstberger R, editors. Paris: John Libbey Eurotext; pp. 397–405.

    Google Scholar 

  • Thunhorst RL, Johnson AK. 2001. Effects of hypotension and fluid depletion on central angiotensin-induced thirst and salt appetite. Am J Physiol Regul Integr Comp Physiol 281: R1726–R1733.

    Article  PubMed  CAS  Google Scholar 

  • Thunhorst RL, Beltz TG, Johnson AK. 1999. Effects of subfornical organ lesions on acutely induced thirst and salt appetite. Am J Physiol Regul Integr Comp Physiol 277: R56–R65.

    Article  CAS  Google Scholar 

  • Thunhorst RL, Ehrlich KJ, Simpson JB. 1990. Subfornical organ participates in salt appetite. Behav Neurosci 104: 637–642.

    Article  PubMed  CAS  Google Scholar 

  • Thunhorst RL, Kirby RF, Johnson AK. 1996. Role of renal nerves in sodium depletion-induced salt appetite. Am J Physiol Regul Integr Comp Physiol 271: R806–R812.

    Article  CAS  Google Scholar 

  • Thunhorst RL, Lewis SJ, Johnson AK. 1993. Role of arterial baroreceptor input on thirst and urinary responses to intracerebroventricular angiotensin II. Am J Physiol Regul Integr Comp Physiol 265: R591–R595.

    Article  CAS  Google Scholar 

  • Thunhorst RL, Lewis SJ, Johnson AK. 1994. Effects of sinoaortic baroreceptor denervation on depletion-induced salt appetite. Am J Physiol 267: R1043–R1049.

    PubMed  CAS  Google Scholar 

  • Tordoff MG, Schulkin J, Friedman MI. 1986. Hepatic contribution to satiation of salt appetite in rats. Am J Physiol Regul Integr Comp Physiol 251: R1095–R1102.

    Article  CAS  Google Scholar 

  • Tordoff MG, Schulkin J, Friedman MI. 1987. Further evidence for hepatic control of salt intake in rats. Am J Physiol Regul Integr Comp Physiol 253: R444–R449.

    Article  CAS  Google Scholar 

  • Toth E, Stelfox J, Kaufman S. 1987. Cardiac control of salt appetite. Am J Physiol Regul Integr Comp Physiol 252: R925–R929.

    Article  CAS  Google Scholar 

  • Touzani K, Taghzouti K, Velley L. 1997. Increase of the aversive value of taste stimuli following ibotenic acid lesion of the central amygdaloid nucleus in the rat. Behav Brain Res 88: 133–142.

    Article  PubMed  CAS  Google Scholar 

  • Trippodo NC, McCaa RE, Guyton AC. 1976. Effect of prolonged angiotensin II infusion on thirst. Am J Physiol Regul Integr Comp Physiol 230: 1063–1066.

    CAS  Google Scholar 

  • Ueda H, Katayama S, Kato R. 1972. Area postrema – angiotensin-sensitive site in brain. Control of Renin Secretion. Assaykeen TA, editor. New York: Plenum Press; pp. 109–116.

    Chapter  Google Scholar 

  • van der Kooy D, Koda LY. 1983. Organization of the projections of a circumventricular organ: the area postrema in the rat. J Comp Neurol 219: 328–338.

    Article  PubMed  Google Scholar 

  • Vanderweele DA. 1974. The effects of taste adulteration, hypertonic and hyperoncotic solutions on water ingestion in the gerbil. Anim Learn Behav 2: 309–312.

    Article  Google Scholar 

  • Verbalis JG, Mangione MP, Stricker EM. 1991. Oxytocin produces natriuresis in rats at physiological plasma concentrations. Endocrinology 128: 1317–1322.

    Article  PubMed  CAS  Google Scholar 

  • Verney EB. 1947. The antidiuretic hormone and the factor which determines its release. Proc R Soc Lond B Biol Sci 135: 27–106.

    Google Scholar 

  • Watanabe E, Fujikawa A, Matsunaga H, Yasoshima Y, Sako N, et al. 2000. Nav2/NaG channel is involved in control of salt-intake behavior in the CNS. J Neurosci 20: 7743–7751.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Watson WE. 1985. The effect of removing area postrema on the sodium and potassium balances and consumptions in the rat. Brain Res 359: 224–232.

    Article  PubMed  CAS  Google Scholar 

  • Weisinger RS, Denton DA, McKinley MJ, Nelson JF. 1978. ACTH induced sodium appetite in the rat. Pharmacol Biochem Behav 8: 339–342.

    Article  PubMed  CAS  Google Scholar 

  • Weisinger RS, Denton DA, McKinley MJ, Nelson JF. 1985a. Dehydration-induced sodium appetite in rats. Physiol Behav 34: 45–50.

    Article  PubMed  CAS  Google Scholar 

  • Weisinger RS, Denton DA, McKinley MJ, Muller AF, Tarjan E. 1985b. Cerebrospinal fluid sodium concentration and salt appetite. Brain Res 326: 95–105.

    Article  PubMed  CAS  Google Scholar 

  • Weisinger RS, Denton DA, McKinley MJ, Muller AF, Tarjan E. 1986. Angiotensin and Na appetite of sheep. Am J Physiol Regul Integr Comp Physiol 251: R690–R699.

    Article  CAS  Google Scholar 

  • Weisinger RS, Blair-West JR, Burns P, Denton DA, McKinley MJ, et al. 1996. The role of angiotensin II in ingestive behaviour: a brief review of angiotensin II, thirst and Na appetite. Regul Pept 66: 73–81.

    Article  PubMed  CAS  Google Scholar 

  • Weisinger RS, Coghlan JP, Denton DA, Fan JS, Hatzikostas S, et al. 1980. ACTH-elicited sodium appetite in sheep. Am J Physiol 239: E45–E50.

    PubMed  CAS  Google Scholar 

  • Weisinger RS, Denton DA, Di Nicolantonio R, Hards DK, McKinley MJ, et al. 1990. Subfornical organ lesion decreases sodium appetite in the sodium-depleted rat. Brain Res 526: 23–30.

    Article  PubMed  CAS  Google Scholar 

  • Weisinger RS, Denton DA, Di Nicolantonio R, McKinley MJ, Muller AF, et al. 1987. Role of angiotensin in sodium appetite of sodium-deplete sheep. Am J Physiol Regul Integr Comp Physiol 253: R482–R488.

    Article  CAS  Google Scholar 

  • Weiss ML, Moe KE, Epstein AN. 1986. Interference with central actions of angiotensin II suppresses sodium appetite. Am J Physiol Regul Integr Comp Physiol 250: R250–R259.

    Article  CAS  Google Scholar 

  • Wettendorff H. 1901. Modifications du sang sous l'influencxe de la privation d'eau: contribution á l'étude de la soif. Travaux du Laboratoire de Physiologie, Instituts Soplvay 4: 353–484.

    Google Scholar 

  • Wilkin LD, Patel KP, Schmid PG, Johnson AK. 1987. Increased norepinephrine turnover in the median preoptic nucleus following reduced extracellular fluid volume. Brain Res 423: 369–372.

    Article  PubMed  CAS  Google Scholar 

  • Wilson KM, Sumners C, Hathaway S, Fregly MJ. 1986. Mineralocorticoids modulate central angiotensin II receptors in rats. Brain Res 382: 87–96.

    Article  PubMed  CAS  Google Scholar 

  • Wilson WL, Starbuck EM, Fitts DA. 2002. Salt appetite of adrenalectomized rats after a lesion of the SFO. Behav Brain Res 136: 449–453.

    Article  PubMed  CAS  Google Scholar 

  • Wolf AV. 1950. Osmometric analysis of thirst in man and dog. Am J Physiol 161: 75–86.

    Article  PubMed  CAS  Google Scholar 

  • Wolf AV. 1958. Thirst: Physiology of the Urge to Drink and Problems of Water Lack. Springfield: Charles C. Thomas.

    Google Scholar 

  • Wolf G. 1964a. Effect of dorsolateral hypothalamic lesions on sodium appetite elicited by desoxycorticosterone and by acute hyponatremia. J Comp Physiol Psychol 58: 396–402.

    Article  PubMed  CAS  Google Scholar 

  • Wolf G. 1964b. Sodium appetite elicited by aldosterone. Psychonomic Science I: 211–212.

    Article  Google Scholar 

  • Wolf G. 1965. Effect of deoxycorticosterone on sodium appetite of intact and adrenalectomized rats. Am J Physiol 208: 1281–1285.

    Article  PubMed  CAS  Google Scholar 

  • Wright JW, Morseth SL, Fairley PC, Petersen EP, Harding JW. 1987. Angiotensin's contribution to dipsogenic additivity in several rodent species. Behav Neurosci 101: 361–370.

    Article  PubMed  CAS  Google Scholar 

  • Yang ZF, Epstein AN. 1991. Blood-borne and cerebral angiotensin and the genesis of salt intake. Horm Behav 25: 461–476.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida S, Yamada K, Tamura Y, Yoshida S. 1988. Role of the renal nerve in glucocorticoid hypertension. Endocrinol Jpn 35: 877–884.

    Article  PubMed  CAS  Google Scholar 

  • Zardetto-Smith AM, Beltz TG, Johnson AK. 1994. Role of the central nucleus of the amygdala and bed nucleus of the stria terminalis in experimentally-induced salt appetite. Brain Res 645: 123–134.

    Article  PubMed  CAS  Google Scholar 

  • Zardetto-Smith AM, Thunhorst RL, Cicha MZ, Johnson AK. 1993. Afferent signaling and forebrain mechanisms in the behavioral control of extracellular fluid volume. Ann NY Acad Sci 689: 161–176.

    Article  PubMed  CAS  Google Scholar 

  • Zhang DM, Epstein AN, Schulkin J. 1993. Medial region of the amygdala: involvement in adrenal-steroid-induced salt appetite. Brain Res 600: 20–26.

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman MB, Blaine EH, Stricker EM. 1981. Water intake in hypovolemic sheep: effects of crushing the left atrial appendage. Science 211: 489–491.

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman MC, Lazartigues E, Lang JA, Sinnayah P, Ahmad IM, et al. 2002. Superoxide mediates the actions of angiotensin II in the central nervous system. Circ Res 91: 1038–1045.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Support for research from the authors’ laboratory reported in this manuscript and for preparation of this review was provided by grants from the National Heart, Lung, and Blood Institute HL14388 and HL57472, National Institute of Diabetes and Digestive and Kidney Diseases DK66086, National Institute on Aging AG25465, and National Institute of Mental Health MH59239.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this entry

Cite this entry

Johnson, A.K., Thunhorst, R.L. (2007). The Neuroendocrinology, Neurochemistry and Molecular Biology of Thirst and Salt Appetite. In: Lajtha, A., Blaustein, J.D. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30405-2_17

Download citation

Publish with us

Policies and ethics