Skip to main content

Space Sunshades and Climate Change

  • Reference work entry
  • First Online:
Global Environmental Change

Part of the book series: Handbook of Global Environmental Pollution ((EGEP,volume 1))

Abstract

The accelerated rate of increase in atmospheric CO2 concentrations in recent years and the inability of humankind to move away from carbon-based energy system have led to the revival of the idea of counteracting global warming through geoengineering schemes. Two categories of geoengineering proposals have been suggested: solar radiation management (SRM) and carbon dioxide removal (CDR) methods. SRM schemes would attempt to reduce the amount of solar radiation absorbed by our planet. Placing reflectors or mirrors in space, injecting aerosols into the stratosphere, and enhancing the albedo of marine clouds are some of the proposed SRM methods. In this section, the various space-based SRM methods which are likely to reduce the incoming solar radiation uniformly across the globe are discussed. In the past decade, the effects of these space sunshades on the climate system have been simulated using climate models by reducing the amount of incoming solar radiation by appropriate amounts (reduced solar constant). Key modeling results on the extent of global and regional climate change mitigation, unintended side effects, and unmitigated effects are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbari H, Menon S, Rosenfeld A (2009) Global cooling: increasing world-wide urban albedos to offset CO2. Clim Change 94(3–4):275–286

    Article  CAS  Google Scholar 

  • Andrews T, Forster PM, Gregory JM (2009) A surface energy perspective on climate change. J Climate 22:2557–2570

    Article  Google Scholar 

  • Angel R (2006) Feasibility of cooling the Earth with a cloud of small spacecraft near the inner Lagrange point (L1). Proc Natl Acad Sci USA 103(46):17184–17189

    Article  CAS  Google Scholar 

  • Bala G, Nag B (2011) Albedo enhancement over land to counteract global warming: impacts on hydrological cycle. Clim Dyn 39:1527–1542

    Article  Google Scholar 

  • Bala G, Duffy PB, Taylor KE (2008) Impact of geoengineering schemes on the global hydrological cycle. Proc Natl Acad Sci USA 105(22):7664–7669

    Article  CAS  Google Scholar 

  • Bala G, Caldeira K, Nemani R (2010a) Fast versus slow response in climate change: implications for the global hydrological cycle. Clim Dyn 35(2–3):423–434

    Article  Google Scholar 

  • Bala G, Caldeira K, Nemani R, Cao L, Ban-Weiss G, Shin HJ (2010b) Albedo enhancement of marine clouds to counteract global warming: impacts on the hydrological cycle. Clim Dyn. doi:10.1007/s00382-010-0868-1

    Google Scholar 

  • Ban-Weiss GA, Caldeira K (2010) Geoengineering as an optimization problem. Environ Res Lett 5(3):034009

    Article  Google Scholar 

  • Bengtsson L (2006) Geo-engineering to confine climate change: is it at all feasible? Clim Change 77(3–4):229–234

    Article  Google Scholar 

  • Betts RA et al (2007) Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature 448:1037–1041

    Article  CAS  Google Scholar 

  • Boucher O, Jones A, Betts RA (2009) Climate response to the physiological impact of carbon dioxide on plants in the Met Office Unified Model HadCM3. Clim Dyn 32(2–3):237–249

    Article  Google Scholar 

  • Braesicke P, Morgenstern O, Pyle J (2011) Might dimming the sun change atmospheric ENSO teleconnections as we know them? Atmos Sci Lett 12(2):184–188

    Article  Google Scholar 

  • Budyko MI (1977) Climate Changes. American Geophysical Union, Washington DC, English translation of 1974 Russian volume, 244 pp

    Google Scholar 

  • Caldeira K, Wood L (2008) Global and Arctic climate engineering: numerical model studies. Philos Trans R Soc A 366(1882):4039–4056

    Article  Google Scholar 

  • Cao L, Bala G, Caldeira K, Nemani R, Ban-Weiss G (2010) Importance of carbon dioxide physiological forcing to future climate change. Proc Natl Acad Sci USA 107(21):9513–9518

    Article  CAS  Google Scholar 

  • Crutzen PJ (2006) Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma? Clim Change 77(3–4):211–219

    Article  CAS  Google Scholar 

  • Early JT (1989) The space based solar shield to offset greenhouse effect. J Br Interplanet Soc 42:567–569

    Google Scholar 

  • Eby M, Zickfeld K, Montenegro A, Archer D, Meissner KJ, Weaver AJ (2009) Lifetime of anthropogenic climate change: millennial time scales of potential CO2 and surface temperature perturbations. J Climate 22(10):2501–2511

    Article  Google Scholar 

  • Evans JRG, Stride EPJ, Edirisinghe MJ, Andrews DJ, Simons RR (2010) Can oceanic foams limit global warming? Climate Res 42(2):155–160

    Article  Google Scholar 

  • Gedney N, Cox PM, Betts RA, Boucher O, Huntingford C, Stott PA (2006) Detection of a direct carbon dioxide effect in continental river runoff records. Nature 439(7078):835–838

    Article  CAS  Google Scholar 

  • Govindasamy B, Caldeira K (2000) Geoengineering Earth’s radiation balance to mitigate CO2-induced climate change. Geophys Res Lett 27(14):2141–2144

    Article  CAS  Google Scholar 

  • Govindasamy B, Thompson S, Duffy PB, Caldeira K, Delire C (2002) Impact of geoengineering schemes on the terrestrial biosphere. Geophys Res Lett 29(22):2061. doi:2010.1029/2002GL015911

    Article  Google Scholar 

  • Govindasamy B, Caldeira K, Duffy PB (2003) Geoengineering Earth’s radiation balance to mitigate climate change from a quadrupling of CO2. Global Planet Change 37(1–2):157–168

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge, UK/New York

    Google Scholar 

  • Irvine PJ, Ridgwell A, Lunt DJ (2010) Assessing the regional disparities in geoengineering impacts. Geophys Res Lett 37, L18702

    Article  Google Scholar 

  • Keith DW (2001) Geoengineering. Nature 409(6818):420

    Article  CAS  Google Scholar 

  • Kravitz B, Robock A, Boucher O, Schmidt H, Taylor KE, Stenchikov G, Schulz M (2011) The Geoengineering Model Intercomparison Project (GeoMIP). Atmos Sci Lett 12(2):162–167

    Article  Google Scholar 

  • Latham J (1990) Control of global warming. Nature 347(6291):339–340

    Article  Google Scholar 

  • Latham J, Rasch P, Chen CC, Kettles L, Gadian A, Gettelman A, Morrison H, Bower K, Choularton T (2008) Global temperature stabilization via controlled albedo enhancement of low-level maritime clouds. Philos Trans R Soc A 366(1882):3969–3987

    Article  Google Scholar 

  • Lunt DJ, Ridgwell A, Valdes PJ, Seale A (2008) “Sunshade world”: a fully coupled GCM evaluation of the climatic impacts of geoengineering. Geophys Res Lett 35(12), L12710. doi:12710.11029/12008GL033674

    Article  Google Scholar 

  • Matthews HD, Caldeira K (2007) Transient climate-carbon simulations of planetary geoengineering. Proc Natl Acad Sci USA 104(24):9949–9954

    Article  CAS  Google Scholar 

  • Matthews HD, Cao L, Caldeira K (2009) Sensitivity of ocean acidification to geoengineered climate stabilization. Geophys Res Lett 36, L10706

    Article  Google Scholar 

  • McInnes CR (2010) Space-based geoengineering: challenges and requirements. Proc Inst Mech Eng Part C-J Mech Eng Sci 224(C3):571–580

    Google Scholar 

  • NAS (1992) Policy implications of greenhouse warming: mitigation, adaptation and the science base. In: National Academy of Sciences (ed) National Academy Press, Washington DC, Chap. 28 (Geoengineering), pp 433–464

    Google Scholar 

  • Pearson J, Oldson J, Levin E (2006) Earth rings for planetary environment control. Acta Astronaut 58(1):44–57

    Article  Google Scholar 

  • Rasch PJ (2010) Technical fixes and climate change: optimizing for risks and consequences. Environ Res Lett 5(3):031001

    Article  Google Scholar 

  • Ricke KL, Morgan G, Allen MR (2010) Regional climate response to solar-radiation management. Nat Geosci 3(8):537–541

    Article  CAS  Google Scholar 

  • Royal Society Report (2009) Geoengineering the climate: science, governance and uncertainty Rep. London

    Google Scholar 

  • Seifritz W (1989) Mirrors to halt global warming. Nature 340(6235):603

    Article  Google Scholar 

  • Struck C (2007) The feasibility of shading the greenhouse with dust clouds at the stable lunar Lagrange points. J Br Interplanet Soc 60(3):82–89

    Google Scholar 

  • Wigley TML (2006) A combined mitigation/geoengineering approach to climate stabilization. Science 314(5798):452–454

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Govindasamy Bala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Bala, G. (2014). Space Sunshades and Climate Change. In: Freedman, B. (eds) Global Environmental Change. Handbook of Global Environmental Pollution, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5784-4_25

Download citation

Publish with us

Policies and ethics