Skip to main content

Obsidian Hydration Dating

  • Living reference work entry
  • First Online:
Encyclopedia of Scientific Dating Methods

Definition

Obsidian: Obsidian is an aluminosilicate, or rhyolitic, glass, formed by rapid cooling of volcanic magma under the proper geologic conditions. As any other glass, it is not a crystal, and thus it lacks the lattice structure typical of crystals at the atomic level. However, glasses do possess some degree of spatial order. Thus, it is an amorphous natural glass that contains pristine water Η2Ο and sparse crystals of variable sizes of a few microns. The surface is weathered in the atmosphere and the environmental context. Composition: 70–75 % SiO2, 10–15 % Al2O3, 3–5 %Na2O, 2–5 % K2O, 1–5 % FeO3 + FeO (in contrast to iron-bearing glass and silica-enriched leached rinds on obsidian glass recently discovered on Mars that are representative of global processes of explosive volcanism potentially implying widespread acidic leaching on Mars due to oxidizing and acidic solutions). Obsidian rocks were used by early peoples for the making of their tools and implements.

Obsidian Hydration

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ambrose, W. R., 1976. Intrinsic hydration rate dating of obsidian. In Taylor, R. E. (ed.), Advances in Obsidian Glass Studies: Archaeological and Geochemical Perspectives. Park Ridge, NJ: Noyes Press, pp. 81–1054.

    Google Scholar 

  • Ambrose, W. R., 1984. Soil temperature monitoring at Lake Mungo; implications for racemisation dating. Australian Archaeology, 19, 64–74.

    Google Scholar 

  • Ambrose, W. R., 1994. Obsidian hydration dating of a Pleistocene age site from the Manus Island, Papua New Guinea. Quaternary Geochronology (Quaternary Science Reviews), 13, 137–142.

    Article  Google Scholar 

  • Ambrose, W. R., 1998. Obsidian hydration dating of a recent age obsidian mining site in Papua New Guinea. In Shackley, M. S. (ed.), Method and Theory in Archaeological Obsidian Studies. New York: Plenum Press, pp. 205–222.

    Chapter  Google Scholar 

  • Ambrose, W. R., and Novak, S. W., 2012. Obsidian hydration chronometrics using SIMS and optical methods from 26-year-temperature controlled exposures. In Liritzis, I., and Stevenson, C. M. (eds.), Obsidian and Ancient Manufactured Glasses. Albuquerque: New Mexico Press, pp. 15–25, Chap. 2.

    Google Scholar 

  • Ambrose, W., and Stevenson, C. M., 2004. Obsidian density, connate water and hydration dating. Journal of Mediterranean Archaeology and Archaeometry, 4, 1–10.

    Google Scholar 

  • Anovitz, L. M., Elam, J. M., Riciputi, L. R., and Cole, D. R., 1999. The failure of obsidian hydration dating: sources, implications and new directions. Journal of Archaeological Science, 26, 735–752.

    Article  Google Scholar 

  • Anovitz, L. M., Elam, J. M., Riciputi, L. R., and Cole, D. R., 2004. Isothermal time-series determination of the rate of diffusion of water in Pachuca obsidian. Archaeometry, 46(2), 301–326.

    Article  Google Scholar 

  • Anovitz, L. M., Cole, D., and Fayek, M., 2008. Mechanisms of rhyolitic glass hydration below the glass transition. American Mineralogist, 93, 1166–1178.

    Article  Google Scholar 

  • Bartholomew, R., Tick, P., and Stookey, S., 1980. Water/glass reactions at elevated temperatures and pressures. Journal of Non-Crystalline Solids, 38/39, 637–642.

    Article  Google Scholar 

  • Born, M., and Emil, W., 1980. Principles of Optics, 6th edn. New York: Pergamon Press.

    Google Scholar 

  • Braswell, G. E., 1992. Obsidian-hydration dating, the coner phase, and revisionist chronology at Copan. Honduras Latin American Antiquity, 3(2), 130–147.

    Article  Google Scholar 

  • Brodkey, S. R., and Liritzis, I., 2004. The dating of Obsidian: a possible application for transport phenomena (a tutorial). Mediterranean Archaeology and Archaeometry, 4(2), 67–82.

    Google Scholar 

  • Brückner, R., 1970. Properties and structure of vitreous silica I. Journal of Non-Crystalline Solids, 5(2), 123–175.

    Article  Google Scholar 

  • Crank, J., 1975. The Mathematics of Diffusion. Oxford: Oxford University Press.

    Google Scholar 

  • Doremus, R.H (1969) The diffusion of water in fused silica. In Mitchell, J.W, Devries, R.C, Roberts, R.W, Cannon, P (eds), Reactivity in solids, Wiley, New York, 667–673

    Google Scholar 

  • Doremus, R. H., 2000. Diffusion of water in rhyolite glass: diffusion–reaction model. Journal of Non-Crystalline Solids, 261, 101–107.

    Article  Google Scholar 

  • Doremus, R. H., 2002. Diffusion of Reactive Molecules in Solids and Melts. New York: Wiley-Interscience.

    Google Scholar 

  • Duerden, P., Cohen, D., and Ambrose, W., 1982. The measurement of hydration profiles in obsidian in archaeometry: An Australasian prospective In Ambrose, W., and Duerden, P. (eds.), Archaeometry: An Australian Prospective. Canberra: Australian National University, pp. 236–242.

    Google Scholar 

  • Ebert, W. L., Hofburg, R. F., and Bates, J. K., 1991. The sorption of water on obsidian and a nuclear waste glass. Physics and Chemistry of Glasses, 32(4), 133–137.

    Google Scholar 

  • Eerkens, J. W., Vaughn, K. J., Carpenter, T. R., Conlee, C. A., Grados, M. L., and Schreiber, K., 2008. Obsidian hydration dating on the south Coast of Peru. Journal of Archaeological Science, 35(8), 2231–2239.

    Article  Google Scholar 

  • Ericson, J. E., Dersch, O., and Rauch, F., 2004. Quartz hydration dating. Journal of Archaeological Science, 31, 883–902.

    Article  Google Scholar 

  • Findlow, F. J., and Bennett, V. C., 1978. In Meighan, C. W., and Vandehoeven, P. I. (eds.), Obsidian Dates II. Los Angeles, CA: UCLA Institute of Archaeology Monograph, Vol. VI, pp. 127–164.

    Google Scholar 

  • Friedman, I., and Long, W., 1976. Hydration rate of obsidian. Science, 159, 347–352.

    Article  Google Scholar 

  • Friedman, I., and Smith, R. L., 1960. A new dating method using obsidian: the development of the method. American Antiquity, 25, 476–522.

    Article  Google Scholar 

  • Friedman, I., Trembour, F. W., Smith, F. L., and Smith, G. I., 1994. Is obsidian hydration affected by relative humidity? Quaternary Research, 41, 185–190.

    Article  Google Scholar 

  • Friedman, I., Trembour, F. W., and Hughes, R. E., 1997. Obsidian hydration dating. In Taylor, R. E., and Aitken, M. J. (eds.), Chronometric Dating in Archaeology. New York: Plenum Press. Chapter 10.

    Google Scholar 

  • Hull, K. L., 2001. Re-asserting the utility of obsidian hydration dating: a temperature-dependent empirical approach to practical temporal resolution with archaeological obsidians. Journal of Archaeological Science, 28, 1025–1040.

    Article  Google Scholar 

  • Hall, K. L., and Jackson, R. J., 1989. Obsidian hydration rates in California. In Hughes, R. E. (ed.), Current Directions in California Obsidian Studies. Berkeley: Contributions of the University of California Archaeological Research Facility No.48, pp. 31–58.

    Google Scholar 

  • Jacobs, D. H., 1943. Fundamentals of Optical Engineering. New York: McGraw-Hill.

    Google Scholar 

  • Karsten, J. R., and Delaney, J. L., 1981. Ion microprobe studies of water in silicate melts: concentration-dependent water diffusion in obsidian. Earth and Planetary Science Letters, 52, 191–202.

    Article  Google Scholar 

  • Karsten, J. L., Holloway, J. R., and Delaney, J. L., 1982. Ion microprobe studies of water in silicate melts: temperature-dependent water diffusion in obsidian. Earth and Planetary Science Letters, 59, 420–428.

    Article  Google Scholar 

  • Kimberlin, J., 1976. Obsidian hydration rate determinations on chemically characterized samples. In Taylor, R. E. (ed.), Advances in Obsidian Glass Studies. New Jersey: Noyes Press, pp. 63–79.

    Google Scholar 

  • Lanford, W. A., Davis, K., Lamarche, P., Laursen, T., and Groleau, R., Doremus R.H. 1979. Hydration of soda-lime glass. Journal of Non-Crystalline Solids, 33, 249–266.

    Google Scholar 

  • Lee, R. R., Leich, D. A., Tombrello, T. A., Ericson, J. E., and Friedman, I., 1974. Obsidian hydration profile measurements using a nuclear reaction technique. Nature, 250, 44–47.

    Article  Google Scholar 

  • Liritzis, I., 2006. SIMS-SS A new obsidian hydration dating method: analysis and theoretical principles. Archaeometry, 48(3), 533–547.

    Article  Google Scholar 

  • Liritzis, I., 2010. Strofilas (Andros Island, Greece): new evidence for the Cycladic final Neolithic period through novel dating methods using luminescence and obsidian hydration. Journal of Archaeological Science, 37(6), 1367–1377.

    Article  Google Scholar 

  • Liritzis, Ι., and Diakostamatiou, Μ., 2002. Towards a new method of obsidian hydration dating with secondary ion mass spectrometry via a surface saturation layer approach. Mediterranean Archaeology and Archaeometry, 2(1), 3–20.

    Google Scholar 

  • Liritzis, I., and Laskaris, N., 2009. From micron to nano scale in rhyolites: SEM, PLM and AFM in obsidian hydration dating by SIMS-SS. In Aegean Nanoscience and Nanotechnology Workshop. 2nd International Conference from “Nanoparticles & nanomaterials to nanodevices & nanosystems”, Rhodes 28 June–3 July 2009. Book of Abstracts University of Texas at Abington, (Meletis et al, organizers), p. 107.

    Google Scholar 

  • Liritzis, I., and Laskaris, N., 2011. Fifty years of obsidian hydration dating in archaeology. Journal of Non-Crystalline Solids, 357, 2011–2023.

    Article  Google Scholar 

  • Liritzis, I., and Laskaris, N., 2012. The SIMS-SS obsidian hydration dating method. In Ioannis, L., and Christopher, S. (eds.), Obsidian and Ancient Manufactured Glasses. Albuquerque: University of New Mexico Press, pp. 26–45.

    Google Scholar 

  • Liritzis, I., and Stevenson, C. M. (eds.), 2012. Obsidian and Ancient Manufactured Glasses. Albuquerque, NM: University of New Mexico Press.

    Google Scholar 

  • Liritzis, I., Diakostamatiou, M., Stevenson, C. M., Novak, S. W., and Abdelrehim, I., 2004. Dating of hydrated obsidian surfaces by SIMS-SS. Journal of Radioanalytical and Nuclear Chemistry, 261(i), 51–60.

    Article  Google Scholar 

  • Liritzis, I., Stevenson, C., Novak, S., Abdelrehim, I., Perdikatsis, V., and Bonini, M., 2007. New prospects in obsidian hydration dating: an integrated approach. In Proceedings of the Hellenic Archaeometry Society. Athens, British Archaeological Reports (BAR) International Series, pp. 922.

    Google Scholar 

  • Liritzis, I., Bonini, M., and Laskaris, N., 2008a. Obsidian hydration dating by SIMS-SS: surface suitability criteria from atomic force microscopy. Surface and Interface Analysis, 40, 458–463.

    Article  Google Scholar 

  • Liritzis, I., Laskaris, N., and Bonini, M., 2008b. Nano- and micro- scale resolution in ancient obsidian artefact surfaces: the impact of AFM on the obsidian hydration dating by SIMS-SS. Physica Status Solidi, 5(12), 3704–3707.

    Article  Google Scholar 

  • Mazer, J. J., Stevenson, C. M., Ebert, W. L., and Bates, J. K., 1991. The experimental hydration of obsidian as a function of relative humidity and temperature. American Antiquity, 56, 504–513.

    Article  Google Scholar 

  • Meighan, C.W., 1976. In Taylor, R. E. Empirical Determination of Obsidian Hydration Rates from Archaeological Evidence Advances in Obsidian Glass Studies. Noyes Press: Park Ridge, New Jersey, pp. 106–119, ISBN 978-0-8155-5050-1.

    Google Scholar 

  • Meighan, C. W., and Scalise, J. L., 1988. A Compendium of the Obsidian Hydration Determinations Made at the UCLA Obsidian Hydration Laboratory: Obsidian Dates. California, LA: Institute of Archaeology, University of California, Monograph XXIX, Vol. IV, pp. 473–511.

    Google Scholar 

  • Meighan, C. W., Foote, L. J., and Aiello, P. V., 1968. Obsidian dating in West Mexican archaeology. Science, 160, 1069–1075.

    Article  Google Scholar 

  • Michels, J. W., 1986. Obsidian hydration dating. Endeavour, 10(2), 97–100.

    Article  Google Scholar 

  • Michels, J. W., Tsong, I. S. T., and Smith, G. A., 1983. Experimentally derived hydration rates in obsidian dating. Archaeometry, 25(2), 107–117.

    Article  Google Scholar 

  • Morganstein, M. E., Wicket, C. L., and Barkatt, A., 1999. Considerations of hydration-rind dating of glass artifacts: alteration morphologies and experimental evidence of hydrogeochemical soil-zone pore water control. Journal of Archaeological Science, 26, 1193–1210.

    Article  Google Scholar 

  • Newman, S., Stolper, E., and Epstein, S., 1986. Measurement of water in rhyolitic glasses: calibration of an infrared spectroscopic technique. American Mineralogist, 71, 15271541.

    Google Scholar 

  • Nowak, M., and Behrens, H., 1997. An experimental investigation of diffusion of water in haplogranitic melts. Contributions to Mineralogy and Petrology, 126, 365–376.

    Article  Google Scholar 

  • Riciputi, L. R., Elam, M. J., Anovitz, L. M., and Cole, D. R., 2002. Obsidian diffusion dating by secondary ion mass spectrometry: a test using results from Mound 65, Chalco, Mexico. Journal of Archaeological Science, 29, 1055–1075.

    Article  Google Scholar 

  • Ridings, R., 1996. Where in the world does obsidian hydration dating work? American Antiquity, 61, 136–148.

    Article  Google Scholar 

  • Rogers, A. K., 2007. Effective hydration temperature of obsidian: a diffusion-theory analysis of time-dependent hydration rates. Journal of Archaeological Science, 34, 656–665.

    Article  Google Scholar 

  • Rogers, A. K., 2008. Obsidian hydration dating: accuracy and resolution limitations imposed by intrinsic water variability. Journal of Archaeological Science, 35, 2009–2016.

    Article  Google Scholar 

  • Rogers, A. K., 2010. Accuracy of obsidian hydration dating based on obsidian-radiocarbon association and optical microscopy. Journal of Archaeological Science, 37, 3239–3246.

    Article  Google Scholar 

  • Rogers, A. K., 2012. Temperature correction for obsidian hydration dating. In Liritzis, I., and Stevenson, C. (eds.), Obsidian and Ancient Manufactured Glasses. Albuquerque: University of New Mexico Press, pp. 46–56.

    Google Scholar 

  • Rogers, A. K., and Duke, D., 2011. An archaeologically validated protocol for computing obsidian hydration rates from laboratory data. Journal of Archaeological Science, 38, 1340–1345.

    Article  Google Scholar 

  • Rogers, A. K., and Yohe II R. M., 2011. An improved equation for coso obsidian hydration dating, based on obsidian-radiocarbon association. Proceedings of the Society for California Archaeology, Vol. 25, 1–15. (http://scahome.org/sca-publications/articles-of-the-sca-proceedings/).

  • Scheetz, B. E., and Stevenson, C. M., 1988. The role of resolution and exponential ground temperature and depth of artefact recovery. Journal of Filed Archaeology, 18, 77–85.

    Google Scholar 

  • Silver, L., Ihinger, P., and Stolper, E., 1990. The influence of bulk composition on the speciation of water in silicate glasses. Contributions to Mineralogy and Petrology, 104, 142–162.

    Google Scholar 

  • Smith, J. M., and Van Hess, H. C., 1987. Introduction to Chemical Engineering Thermodynamics, 4th edn. New York: McGraw-Hill.

    Google Scholar 

  • Stevenson, C. M., and Novak, S. W., 2011. Obsidian hydration dating by infrared spectroscopy: method and calibration. Journal of Archaeological Science, 38, 1716–1726.

    Article  Google Scholar 

  • Stevenson, C. M., and Scheetz, B. E., 1989. Induced hydration rate development for obsidians from the Coso Volcanic Field: a comparison of experimental procedures. In Current Directions in California Obsidian Studies, Contributions of the University of California Archaeological Research Facility No. 48. Berkeley: University of California, pp. 23–30.

    Google Scholar 

  • Stevenson, C. M., Carpenter, J., and Scheetz, B., 1989a. Recent advances in the experimental determination and applications of obsidian hydration rates. Archaeometry, 31, 193–206.

    Article  Google Scholar 

  • Stevenson, C. M., Dinsmoor, D., and Scheetz, B., 1989b. An inter-laboratory comparison of hydration rim measurements. Internationales Association of Obsidian Studies Newsletter, 1, 7–13.

    Google Scholar 

  • Stevenson, C. M., Knauss, E., Mazer, J. J., and Bates, J. K., 1993. The homogeneity of water content in obsidian from the Coso volcanic field: implications for obsidian hydration dating. Geoarchaeology, 8(5), 371–384.

    Article  Google Scholar 

  • Stevenson, C. M., Sheppard, P. J., and Sutton, D. G., 1996. Advances in the hydration dating of New Zealand Obsidian. Journal of Archaeological Science, 23(2), 233–242.

    Article  Google Scholar 

  • Stevenson, C. M., Mazer, J. J., and Scheetz, B. E., 1998. Laboratory obsidian hydration rates: theory, method and application. In Shackley, M. S. (ed.), Archaeological Obsidian Studies: Method and Theory. New York: Plenum Press. Advances in Archaeological and museum Science, Vol. 3, pp. 181–204.

    Chapter  Google Scholar 

  • Stevenson, C. M., Gottesman, M., and Macko, M., 2000. Redefining the working assumptions of obsidian hydration dating. Journal of California and Great Basin Archaeology, 22(2), 223–236.

    Google Scholar 

  • Stevenson, C. M., Abdelrehim, I., and Novak, S. W., 2001. Infrared photoacoustic and secondary ion mass spectrometry measurements of obsidian hydration rims. Journal of Archaeological Science, 28, 109–115.

    Google Scholar 

  • Stevenson, C. M., Liritzis, I., Diakostamatiou, M., and Novak, S. W., 2002. Investigations towards the hydration dating of aegean obsidian. Mediterranean Archaeology and Archaeometry, 2(1), 93–109.

    Google Scholar 

  • Stevenson, C. M., Abdelrehim, I., and Novak, S. W., 2004. High precision dating of obsidian from the Hopewll Site and Mound City Group earthworks using secondary ion mass spectrometry. American Antiquity, 69, 555–568.

    Article  Google Scholar 

  • Stevenson, C.M., Ladefoged, T.N., Haoa, S., 2007. An upland agricultural residence on Rapa Nui: occupation of a hare oka (18-473G) in the Vaitea region. Archaeology in Oceania 42, 72–78.

    Google Scholar 

  • Stevenson, C. M., Ladefoged, T., and Novak, S. W., 2013. Prehistoric settlement chronology on RapaNui, Chile: obsidian hydration dating using infrared photoacoustic spectroscopy. Journal of Archaeological Science, 40, 3021–3030.

    Article  Google Scholar 

  • Stolper, E. M., 1982. Water in silicate glasses: An infrared spectroscopic study. Contrib. Mineral. Petrol, 81, p. 1–17.

    Google Scholar 

  • Tokoyama, T., Okumura, S., and Nakashima, S., 2008. Hydration of rhyolitic glass during weathering as characterized by IR microspectroscopy. Geochimica et Cosmochimica Acta, 72, 117–125.

    Article  Google Scholar 

  • Tomozawa, M., 1985. Concentration dependence of the diffusion coefficient of water in SiO2 glass. Journal of the American Ceramic Society, 68, C251–C252.

    Article  Google Scholar 

  • Tsong, I. S. T., Houser, C. A., Yusuf, N. A., Messier, R. F., White, W. B., and Michels, J. W., 1978. Obsidian hydration profiles measured by sputter-induced optical emission. Science, 201, 339–341.

    Article  Google Scholar 

  • Tsong, I. S. T., Houser, C. A., and Tsong, S. S. C., 1980. Depth profiles of interdiffusing species in hydrated glasses. Physic and Chemistry of Glasses, 21, 197–198.

    Google Scholar 

  • Tsong, I. S. T., Smith, G. A., Michels, J. W., Wintenberg, A. L., Miller, P. D., and Moak, C. D., 1981. Dating of obsidian artifacts by depth-profiling of artificially hydrated surface layers. Nuclear Instruments & Methods, 191, 403–407.

    Article  Google Scholar 

  • Webster, D., and Freter, A., 1990. Settlement history and the classic Collapse at Copan: a redefined chronological perspective. Latin American Antiquity, 1(1), 66–85.

    Article  Google Scholar 

  • West, G. J., Woolfenden, W., Wanket, J. A., and Anderson, R. S., 2007. Late pleistocene and holocene environments. In Jones, T. L., and Klar, K. A. (eds.), California Prehistory: Colonization, Culture, and Complexity. Walnut Creek: Altamira Press, pp. 11–34.

    Google Scholar 

  • Yokoyama, T., Okumura, S., and Nakashima, S., 2008. Hydration of rhyolitic glass during weathering as characterized by IR microspectroscopy. Geochimica et Cosmochimica Acta, 72, 117–125.

    Article  Google Scholar 

  • Zhang, Y., and Behrens, H., 2000. H2O diffusion in rhyolitic melts and glasses. Chemical Geology, 169, 243–262.

    Article  Google Scholar 

  • Zhang, Y., Stolper, E. M., and Wasserburg, G. J., 1991. Diffusion of water in rhyolytic glasses. Geochimica et Cosmochimica Acta, 55, 441–456.

    Article  Google Scholar 

  • Zhang, Y., Belcher, R., Ihinger, P. D., Wang, L., Xu, Z., and Newman, S., 1996. New calibration of infrared measurement of dissolved water in rhyolitic glass. Geochimica et Cosmochimica Acta, 61, 3089–3100.

    Article  Google Scholar 

URL

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Liritzis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Liritzis, I. (2014). Obsidian Hydration Dating. In: Rink, W., Thompson, J. (eds) Encyclopedia of Scientific Dating Methods. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6326-5_39-1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6326-5_39-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6326-5

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics