Skip to main content

Dynamic Force Microscopy

  • Reference work entry
Springer Handbook of Nanotechnology

Abstract

This chapter presents an introduction to the concept of the dynamic operational mode of the atomic force microscope (dynamic AFM). While the static, or contact mode AFM is a widespread technique to obtain nanometer resolution images on a wide variety of surfaces, true atomic resolution imaging is routinely observed only in the dynamic mode. We will explain the jump-to-contact phenomenon encountered in static AFM and present the dynamic operational mode as a solution to overcome this effect. The dynamic force microscope is modeled as a harmonic oscillator to gain a basic understanding of the underlying physics in this mode.

Dynamic AFM comprises a whole family of operational modes. A systematic overview of the different modes typically encountered in force microscopy is presented, and special care is taken to explain the distinct features of each mode. Two modes of operation dominate the application of dynamic AFM. First, the amplitude modulation mode (also called tapping mode) is shown to exhibit an instability, which separates the purely attractive force interaction regime from the attractive–repulsive regime. Second, the self-excitation mode is derived and its experimental realization is outlined. While the first is primarily used for imaging in air and liquid, the second dominates imaging in UHV (ultrahigh vacuum) for atomic resolution imaging. In particular, we explain the influence of different forces on spectroscopy curves obtained in dynamic force microscopy. A quantitative link between the measurement values and the interaction forces is established.

Force microscopy in air suffers from small quality factors of the force sensor (i.e., the cantilever beam), which are shown to limit the achievable resolution. Also, the above mentioned instability in amplitude modulation mode often hinders imaging of soft and fragile samples. A combination of the amplitude modulation with the self-excitation mode is shown to increase the quality, or Q-factor, and extend the regime of stable operation, making the so-called Q-control module a valuable tool. Apart from the advantages of dynamic force microscopy as a nondestructive, high-resolution imaging method, it can also be used to obtain information about energy dissipation phenomena at the nanometer scale. This measurement channel can provide crucial information on electric and magnetic surface properties. Even atomic resolution imaging has been obtained in the dissipation mode. Therefore, in the last section, the quantitative relation between the experimental measurement values and the dissipated power is derived.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AFM:

atomic force microscope/microscopy

AM:

amplitude modulation

CE:

constant excitation mode

FIM:

field-ion microscope/microscopy

FM-AFM:

frequency modulation AFM

FM:

frequency modulation

MD:

molecular dynamics

SPM:

scanning probe microscopy

STM:

scanning tunneling microscope/microscopy

UHV:

ultrahigh vacuum

References

  1. M. A. Lantz, H. J. Hug, R. Hoffmann, P. J. A. van Schendel, P. Kappenberger, S. Martin, A. Baratoff, H.-J. Güntherodt: Quantitative measurement of short-range chemical bonding forces, Science 291 (2001) 2580–2583

    Article  CAS  Google Scholar 

  2. G. Binnig, C. F. Quate, Ch. Gerber: Atomic force microscope, Phys. Rev. Lett. 56 (1986) 930–933

    Article  Google Scholar 

  3. O. Marti: AFM instrumentation and tips. In: Handbook of Micro/Nanotribology, 2nd edn., ed. by B. Bhushan (CRC, Boca Raton 1999) pp. 81–144

    Google Scholar 

  4. G. Cross, A. Schirmeisen, A. Stalder, P. Grütter, M. Tschudy, U. Dürig: Adhesion interaction between atoically defined tip and sample, Phys. Rev. Lett. 80 (1998) 4685–4688

    Article  CAS  Google Scholar 

  5. A. Schirmeisen, G. Cross, A. Stalder, P. Grütter, U. Dürig: Metallic adhesion and tunneling at the atomic scale, New J. Phys. 2 (2000) 29.1–29.10

    Article  Google Scholar 

  6. A. Schirmeisen: Metallic adhesion and tunneling at the atomic scale. Ph.D. Thesis (McGill University, Montréal 1999) pp. 29–38

    Google Scholar 

  7. F. J. Giessibl: Forces and frequency shifts in atomic-resolution dynamic-force microscopy, Phys. Rev. B 56 (1997) 16010–16015

    Article  CAS  Google Scholar 

  8. F. J. Giessibl: Atomic resolution of the silicon (111)-(7×7) surface by atomic force microscopy, Science 267 (1995) 68–71

    Article  CAS  Google Scholar 

  9. M. Bezanilaa, B. Drake, E. Nudler, M. Kashlev, P. K. Hansma, H. G. Hansma: Motion and enzymatic degradation of DNA in the atomic force microscope, Biophys. J. 67 (1994) 2454–2459

    Article  Google Scholar 

  10. Y. Jiao, D. I. Cherny, G. Heim, T. M. Jovin, T. E. Schäffer: Dynamic interactions of p53 with DNA in solution by time-lapse atomic force microscopy, J. Mol. Biol. 314 (2001) 233–243

    Article  CAS  Google Scholar 

  11. T. R. Albrecht, P. Grütter, D. Horne, D. Rugar: Frequency modulation detection using high-Q cantilevers for enhanced force microscopy sensitivity, J. Appl. Phys. 69 (1991) 668–673

    Article  Google Scholar 

  12. S. P. Jarvis, M. A. Lantz, U. Dürig, H. Tokumoto: Off resonance AC mode force spectroscopy and imaging with an atomic force microscope, Appl. Surf. Sci. 140 (1999) 309–313

    Article  CAS  Google Scholar 

  13. P. M. Hoffmann, S. Jeffery, J. B. Pethica, H.Ö. Özer, A. Oral: Energy dissipation in atomic force microscopy and atomic loss processes, Phys. Rev. Lett. 87 (2001) 265502–265505

    Article  CAS  Google Scholar 

  14. B. Anczykowski, D. Krüger, H. Fuchs: Cantilever dynamics in quasinoncontact force microscopy: Spectroscopic aspects, Phys. Rev. B 53 (1996) 15485–15488

    Article  CAS  Google Scholar 

  15. B. Anczykowski, D. Krüger, K. L. Babcock, H. Fuchs: Basic properties of dynamic force spectroscopy with the scanning force microscope in experiment and simulation, Ultramicroscopy 66 (1996) 251–259

    Article  CAS  Google Scholar 

  16. V. M. Muller, V. S. Yushchenko, B. V. Derjaguin: On the influence of molecular forces on the deformation of an elastic sphere and its sticking to a rigid plane, J. Coll. Interf. Sci. 77 (1980) 91–101

    Article  CAS  Google Scholar 

  17. B. D. Hughes, L. R. White: ‘Soft’ contact problems in linear elasticity, Quart. J. Mech. Appl. Math. 32 (1979) 445–471

    Article  Google Scholar 

  18. L. Verlet: Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard–Jones molecules, Phys. Rev. 159 (1967) 98–103

    Article  CAS  Google Scholar 

  19. L. Verlet: Computer “experiments” on classical fluids. II. Equilibrium correlation functions, Phys. Rev. 165 (1968) 201–214

    Article  Google Scholar 

  20. P. Gleyzes, P. K. Kuo, A. C. Boccara: Bistable behavior of a vibrating tip near a solid surface, Appl. Phys. Lett. 58 (1991) 2989–2991

    Article  CAS  Google Scholar 

  21. A. San Paulo, R. García: High-resolution imaging of antibodies by tapping-mode atomic force microscopy: Attractive and repulsive tip-sample interaction regimes, Biophys. J. 78 (2000) 1599–1605

    Article  Google Scholar 

  22. D. Krüger, B. Anczykowski, H. Fuchs: Physical properties of dynamic force microscopies in contact and noncontact operation, Ann. Phys. 6 (1997) 341–363

    Article  Google Scholar 

  23. Y. Martin, C. C. Williams, H. K. Wickramasinghe: Atomic force microscope – force mapping and profiling on a sub 100-Å scale, J. Appl. Phys. 61 (1987) 4723–4729

    Article  CAS  Google Scholar 

  24. C. Barth, M. Reichling: Imaging the atomic arrangement on the high-temperature reconstructed α-Al2O3(0001) surface, Nature 414 (2001) 54–57

    Article  CAS  Google Scholar 

  25. B. Gotsmann, H. Fuchs: Dynamic force spectroscopy of conservative and dissipative forces in an Al-Au(111) tip-sample system, Phys. Rev. Lett. 86 (2001) 2597–2600

    Article  CAS  Google Scholar 

  26. H. Hölscher, W. Allers, U. D. Schwarz, A. Schwarz, R. Wiesendanger: Determination of tip-sample interaction potentials by dynamic force spectroscopy, Phys. Rev. Lett. 83 (1999) 4780–4783

    Article  Google Scholar 

  27. U. Dürig: Relations between interaction force and frequency shift in large-amplitude dynamic force microscopy, Appl. Phys. Lett. 75 (1999) 433–435

    Article  Google Scholar 

  28. H. Hölscher, A. Schwarz, W. Allers, U. D. Schwarz, R. Wiesendanger: Quantitative analysis of dynamic-force-spectroscopy data on graphite(0001) in the contact and noncontact regime, Phys. Rev. B 61 (2000) 12678–12681

    Article  Google Scholar 

  29. M. Guggisberg: Lokale Messung von atomaren Kräften. Ph.D. Thesis (University Basel, Basel 2000) pp. 9–11

    Google Scholar 

  30. M. Guggisberg, M. Bammerlin, E. Meyer, H.-J. Güntherodt: Separation of interactions by noncontact force microscopy, Phys. Rev. B 61 (2000) 11151–11155

    Article  CAS  Google Scholar 

  31. U. Dürig: Extracting interaction forces and complementary observables in dynamic probe microscopy, Appl. Phys. Lett. 76 (2000) 1203–1205

    Article  Google Scholar 

  32. T. Uchihasi, T. Ishida, M. Komiyama, M. Ashino, Y. Sugawara, W. Mizutani, K. Yokoyama, S. Morita, H. Tokumoto, M. Ishikawa: High-resolution imaging of organic monolayers using noncontact AFM, Appl. Surf. Sci. 157 (2000) 244–250

    Article  Google Scholar 

  33. J. Mertz, O. Marti, J. Mlynek: Regulation of a microcantilever response by force feedback, Appl. Phys. Lett. 62 (1993) 2344–2346

    Article  Google Scholar 

  34. D. Rugar, P. Grütter: Mechanical parametric amplification and thermomechanical noise squeezing, Phys. Rev. Lett. 67 (1991) 699–702

    Article  Google Scholar 

  35. B. Anczykowski , J. P. Cleveland, D. Krüger, V. B. Elings, H. Fuchs: Analysis of the interaction mechanisms in dynamic mode SFM by means of experimental data and computer simulation, Appl. Phys. A 66 (1998) 885–889

    Article  Google Scholar 

  36. T. Sulchek, G. G. Yaralioglu, C. F. Quate, S. C. Minne: Characterization and optimisation of scan speed for tapping-mode atomic force microscopy, Rev. Sci. Instrum. 73 (2002) 2928–2936

    Article  CAS  Google Scholar 

  37. L. F. Chi, S. Jacobi, B. Anczykowski, M. Overs, H.-J. Schäfer, H. Fuchs: Supermolecular periodic structures in monolayers, Adv. Mater. 12 (2000) 25–30

    Article  CAS  Google Scholar 

  38. S. Gao, L. F. Chi, S. Lenhert, B. Anczykowski, C. Niemeyer, M. Adler, H. Fuchs: High-quality mapping of DNA-protein complexes by dynamic scanning force microscopy, ChemPhysChem 6 (2001) 384–388

    Article  Google Scholar 

  39. B. Zou, M. Wang, D. Qiu, X. Zhang, L. F. Chi, H. Fuchs: Confined supramolecular nanostructures of mesogen-bearing amphiphiles, Chem. Commun. 9 (2002) 1008–1009

    Article  Google Scholar 

  40. B. Pignataro, L. F. Chi, S. Gao, B. Anczykowski, C. Niemeyer, M. Adler, H. Fuchs: Dynamic scanning force microscopy study of self-assembled DNA-protein nanostructures, Appl. Phys. A 74 (2002) 447–452

    Article  CAS  Google Scholar 

  41. U. Dürig: Interaction sensing in dynamic force microscopy, New J. Phys. 2 (2000) 5.1–5.2

    Article  Google Scholar 

  42. T. D. Stowe, T. W. Kenny, D. J. Thomson, D. Rugar: Silicon dopant imaging by dissipation force microscopy, Appl. Phys. Lett. 75 (1999) 2785–2787

    Article  CAS  Google Scholar 

  43. Y. Liu, P. Grütter: Magnetic dissipation force microscopy studies of magnetic materials, J. Appl. Phys. 83 (1998) 7333–7338

    Article  CAS  Google Scholar 

  44. J. Tamayo, R. García: Effects of elastic and inelastic interactions on phase contrast images in tapping-mode scanning force microscopy, Appl. Phys. Lett. 71 (1997) 2394–2396

    Article  CAS  Google Scholar 

  45. J. P. Cleveland, B. Anczykowski, A. E. Schmid, V. B. Elings: Energy dissipation in tapping-mode atomic force microscopy, Appl. Phys. Lett. 72 (1998) 2613–2615

    Article  CAS  Google Scholar 

  46. R. García, J. Tamayo, M. Calleja, F. García: Phase contrast in tapping-mode scanning force microscopy, Appl. Phys. A 66 (1998) 309–312

    Article  Google Scholar 

  47. B. Anczykowski, B. Gotsmann, H. Fuchs, J. P. Cleveland, V. B. Elings: How to measure energy dissipation in dynamic mode atomic force microscopy, Appl. Surf. Sci. 140 (1999) 376–382

    Article  CAS  Google Scholar 

  48. N. Sasaki, M. Tsukada: Effect of microscopic nonconservative process on noncontact atomic force microscopy, Jpn. J. Appl. Phys. 39 (2000) L1334–L1337

    Article  CAS  Google Scholar 

  49. R. Lüthi, E. Meyer, M. Bammerlin, A. Baratoff, L. Howald, C. Gerber, H.-J Güntherodt: Ultrahigh vacuum atomic force microscopy: true atomic resolution, Surf. Rev. Lett. 4 (1997) 1025–1029

    Article  Google Scholar 

  50. R. Bennewitz, A. S. Foster, L. N. Kantorovich, M. Bammerlin, Ch. Loppacher, S. Schär, M. Guggisberg, E. Meyer, A. L. Shluger: Atomically resolved edges and kinks of NaCl islands on Cu(111): experiment and theory, Phys. Rev. B 62 (2000) 2074–2084

    Article  CAS  Google Scholar 

  51. J. Israelachvili: Intermolecular and Surface Forces (Academic, London 1992)

    Google Scholar 

  52. U. Rabe, J. Turner, W. Arnold: Analysis of the high-frequency response of atomic force microscope cantilevers, Appl. Phys. A 66 (1998) 277–282

    Article  Google Scholar 

  53. T. R. Rodríguez, R. García: Tip motion in amplitude modulation (tapping-mode) atomic-force microscopy: Comparison between continuous and point-mass models, Appl. Phys. Lett. 80 (2002) 1646–1648

    Article  Google Scholar 

  54. J. Tamayo, R. García: Relationship between phase shift and energy dissipation in tapping-mode scanning force microscopy, Appl. Phys. Lett. 73 (1998) 2926–2928

    Article  CAS  Google Scholar 

  55. R. García, J. Tamayo, A. San Paulo: Phase contrast and surface energy hysteresis in tapping mode scanning force microsopy, Surf. Interface Anal. 27 (1999) 312–316

    Article  Google Scholar 

  56. S. N. Magonov, V. B. Elings, M. H. Whangbo: Phase imaging and stiffness in tapping-mode atomic force microscopy, Surf. Sci. 375 (1997) L385–L391

    Article  CAS  Google Scholar 

  57. J. P. Pickering, G. J. Vancso: Apparent contrast reversal in tapping mode atomic force microscope images on films of polystyrene-b-polyisoprene-b-polystyrene, Polymer Bull. 40 (1998) 549–554

    Article  CAS  Google Scholar 

  58. X. Chen, S. L. McGurk, M. C. Davies, C. J. Roberts, K. M. Shakesheff, S. J. B. Tendler, P. M. Williams, J. Davies, A. C. Dwakes, A. Domb: Chemical and morphological analysis of surface enrichment in a biodegradable polymer blend by phase-detection imaging atomic force microscopy, Macromolecules 31 (1998) 2278–2283

    Article  CAS  Google Scholar 

  59. A. Kühle, A. H. Sørensen, J. Bohr: Role of attractive forces in tapping tip force microscopy, J. Appl. Phys. 81 (1997) 6562–6569

    Article  Google Scholar 

  60. A. Kühle, A. H. Sørensen, J. B. Zandbergen, J. Bohr: Contrast artifacts in tapping tip atomic force microscopy, Appl. Phys. A 66 (1998) 329–332

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Schirmeisen, A., Anczykowski, B., Fuchs, H. (2004). Dynamic Force Microscopy. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29838-X_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-29838-X_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-01218-4

  • Online ISBN: 978-3-540-29838-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics