Skip to main content

Dissimilatory Fe(III)- and Mn(IV)-Reducing Prokaryotes

  • Reference work entry
The Prokaryotes

Abstract

Dissimilatory Fe(III) reduction is the process in which microorganisms transfer electrons to external ferric iron [Fe(III)], reducing it to ferrous iron [Fe(II)] without assimilating the iron. A wide phylogenetic diversity of microorganisms, including archaea as well as bacteria, are capable of dissimilatory Fe(III) reduction. Most microorganisms that reduce Fe(III) also can transfer electrons to Mn(IV), reducing it to Mn(II).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson RT, Lovley DR (1997) Ecology and biogeochemistry of in situ groundwater bioremediation. Adv Microbial Ecol 15:289–350

    CAS  Google Scholar 

  • Anderson RT, Rooney-Varga J, Gaw CV, Lovley DR (1998) Anaerobic benzene oxidation in the Fe(III)-reduction zone of petroleum-contaminated aquifers. Environ Sci Technol 32:1222–1229

    Article  CAS  Google Scholar 

  • Balashova VV, Zavarzin GA (1980) Anaerobic reduction of ferric iron by hydrogen bacteria. Microbiology 48:635–639

    Google Scholar 

  • Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296

    PubMed  CAS  Google Scholar 

  • Barns SM, Takala SL, Kuske CR (1999) Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. Appl Environ Microbiol 65:1731–1737

    PubMed  CAS  Google Scholar 

  • Beliaev AS, Saffarini DA (1998) Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction. J Bacteriol 180:6292–6297

    PubMed  CAS  Google Scholar 

  • Benz M, Schink B, Brune A (1998) Humic acid reduction by Propionibacterium freudenreichii and other fermenting bacteria. Appl Environ Microbiol 64:4507–4512

    PubMed  CAS  Google Scholar 

  • Boone DR, Liu Y, Zhao Z-J, Balkwill DL, Drake GT, Stevens TO, Aldrich HC (1995) Bacillus infernus sp. nov., an Fe(III)-and Mn(IV)-reducing anaerobe from the deep terrestrial subsurface. Int J Syst Bacteriol 45:441–448

    Article  PubMed  CAS  Google Scholar 

  • Bridge TM, Johnson DB (1998) Reduction of soluble iron and reductive dissolution of ferric iron-containing minerals by moderately thermophilic iron-oxidizing bacteria. Appl Environ Microbiol 64:2181–2186

    PubMed  CAS  Google Scholar 

  • Brock TD, Gustafson J (1976) Ferric iron reduction by sulfur-and iron-oxidizing bacteria. Appl Environ Microbiol 32:567–571

    PubMed  CAS  Google Scholar 

  • Bromfield SM (1954) The reduction of iron oxide by bacteria. J Soil Sci 5:129–139

    Article  Google Scholar 

  • Burdige DJ, Dhakar SP, Nealson KH (1992) Effects of manganese oxide mineralogy on microbial and chemical manganese reduction. Geomicrobiol J 10:27–48

    Article  CAS  Google Scholar 

  • Caccavo F Jr, Blakemore RP, Lovley DR (1992) A hydrogen-oxidizing, Fe(III)-reducing microorganism from the Great Bay Estuary, New Hampshire. Appl Environ Microbiol 58:3211–3216

    PubMed  CAS  Google Scholar 

  • Caccavo F Jr, Lonergan DJ, Lovley DR, Davis M, Stolz JF, McInerney MJ (1994) Geobacter sulfurreducens sp. nov., a hydrogen-and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol 60:3752–3759

    PubMed  CAS  Google Scholar 

  • Caccavo F Jr, Coates JD, Rossello-Mora RA, Ludwig W, Schleifer KH, Lovley DR, McInerney MJ (1996) Geovibrio ferrireducens, a phylogenetically distinct dissimilatory Fe(III)-reducing bacterium. Arch Microbiol 165:370–376

    Article  PubMed  CAS  Google Scholar 

  • Caccavo F Jr, Schamberger PC, Keiding K, Nielsen PH (1997) Role of hydrophobicity in adhesion of the dissimilatory Fe(III)-reducing bacterium Shewanella alga to amorphous Fe(IIII) oxide. Appl Environ Microbiol 63:3837–3843

    PubMed  CAS  Google Scholar 

  • Cairns-Smith AG, Hall AJ, Russell MJ (1992) Mineral theories of the origin of life and an iron sulfide example. Orig Life Evol Biosphere 22:161–180

    Article  CAS  Google Scholar 

  • Canfield DE, Jørgensen BB, Fossing H, Glud R, Gundersen J, Ramsing NB, Thamdrup B, Hansen JW, Nielsen LP, Hall POJ (1993) Pathways of organic carbon oxidation in three continental margin sediments. Mar Geol 113:27–40

    Article  PubMed  CAS  Google Scholar 

  • Chapelle FH, Lovley DR (1992) Competitive exclusion of sulfate reduction by Fe(III)-reducing bacteria: a mechanism for producing discrete zones of high-iron ground water. Ground Water 30:29–36

    Article  CAS  Google Scholar 

  • Christiansen N, Ahring BK (1996) Desulfitobacterium hafniense sp. nov., an anerobic, reductively dechlorinating bacterium. Int J Syst Bacteriol 46:442–448

    Article  Google Scholar 

  • Coates JD, Lonergan DJ, Lovley DR (1995) Desulfuromonas palmitatis sp. nov., a long-chain fatty acid oxidizing Fe(III) reducer from marine sediments. Arch Microbiol 164:406–413

    Article  PubMed  CAS  Google Scholar 

  • Coates JD, Lonergan DJ, Jenter H, Lovley DR (1996) Isolation of Geobacter species from diverse sedimentary environments. Appl Environ Microbiol 62:1531–1536

    PubMed  CAS  Google Scholar 

  • Coates JD, Ellis DJ, Roden E, Gaw K, Blunt-Harris EL, Lovley DR (1998) Recovery of humics-reducing bacteria from a diversity of sedimentary environment. Appl Environ Microbiol 64:1504–1509

    PubMed  CAS  Google Scholar 

  • Coates JD, Ellis DJ, Lovley DR (1999a) Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. Int J Syst Bacteriol 49(4):1615–1622

    Article  PubMed  CAS  Google Scholar 

  • Coates JD, Councell TB, Ellis DJ, Lovley DR (1999b) Carbohydrate-oxidation coupled to Fe(III) reduction, a novel form of anaerobic metabolism. Anaerobe 4:277–282

    Article  Google Scholar 

  • Coates JD, Council T, Ellis DJ (1999c) Carbohydrate oxidation coupled to Fe(III) reduction—a novel form of anaerobic metabolism. Anaerobe 4:277–282

    Article  Google Scholar 

  • Coates JD, Bhupathivaju V, Achenbach LA, McInerney MJ. Geobacter hydrogenophilus, Geobacter chapellii, Geobacter grbicium – three new strictly anaerobic dissimilatory Fe(III)-reducers. IJSB (submitted)

    Google Scholar 

  • Coleman ML, Hedrick DB, Lovley DR, White DC, Pye K (1993) Reduction of Fe(III) in sediments by sulphate-reducing bacteria. Nature 361:436–438

    Article  CAS  Google Scholar 

  • Cord-Ruwisch R, Lovley DR, Schink B (1998) Growth of Geobacter sulfurreducens with acetate in syntrophic cooperation with hydrogen-oxidizing anaerobic partners. Appl Environ Microbiol 64:2232–2236

    PubMed  CAS  Google Scholar 

  • Cummings DE, Caccavo F Jr, Spring S, Rosenzweig RF (1999) Ferribacter limneticum, gen. nov., sp. nov., an Fe(III)-reducing microorganism isolated from mining-impacted freshwater lake sediments. Arch Microbiol 171:183–188

    Article  CAS  Google Scholar 

  • Das A, Mishra AK, Roy P (1992) Anaerobic growth on elemental sulfur using dissimilar iron reduction by autotrophic Thiobacillus ferrooxidans. FEMS Microbiol Lett 97:167–172

    Article  CAS  Google Scholar 

  • De Castro AF, Ehrlich HL (1970) Reduction of iron oxide minerals by a marine Bacillus. Ant v Leeuwenhoek 36:317–327

    Article  Google Scholar 

  • de Duve C (1995) Vital dust. Basic Books, New York, p 362

    Google Scholar 

  • DiChristina TJ, DeLong EF (1993) Design and application of rRNA-targeted oligonulceotide probes for dissimilatory iron-and manganese-reducing bacterium Shewanella putrefaciens. Appl Environ Microbiol 59:4152–4160

    PubMed  CAS  Google Scholar 

  • Dixon JB, Skinner HCW (1992) Manganese minerals in surface environments. In: Skinner HCW, Fitzpatrick RW (eds) Biomineralization processes of iron and manganese. Catena Verlag, pp 31–50

    Google Scholar 

  • Dobbin PS, Warren LH, Cook NJ, McEwan AG, Powell AK, Richardson DJ (1996) Dissimilatory iron(III) reduction by Rhodobacter capsulatus. Microbiology 142:765–774

    Article  CAS  Google Scholar 

  • Fredrickson JK, Gorby YA (1996) Environmental processes mediated by iron-reducing bacteria. Curr Opin Biotech 7:287–294

    Article  PubMed  CAS  Google Scholar 

  • Fredrickson JK, Zachara JM, Kennedy DW, Dong H, Onstott TC, Hinman NW, Li SM (1998) Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. Geochim Cosmochim Acta 62:3239–3257

    Article  CAS  Google Scholar 

  • Gaspard S, Vazquez F, Holliger C (1998) Localization and solubilization of the iron(III) reductase of Geobacter sulfurreducens. Appl Environ Microbiol 64:3188–3194

    PubMed  CAS  Google Scholar 

  • Gold T (1992) The deep, hot biosphere. Proc Natl Acad Sci USA 89:6045–6049

    Article  PubMed  CAS  Google Scholar 

  • Gorby YA, Lovley DR (1991) Electron transport in the dissimilatory iron-reducer, GS-15. Appl Environ Microbiol 57:867–870

    PubMed  CAS  Google Scholar 

  • Gorby YA, Lovley DR (1992) Enzymatic uranium precipitation. Environ Sci Technol 26:205–207

    Article  CAS  Google Scholar 

  • Greene AC, Patel BKC, Sheehy AJ (1997) Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese-and iron-reducing bacterium isolated from a petroleum reservoir. Int J Syst Bacteriol 47:505–509

    Article  PubMed  CAS  Google Scholar 

  • Gunner HB, Alexander M (1964) Anaerobic growth of Fusarium oxysporum. J Bacteriol 87:1309–1316

    PubMed  CAS  Google Scholar 

  • Hammann R, Ottow JCG (1974) Reductive dissolution of Fe2O2 by saccharolytic Clostridia and Bacillus polymyxa under anaerobic conditions. Z Pflanzenernaehr Bodenkd 137:108–115

    Article  CAS  Google Scholar 

  • Heijman CG, Holliger C, Glaus MA, Schwarzenbach RP, Zeyer J (1993) Abiotic reduction of 4-chloronitrobenzene to 4-chloroaniline in a dissimilatory iron-reducing enrichment culture. Appl Environ Microbiol 59:4350–4353

    PubMed  CAS  Google Scholar 

  • Hofstetter TB, Heijman CG, Haderlein SB, Holliger C, Schwarzenbach RP (1999) Complete reduction of TNT and other (poly)nitroaromatic compounds under iron-reducing subsurface conditions. Environ Sci Technol 33:1479–1487

    Article  CAS  Google Scholar 

  • Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B:117–132

    Article  CAS  Google Scholar 

  • Johnson DB, McGinness S (1991) Ferric iron reduction by acidophilic heterotrophic bacteria. Appl Environ Microbiol 57:207–211

    PubMed  CAS  Google Scholar 

  • Jones JG, Gardener S, Simon BM (1983) Bacterial reduction of ferric iron in a stratified eutrophic lake. J Gen Microbiol 129:131–139

    CAS  Google Scholar 

  • Jones JG, Davison W, Gardener S (1984a) Iron reduction by bacteria: range of organisms involved and metals reduced. FEMS Microbiol Lett 21:133–136

    Article  CAS  Google Scholar 

  • Jones JG, Gardener S, Simon BM (1984b) Reduction of ferric iron by heterotrophic bacteria in lake sediments. J Gen Microbiol 130:45–51

    CAS  Google Scholar 

  • Kashefi K, Lovley DR (2000) Reduction of Fe(III) Mn (IV), and toxic metals 100 °C by Pyrobaculum islandicum. Appl Environ Microbiol 66(3):1050–1060

    Article  PubMed  CAS  Google Scholar 

  • Kieft TL, Fredrickson JK, Onstott TC, Gorby YA, Kostandarithes HM, Bailey TJ, Kennedy DW, Li W, Plymale AE, Spadoni CM, Gray MS (1999) Dissimilatory reduction of Fe(III) and other electron acceptors by a Thermus isolate. Appl Environ Microbiol 65:1214–1221

    PubMed  CAS  Google Scholar 

  • Kino K, Usami S (1982) Biological reduction of ferric iron by iron-and sulfur-oxidizing bacteria. Agric Biol Chem 46:803–805

    Article  CAS  Google Scholar 

  • Knight V, Blakemore R (1998) Reduction of diverse electron acceptors by Aeromonas hydrophila. Arch Microbiol 169:239–248

    Article  PubMed  CAS  Google Scholar 

  • Kostka JE, Nealson KH (1995) Dissolution and reduction of magnetite by bacteria. Environ Sci Technol 29:2535–2540

    Article  PubMed  CAS  Google Scholar 

  • Kostka JE, Stucki JW, Nealson KH, Wu J (1996) Reduction of structural Fe(III) in smectite by a pure culture of Shewanella putrefaciens strain MR-1. Clays Clay Min 44:522–529

    Article  CAS  Google Scholar 

  • Krumholz LR, Sharp R, Fishbain SS (1996) A freshwater anaerobe coupling acetate oxidation to tetrachloroethylene dehalogenation. Appl Environ Microbiol 62:4108–4113

    PubMed  CAS  Google Scholar 

  • Krumholz LR (1997) Desulfuromonas chloroethenica sp. nov. uses tetrachloroethylene and trichloroethylene as electron acceptors. Int J Syst Bacteriol 47:1262–1263

    Article  CAS  Google Scholar 

  • Laverman AM, Switzer Blum J, Schaefer JK, Phillips EJP, Lovley DR, Oremland RS (1995) Growth of strain SES-3 with arsenate and other diverse electron acceptors. Appl Environ Microbiol 61:3556–3561

    PubMed  CAS  Google Scholar 

  • Liesack W, Finster K (1994) Phylogenetic analysis of five strains of gram-negative, obligately anaerobic, sulfur-reducing bacteria and description of Desulfuromusa gen. nov., including Desulfuromusa kysingii sp. nov., Desulfuromusa bakii sp. nov., and Desulfuromusa succinoxidans sp. nov. Int J Syst Bacteriol 44:753–758

    Article  Google Scholar 

  • Lloyd JR, Macaskie LE (1996) A novel phosphorimager-based technique for monitoring the microbial reduction of technetium. Appl Environ Microbiol 62:578–582

    PubMed  CAS  Google Scholar 

  • Lloyd JR, Blunt-Harris EL, Lovley DR (1999) The periplasmic 9.6 kDa c-type cytochrome of Geobacter sulfurreducens is not an electron shuttle to Fe(III). J Bacteriol 181(24):7647–7649

    PubMed  CAS  Google Scholar 

  • Lonergan DJ, Jenter H, Coates JD, Phillips EJP, Schmidt T, Lovley DR (1996) Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J Bacteriol 178:2404–2408

    Google Scholar 

  • Lovley DR, Phillips EJP (1986a) Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac river. Appl Environ Microbiol 52:751–757

    PubMed  CAS  Google Scholar 

  • Lovley DR, Phillips EJP (1986b) Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51:683–689

    PubMed  CAS  Google Scholar 

  • Lovley DR (1987) Organic matter mineralization with the reduction of ferric iron: a review. Geomicrobiol J 5:375–399

    Article  CAS  Google Scholar 

  • Lovley DR, Phillips EJP (1987) Rapid assay for microbially reducible ferric iron in aquatic sediments. Appl Environ Microbiol 53:1536–1540

    PubMed  CAS  Google Scholar 

  • Lovley DR, Stolz JF, Nord GL, Phillips EJP (1987) Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330:252–254

    Article  CAS  Google Scholar 

  • Lovley DR, Goodwin S (1988) Hydrogen concentrations as an indicator of the predominant terminal electron accepting reactions in aquatic sediments. Geochim Cosmochim Acta 52:2993–3003

    Article  CAS  Google Scholar 

  • Lovley DR, Phillips EJP (1988a) Manganese inhibition of microbial iron reduction in anaerobic sediments. Geomicrobiol J 6:145–155

    Article  CAS  Google Scholar 

  • Lovley DR, Phillips EJP (1988b) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54:1472–1480

    PubMed  CAS  Google Scholar 

  • Lovley DR, Phillips EJP (1989) Requirement for a microbial consortium to completely oxidize glucose in Fe(III)-reducing sediments. Appl Environ Microbiol 55:3234–3236

    PubMed  CAS  Google Scholar 

  • Lovley DR, Baedecker MJ, Lonergan DJ, Cozzarelli IM, Phillips EJP, Siegel DI (1989) Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature 339:297–299

    Article  CAS  Google Scholar 

  • Lovley DR (1990) Magnetite formation during microbial dissimilatory iron reduction. In: Frankel RB, Blakemore RP (eds) Iron biominerals. Plenum, New York, pp 151–166

    Google Scholar 

  • Lovley DR, Chapelle FH, Phillips EJP (1990) Fe(III)-reducing bacteria in deeply buried sediments of the Atlantic Coastal Plain. Geology 18:954–957

    Article  CAS  Google Scholar 

  • Lovley DR (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev 55:259–287

    PubMed  CAS  Google Scholar 

  • Lovley DR, Phillips EJP, Gorby YA, Landa ER (1991) Microbial reduction of uranium. Nature 350:413–416

    Article  CAS  Google Scholar 

  • Lovley DR, Phillips EJP (1992) Reduction of uranium by Desulfovibrio desulfuricans. Appl Environ Microbiol 58:850–856

    PubMed  CAS  Google Scholar 

  • Lovley DR (1993) Dissimilatory metal reduction. Ann Rev Microbiol 47:263–290

    Article  CAS  Google Scholar 

  • Lovley DR, Roden EE, Phillips EJP, Woodward JC (1993a) Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Marine Geol 113:41–53

    Article  CAS  Google Scholar 

  • Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips EJP, Gorby YA, Goodwin S (1993b) Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159:336–344

    Article  PubMed  CAS  Google Scholar 

  • Lovley DR, Phillips EJP (1994) Novel processes for anoxic sulfate production from elemental sulfur by sulfate-reducing bacteria. Appl Environ Microbiol 60:2394–2399

    PubMed  CAS  Google Scholar 

  • Lovley DR, Chapelle FH, Woodward JC (1994a) Use of dissolved H2 concentrations to determine the distribution of microbially catalyzed redox reactions in anoxic ground water. Environ Sci Technol 28:1205–1210

    Article  PubMed  CAS  Google Scholar 

  • Lovley DR, Woodward JC, Chapelle FH (1994b) Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands. Nature 370:128–131

    Article  PubMed  CAS  Google Scholar 

  • Lovley DR (1995a) Bioremediation of organic and metal contaminants with dissimilatory metal reduction. J Ind Microbiol 14:85–93

    Article  PubMed  CAS  Google Scholar 

  • Lovley DR (1995b) Microbial reduction of iron, manganese, and other metals. Adv Agron 54:175–231

    Article  CAS  Google Scholar 

  • Lovley DR, Chapelle FH (1995) Deep subsurface microbial processes. Rev Geophys 33:365–381

    Article  Google Scholar 

  • Lovley DR, Phillips EJP, Lonergan DJ, Widman PK (1995) Fe(III) and S° reduction by Pelobacter carbinolicus. Appl Environ Microbiol 61:2132–2138

    PubMed  CAS  Google Scholar 

  • Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJP, Woodward JC (1996) Humic substances as electron acceptors for microbial respiration. Nature 382:445–448

    Article  CAS  Google Scholar 

  • Lovley DR (1997) Potential for anaerobic bioremediation of BTEX in petroleum-contaminated aquifers. J Ind Microbiol 18:75–81

    Article  CAS  Google Scholar 

  • Lovley DR, Coates JD (1997) Bioremediation of metal contamination. Curr Opin Biotech 8:285–289

    Article  PubMed  CAS  Google Scholar 

  • Lovley DR, Coates JD, Saffarini DA, Lonergan DJ (1997) Dissimilatory iron reduction. In: Winkelman G, Carrano CJ (eds) Iron and related transition metals in microbial metabolism. Harwood Academic, Chur, pp 187–215

    Google Scholar 

  • Lovley DR, Fraga JL, Blunt-Harris EL, Hayes LA, Phillips EJP, Coates JD (1998) Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydrochim Hydrobiol 26:152–157

    Article  CAS  Google Scholar 

  • Lovley DR, Blunt-Harris EL (1999) Role of humics-bound iron as an electron transfer agent in dissimilatory Fe(III) reduction. Appl Environ Microbiol 9:4252–4254

    Google Scholar 

  • Lovley DR, Fraga JL, Coates JD, Blunt-Harris EL (1999) Humics as an electron donor for anaerobic respiration. Environ Microbiol 1:89–98

    Article  PubMed  CAS  Google Scholar 

  • Lovley DR, Kashefi K, Vargas M, Tor JM, Blunt-Harris EL (2000) Reduction of humic substances and Fe(III) by hyperthermophilic microorganisms. Chem Geol

    Google Scholar 

  • Magnuson TS, Hodges-Myerson AL, Lovley DR (2000) Purification of the membrane-bound Fe(III) reductase complex from the dissimilatory Fe(III)-reducing bacterium Geobacter sulfurreducens. FEMS Microbiol Lett 185(2):205–211

    Article  PubMed  CAS  Google Scholar 

  • Malcolm RL, MacCarthy P (1986) Limitations in the use of commercial humic acids in water and soil research. Environ Sci Tech 20:904–911

    Article  CAS  Google Scholar 

  • Miller TL, Wolin MJ (1974) A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl Microbiol 27:985–987

    PubMed  CAS  Google Scholar 

  • Myers CR, Nealson KH (1988) Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240:1319–1321

    Article  PubMed  CAS  Google Scholar 

  • Myers CR, Myers JM (1992) Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1. J Bacteriol 174:3429–3438

    PubMed  CAS  Google Scholar 

  • Myers CR, Myers JM (1993) Ferric reductase is associated with the membranes of anaerobically grown Shewanella putrefaciens MR-1. FEMS Microbiol Lett 108:15–22

    Article  CAS  Google Scholar 

  • Myers CR, Myers JM (1997) Cloning and sequencing of cymA, a gene encoding a tetraheme cytochrome c required for reduction of iron(III), fumarate, and nitrate by Shewanella putrefaciens strain MR-1. J Bacteriol 179:1143–1152

    PubMed  CAS  Google Scholar 

  • Nealson KH, Saffarini D (1994) Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Ann Rev Microbiol 48:311–343

    Article  CAS  Google Scholar 

  • Nevin KP, Lovley DR (2000) Potential for nonenzymatic reduction of Fe(III) during microbial oxidation of organic matter coupled to Fe(III) reduction. Environ Sci Technol 66(5):2248–2251

    CAS  Google Scholar 

  • Nevin KP, Lovley DR (2002) Mechanisms for accessing insoluble Fe(III) oxide during dissimilatory Fe(III) reduction by Geothrix fermentans. Appl Environ Microbiol 68(5):2294–2299

    Article  PubMed  CAS  Google Scholar 

  • Newman DK, Ahmann D, Morel FMM (1998) A brief review of microbial arsenate respiration. Geomicrobiol J 15:255–268

    Article  CAS  Google Scholar 

  • Oremland RS (1994) Biogeochemical transformations of selenium in anoxic environments. In: Frankenberger WTJ, Benson SN (eds) Selenium in the environment. Marcel Dekker, New York, pp 389–419

    Google Scholar 

  • Oremland RS, Switzer Blum J, Culbertson CW, Visscher PT, Miller LG, Dowdle P, Strohmaier RE (1994) Isolation, growth, and metabolism of an obligately anaerobic, selenate-respiring bacterium, strain SES-3. Appl Environ Microbiol 60:3011–3019

    PubMed  CAS  Google Scholar 

  • Ottow JCG, von Klopotek A (1969) Enzymatic reduction of iron oxide by fungi. Appl Microbiol 18:41–43

    PubMed  CAS  Google Scholar 

  • Ottow JCG (1970) Selection, characterization and iron-reducing capacity of nitrate reductaseless (nit-) mutants of iron-reducing bacteria. Z Allg Mikrobiol 10:55–62

    Article  PubMed  CAS  Google Scholar 

  • Ottow JCG, Glathe H (1971) Isolation and identification of iron-reducing bacteria from gley soils. Soil Biol Biochem 3:43–55

    Article  Google Scholar 

  • Patrick JA, Achenbach LA, Coates JD (1999) Geobacter humireducens-Eight new humic-reducing bacteria from a diversity of environments

    Google Scholar 

  • Pedersen K, Arlinger J, Ekendahl S, Hallbeck L (1996) 16 S rRNA gene diversity of attached and unattached bacteria in boreholes along the access tunnel to the Aspo hard rock laboratory, Sweden. FEMS Microbiol Ecol 19:249–262

    CAS  Google Scholar 

  • Phillips EJP, Lovley DR (1987) Determination of Fe(III) and Fe(II) in oxalate extracts of sediment. Soil Sci Soc Am J 51:938–941

    Article  CAS  Google Scholar 

  • Phillips E, Lovley DR, Roden EE (1993) Composition of non-microbially reducible Fe(III) in aquatic sediments. Appl Environ Microbiol 59:2727–2729

    PubMed  CAS  Google Scholar 

  • Ponnamperuma FN (1972) The chemistry of submerged soils. Adv Agron 24:29–96

    Article  CAS  Google Scholar 

  • Ponnamperuma FN (1984) Effects of flooding on soils. In: Kozlowski TT (ed) Flooding and plant growth. Academic, New York, pp 9–45

    Google Scholar 

  • Pronk JT, De Bruyn JC, Bos P, Kuenen JG (1992) Anaerobic growth of Thiobacillus ferrooxidans. Appl Environ Microbiol 58:2227–2230

    PubMed  CAS  Google Scholar 

  • Roberts JL (1947) Reduction of ferric hydroxide by strains of Bacillus polymyxa. Soil Sci 63:135–140

    Article  CAS  Google Scholar 

  • Roden EE, Lovley DR (1993a) Dissimilatory Fe(III) reduction by the marine microorganism, Desulfuromonas acetoxidans. Appl Environ Microbiol 59:734–742

    PubMed  CAS  Google Scholar 

  • Roden EE, Lovley DR (1993b) Evaluation of 55Fe as a tracer of Fe(III) reduction in aquatic sediments. Geomicrobiol J 11:49–56

    Article  CAS  Google Scholar 

  • Roden EE, Zachara JM (1996) Microbial reduction of crystalline iron(III) oxides: influence of oxide surface area and potential for cell growth. Environ Sci Technol 30:1618–1628

    Article  CAS  Google Scholar 

  • Rooney-Varga JN, Anderson RT, Fraga JL, Ringelberg D, Lovley DR (1999) Microbial communities associated with anaerobic benzene mineralization in a petroleum-contaminated aquifer. Appl Environ Microbiol 65:3056–3063

    PubMed  CAS  Google Scholar 

  • Rossello-Mora RA, Ludwig W, Kampfer P, Amann R, Schleifer K-H (1995) Ferrimonas balearica gen. nov. spec. nov., a new marine facultative Fe(III)-reducing bacterium. Syst Appl Microbiol 18:196–202

    Article  Google Scholar 

  • Schink B (1992) The genus Pelobacter. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds) The Prokaryotes. Springer, New York, pp 3393–3399, http://www.prokaryotes.com}&lcub

    Google Scholar 

  • Schnell S, Ratering S, Jansen KH (1998) Simultaneous determination of iron(III), iron(II), and manganese(II) in environmental samples by ion chromatography. Environ Sci Technol 32:1530–1537

    Article  CAS  Google Scholar 

  • Schwertmann U, Cornell RM (1991) Iron oxides in the laboratory. VCH, New York, p 138

    Google Scholar 

  • Schwertmann U, Fitzpatrick RW (1992) Iron minerals in surface environments. In: Skinner HCW, Fitzpatrick RW (eds) Biomineralization processes of iron and manganese. Catena Verlag, Cremlingen, pp 7–30

    Google Scholar 

  • Scott DT, McKnight DM, Blunt-Harris EL, Kolesar SE, Lovley DR (1998) Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environ Sci Technol 32:2984–2989

    Article  CAS  Google Scholar 

  • Seeliger S, Cord-Ruwisch R, Schink B (1998) A periplasmic and extracellular c-type cytochrome of Geobacter sulfurreducens acts as a ferric iron reductase and as an electron carrier to other acceptors or to partner bacteria. J Bacteriol 180:3686–3691

    PubMed  CAS  Google Scholar 

  • Slobodkin A, Reysenbach A-L, Strutz N, Dreier M, Wiegel J (1997) Thermoterrabacterium ferrireducens gen. nov., sp. nov., a thermophilic anaerobic dissimilatory Fe(III)-reducing bacterium from a continental hot spring. Int J Syst Bacteriol 47:541–547

    Article  PubMed  CAS  Google Scholar 

  • Starkey RL, Halvorson HO (1927) Studies on the transformations of iron in nature. II: concerning the importance of microorganisms in the solution and precipitation of iron. Soil Sci 24:381–402

    Article  CAS  Google Scholar 

  • Stolz JF, Ellils JD, Switzer Blum J, Ahmann D, Lovley DR, Oremland RS (1999) Sulfurospirillum barnesii sp. nov., Sulfurospirillum arsenophilum sp. nov., new members of the Sulfurospirillum clade of the ε Proteobacteria. Int J Syst Bacteriol 49:1177–1180

    Article  PubMed  CAS  Google Scholar 

  • Stookey LL (1970) Ferrozine—a new spectrophotometric reagent for iron. Anal Chem 42:779–781

    Article  CAS  Google Scholar 

  • Straub KL, Hanzlik M, Buchholz-Cleven BEE (1998) The use of biologically produced ferrihydrite for the isolation of novel iron-reducing bacteria. Syst Appl Microbiol 21:442–449

    Article  PubMed  CAS  Google Scholar 

  • Tebo BM, Obraztsova AY (1998) Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors. FEMS Microbiol Lett 162:193–198

    Article  CAS  Google Scholar 

  • Thamdrup B, Finster K, Hansen JW, Bak F (1993) Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese. Appl Environ Microbiol 59:101–108

    PubMed  CAS  Google Scholar 

  • Troshanov EP (1968) Iron-and manganese-reducing microorganisms in ore-containing lakes of the Karelian Isthmus. Microbiology 37:786–790

    Google Scholar 

  • Utkin I, Woese C, Wiegel J (1994) Isolation and characterization of Desulfitobacterium dehalogenans gen. nov., sp. nov., an anaerobic bacterium which reductively dechlorinates chlorphenolic compounds. Int J Syst Bacteriol 44:612–619

    Article  PubMed  CAS  Google Scholar 

  • Van der Peer Y, De Wachter R (1994) TREECON for windows: a software package for the construction and drawing of evolutionary trees for microsoft windows environment. Comp Appl Biosci 10:569–570

    PubMed  Google Scholar 

  • Vargas M, Kashefi K, Blunt-Harris EL, Lovley DR (1998) Microbiological evidence for Fe(III) reduction on early Earth. Nature 395:65–67

    Article  PubMed  CAS  Google Scholar 

  • Verschuur GL (1993) Hidden attraction: the history and mystery of magnetism. Oxford University Press, New York

    Google Scholar 

  • Walker JCG (1980) Atmospheric constraints on the evolution of metabolism. Origins Life 10:93–104

    Article  CAS  Google Scholar 

  • Walker JCG (1987) Was the Archaean biosphere upside down? Nature 329:710–712

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek Lovley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Lovley, D. (2013). Dissimilatory Fe(III)- and Mn(IV)-Reducing Prokaryotes. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30141-4_69

Download citation

Publish with us

Policies and ethics