Skip to main content

Micro/Nanodroplets in Microfluidic Devices

  • Reference work entry
Springer Handbook of Nanotechnology

Part of the book series: Springer Handbooks ((SHB))

Abstract

Fluid is often transported in the form of droplets in nature. From the formation of clouds to the condensation of dew on leaves, droplets are formed spontaneously in air, on solids and in immiscible fluids. In biological systems, droplets with lipid bilayer membranes are used to transport subnanoliter amounts of reagents between organelles, between cells, and between organs, in processes that control our day-to-day metabolic activities. The precision of such systems is self-evident and proves that droplet-based systems provide intrinsically efficient ways to perform controlled transport, reactions and signaling.

This precision and efficiency can be utilized in many lab-on-a-chip applications by manipulating individual droplets using microfabricated force gradients. Complex segmented flow processes involving generating, fusing, splitting and sorting droplets have been developed to digitally control fluid volumes and concentrations to nanoliter levels. In this chapter, microfluidic techniques for manipulating droplets are reviewed and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

DEP:

dielectrophoresis

DNA:

deoxyribonucleic acid

SEM:

scanning electron microscopy

References

  1. M. G. Pollack, A. D. Shenderov, R. B. Fair: Electrowetting-based actuation of droplets for integrated microfluidics, Lab on a Chip 2, 96–101 (2002)

    Article  CAS  Google Scholar 

  2. R. H. Farahi, A. Passian, T. L. Ferrell, T. Thundat: Microfluidic manipulation via Marangoni forces, Appl. Phys. Lett. 85(18), 4237–4239 (2004)

    Article  CAS  Google Scholar 

  3. B. S. Gallardo, V. K. Gupta, F. D. Eagerton, L. I. Jong, V. S. Craig, R. R. Shah, N. L. Abbott: Electrochemical principles for active control of liquids on submillimeter scales, Science 283, 57–60 (1999)

    Article  CAS  Google Scholar 

  4. K. Hosokawa, T. Fujii, I. Endo: Handling of picoliter liquid samples in a poly(dimethysiloxane)-based microfluidic device, Anal. Chem. 71, 4781–4785 (1999)

    Article  CAS  Google Scholar 

  5. C. Quillet, B. Berge: Electrowetting: A recent outbreak, Curr. Opin. Colloid Sci. 6, 34–39 (2001)

    Article  Google Scholar 

  6. H. Moon, S. K. Cho, R. L. Garrell, C. Kim: Low voltage electrowetting-on-dielectric, J. Appl. Phys. 92(7), 4080–4087 (2002)

    Article  CAS  Google Scholar 

  7. J. Ding, K. Chakrabarty, R. B. Fair: Scheduling of microfluidic operations for reconfigurable two-dimensional electrowetting arrays, 20(12), 1463–1468 (2001)

    Google Scholar 

  8. J. Hsieh, P. Mach, F. Cattaneo, S. Yang, T. Krupenkine, K. Baldwin, J. A. Rogers: Tunable microfluidic optical-fiber devices based on electrowetting pumps and plastic microchannels, IEEE Photon. Technol. Lett. 15(1), 81–83 (2003)

    Article  Google Scholar 

  9. J. Lee, C. Kim: Surface-tension-driven microactuation based on continuous electrowetting, J. Microelectromech. Syst. 9(2), 171–180 (2000)

    Article  CAS  Google Scholar 

  10. J. Lee, H. Moon andJ. Fowler, T. Schoellhammer, C. Kim: Electrowetting and electrowetting-on-dielectric for microscale liquid handling, Sens. Actuat. A 95, 259–268 (2002)

    Article  Google Scholar 

  11. J. Yoon, R. L Garrell: Preventing biomolecular adsorption in electrowetting-based biofluidic chips, Anal. Chem. 75(19), 5097–5102 (2003)

    Article  CAS  Google Scholar 

  12. M. G. Pollack, R. B. Fair: Electrowetting-based actuation of liquid droplets for microfluidic applications, Appl. Phys. Lett. 77(11), 1725–1726 (2000)

    Article  CAS  Google Scholar 

  13. P. Paik, V. K. Pamula, M. G. Pollack, R. B. Fair: Electrowetting-based droplet mixers for microfluidic systems, Lab on a Chip 3, 28–33 (2003)

    Article  CAS  Google Scholar 

  14. P. Y. Chiou, H. Moon, H. Toshiyoshi, C. Kim, M. C. Wu: Light actuation of liquid by optoelectrowetting, Sens. Actuat. A 104, 222–228 (2003)

    Article  Google Scholar 

  15. R. A. Hayes, B. J. Feenstra: Video-speed electronic paper based on electrowetting, Nature 425, 383–385 (2003)

    Article  CAS  Google Scholar 

  16. S. K. Cho, H. Moon, J. Fowler, C. Kim: Splitting a liquid droplet for electrowetting-based microfluidics, ASME International Mechanical Engineering Congress and Exposition (ASME International, New York 2001)

    Google Scholar 

  17. S. K. Cho, H. Moon, C. Kim: Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits, J. Microelectromech. Syst. 12(1), 70–80 (2003)

    Article  Google Scholar 

  18. T. B. Jones, J. D. Fowler, Y. S. Chang, C. Kim: Frequency-based relationship of electrowetting and dielectrophoretic liquid microactuation, Langmuir 19, 7646–7651 (2003)

    Article  CAS  Google Scholar 

  19. A. A. Darhuber, J. M. Davis, S. M. Troian, W. W. Reisner: Thermocapillary actuation of liquid flow on chemically patterned surfaces, Phys. Fluids 15(5), 1295–1304 (2003)

    Article  CAS  Google Scholar 

  20. A. A. Darhuber, J. P. Valentino, S. M. Troian, S. Wagner: Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays, J. Microelectromech. Syst. 12(6), 873–879 (2003)

    Article  CAS  Google Scholar 

  21. A. A. Darhuber, J. P. Valentino, J. M. Davis, S. M. Troian: Microfluidic actuation by modulation of surface stresses, Appl. Phys. Lett. 82(4), 657–659 (2003)

    Article  CAS  Google Scholar 

  22. A. A. Darhuber, J. Z. Chen, J. M. Davis, S. M. Troian: A study of mixing in thermocapillary flows on micropatterned surfaces, Phil. Trans. Roy. Soc. Lond. A 362, 1037–1058 (2003)

    Article  Google Scholar 

  23. A. A. Darhuber, S. M. Troian: Dynamics of capillary spreading along hydrophilic microstripes, Phys. Rev. E. 64, 031603 (2001)

    Article  CAS  Google Scholar 

  24. M. G. Lippmann: Relations entre les phénomènes électriques et capillaires, Anal. Chim. Phys. 5(11), 494–549 (1875)

    Google Scholar 

  25. J. Zeng, T. Korsmeyer: Principles of droplet electrohydrodynamics for lab-on-a-chip, Lab on a Chip 4(4), 265–277 (2004)

    Article  CAS  Google Scholar 

  26. P. Paik, V. K. Pamula, R. B. Fair: Rapid droplet mixers for digital microfluidic systems, Lab on a Chip 3, 253–259 (2003)

    Article  CAS  Google Scholar 

  27. P. R. C. Gascoyne, J. V. Vykoukal, J. A. Schwartz, T. J. Anderson, D. M. Vykoukal, K. W. Current, C. McConaghy, F. F. Becker, C. Andrews: Dielectrophoresis-based programmable fluidic processors, Lab on a Chip 4(4), 299–309 (2004)

    Article  CAS  Google Scholar 

  28. Y. C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, A. P. Lee: Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting, Lab on a Chip 4(4), 292–298 (2004)

    Article  CAS  Google Scholar 

  29. S. L. Anna, N. Bontoux, H. A. Stone: Formation of dispersions using “flow focusing” in microchannels, Appl. Phys. Lett. 82(3), 364–366 (2003)

    Article  CAS  Google Scholar 

  30. Y. C. Tan, V. Cristini, A. P. Lee: Monodispersed microfluidic droplet generation by shear focusing microfluidic device, Sensors Actuat. B 114, 350–356 (2006)

    Article  Google Scholar 

  31. T. Kawakatsu, G. Trägårdh, Ch. Trägårdh, M. Nakajima, N. Oda, T. Yonemoto: The effect of the hydrophobicity of microchannels and components in water and oil phases on droplet formation in microchannel water-in-oil emulsification, Colloids Surfaces 179, 29–37 (2001)

    Article  CAS  Google Scholar 

  32. T. Nisisako, T. Tori, T. Higuchi: Droplet formation in a microchannel network, Lab on a Chip 2, 24–26 (2002)

    Article  CAS  Google Scholar 

  33. Y. C. Tan, A. P. Lee: Nanojet controlled droplet emulsion in microfluidic channels, 7th International Conference on Micro Total Analysis Systems (Transducers Research Foundation, Lake Tahoe 2003)

    Google Scholar 

  34. B. J. Briscoe, C. J. Lawrence, W. G. P. Mietus: A review of immiscible fluid mixing, Adv. Colloid Interf. Sci. 81(1), 1–17 (1999)

    Article  CAS  Google Scholar 

  35. T. Thorsen, R. W. Roberts, F. H. Arnold, S. R. Quake: Dynamic pattern formation in a vesicle-generating microfluidic device, Phys. Rev. Lett. 86(18), 4163–4166 (2001)

    Article  CAS  Google Scholar 

  36. V. Cristini, Y. C. Tan: Theory and numerical simulation of droplet dynamics in complex flows – a review, Lab on a Chip 4(4), 257–264 (2004)

    Article  CAS  Google Scholar 

  37. J. D. Tice, H. Song, A. D. Lyon, R. F. Ismagilov: Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers, Langmuir 19(22), 9127–9133 (2003)

    Article  CAS  Google Scholar 

  38. J. D. Tice, A. D. Lyon, R. F. Ismagilov: Effects of viscosity on droplet formation and mixing in microfluidic channels, Anal. Chim. Acta 507, 73–77 (2003)

    Article  Google Scholar 

  39. R. Dreyfus, P. Tabeling, H. Willaime: Ordered and disordered patterns in two-phase flows in microchannels, Phys. Rev. Lett. 90(14), 144505 (2003)

    Article  Google Scholar 

  40. B. Zheng, J. D. Tice, R. F. Ismagilov: Formation of droplets of alternating composition in microfludic channels and applications to indexing of concentration in droplet-based assays, Anal. Chem. 76(17), 4977–4982 (2004)

    Article  CAS  Google Scholar 

  41. S. Sugiura, M. Nakajima, M. Seki: Prediction of droplet diameter for microchannel emulsification, Langmuir 18, 3854–3859 (2002)

    Article  CAS  Google Scholar 

  42. Q. Xu, M. Nakajima: The generation of highly monodisperse droplets through the breakup of hydrodynamically focused microthread in a microfluidic device, Appl. Phys. Lett. 85(17), 3726–3728 (2004)

    Article  CAS  Google Scholar 

  43. I. Kobayashi, M. Nakajima, K. Chun, Y. Kikuchi, H. Fujita: Silicon array of elongated through-holes for monodisperse emulsion droplets, AIChE J. 48(8), 1639–1644 (2002)

    Article  CAS  Google Scholar 

  44. T. Kawakatsu, H. Komori, M. Nakajima, Y. Kikuchi, T. Yonemoto: Production of monodispersed oil-in-water emulsion using crossflow-type silicon microchannel plate, J. Chem. Eng. Jpn. 32(2), 241–244 (1999)

    Article  CAS  Google Scholar 

  45. T. Kawakatsu, G. Trägårdh, C. Trägårdh: Production of W/O/W emulsions and S/O/W pectin microcapsules by microchannel emulsification, Colloids Surfaces 189, 257–264 (2001)

    Article  CAS  Google Scholar 

  46. S. Okushima, T. Nisisako, T. Torii, T. Higuchi: Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices, Langmuir 20, 9905–9908 (2004)

    Article  CAS  Google Scholar 

  47. A. S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan, H. A. Stone, D. A. Weitz: Monodisperse double emulsions generated from a microcapillary device, Science 308, 537–541 (2005)

    Article  CAS  Google Scholar 

  48. K. Handique, M. A. Burns: Mathematical modeling of drop mixing in a slit-type microchannel, J. Micromech. Microeng. 11(5), 548–554 (2001)

    Article  CAS  Google Scholar 

  49. T. Nisisako, T. Torii, T. Higuchi: Novel microreactors for functional polymer beads, Chem. Eng. J. 101, 23–29 (2004)

    Article  CAS  Google Scholar 

  50. H. Song, M. R. Bringer, J. D. Tice, C. J. Gerdts, R. F. Ismagilov: Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels, Appl. Phys. Lett. 83(22), 4664–4666 (2003)

    Article  CAS  Google Scholar 

  51. H. Song, J. D. Tice, R. F. Ismagilov: A microfluidic system for controlling reaction networks in time, Angew. Chem. Int. Ed. 42(7), 768–772 (2003)

    Article  CAS  Google Scholar 

  52. J. M. Kohler, Th. Henkel, A. Grodrian, Th. Kirner, M. Roth, K. Martin, J. Metze: Digital reaction technology by micro segmented flow – components, concepts and applications, Chem. Eng. J. 101(1-3), 201–216 (2004)

    Article  CAS  Google Scholar 

  53. L. H. Hung, W. Y. Tseng, K. Choi, Y. C. Tan, K. J. Shea, A. P. Lee: Controlled droplet fusion in microfluidic devices, 8th International Conference on Micro Total Analysis Systems (R. Soc. Chem., Cambridge 2004)

    Google Scholar 

  54. D. R. Link, S. L. Anna, D. A. Weitz, H. A. Stone: Geometrically mediated breakup of drops in microfluidic devices, Phys. Rev. Lett. 92(5), 054503 (2004)

    Article  CAS  Google Scholar 

  55. Y. C. Tan, A. P. Lee: Microfluidic filtering and sorting of satellite droplets as the basis of a monodispersed micron and submicron emulsification system, Lab on a Chip 10, 1178–1183 (2005)

    Article  Google Scholar 

  56. Y. C. Tan, A. P. Lee: Droplet sorting by size in microfluidic channels, 8th International Conference on Micro Total Analysis Systems (R. Soc. Chem., Cambridge 2004)

    Google Scholar 

  57. T. Nisisako, T. Torii, T. Higuchi: Separation of satellite droplets using branch microchannel configuration, 8th International Conference on Micro Total Analysis Systems (R. Soc. Chem., Cambridge 2004)

    Google Scholar 

  58. S. Sugiura, M. Nakajima, H. Itou, M. Seki: Synthesis of polymeric microspheres with narrow size distributions employing microchannel emulsification, Macromol. Rapid Commun. 22(10), 773–778 (2001)

    Article  CAS  Google Scholar 

  59. G. Yi, S. Jeon, T. Thorsen, V. N. Manoharan, S. R. Quake, D. J. Pine, S. Yang: Generation of uniform photonic balls by template-assisted colloidal crystallization, Synthetic Met. 139, 803–806 (2003)

    Article  CAS  Google Scholar 

  60. G. Yi, T. Thorsen, V. N. Manoharan, M. Hwang, S. Jeon, D. J. Pine, S. R. Quake, S. Yang: Generation of uniform colloidal assemblies in soft microfluidic devices, Adv. Mater. 15(15), 1300–1304 (2003)

    Article  CAS  Google Scholar 

  61. G. Yi, V. N. Manoharan, S. Klein, K. R. Brzezinska, D. J. Pine, F. F. Lange, S. Yang: Monodisperse micrometer-scale spherical assemblies of polymer particles, Adv. Mater. 14(16), 1137–1140 (2002)

    Article  CAS  Google Scholar 

  62. V. Srinivasan, V. K. Pamula, R. B. Fair: An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids, Lab on a Chip 4(4), 310–315 (2004)

    Article  CAS  Google Scholar 

  63. B. Zheng, J. D. Tice, R. F. Ismagilov: Formation of arrayed droplets by soft lithography and two-phase fluid flow, and application in protein crystallization, Adv. Mater. 16(15), 1365–1368 (2004)

    Article  CAS  Google Scholar 

  64. J. R. Millman, K. H. Bhatt, B. G. Prevo, O. D. Velev: Anisotropic particle synthesis in dielectrophoretically controlled microdroplet reactors, Nature 4, 98–102 (2005)

    Article  CAS  Google Scholar 

  65. M. He, J. S. Edgar, G. D. Jeffries, R. M. Lorenz, J. P. Shelby, D. T. Chiu: Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets, Anal. Chem. 77, 1539–1544 (2005)

    Article  CAS  Google Scholar 

  66. J. S. Fisher, A. E. Lee: Cell encapsulation on a microfluidic platform, 8th International Conference on Micro Total Analysis Systems (R. Soc. Chem., Cambridge 2004) p. 67

    Google Scholar 

  67. V. Srinivasan, V. K. Pamula, R. B. Fair: Droplet-based microfluidic lab-on-a-chip for glucose detection, Anal. Chim. Acta 507, 145–150 (2004)

    Article  CAS  Google Scholar 

  68. I. Shestopalov, J. D. Tice, R. F. Ismagilov: Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system, Lab on a Chip 4, 316–321 (2004)

    Article  CAS  Google Scholar 

  69. Z. Guttenberg, H. Muller, H. Habermuller, A. Geisbauer, J. Pipper, J. Felbel, M. Kielpinski, J. Scriba, A. Wixforth: Planar chip device for PCR and hybridization with surface acoustic wave pump, Lab on a Chip 5, 308–317 (2004)

    Article  Google Scholar 

  70. M. A. Burns, C. H. Mastrangelo, T. S. Sammarco, F. P. Man, J. R. Webster, B. N. Johnson, B. Foerster, D. Jones, Y. Fields, A. R. Kaiser, D. T. Burke: Microfabricated structures for integrated DNA analysis, Proc. Natl. Acad. Sci. USA 93, 5556–5561 (1996)

    Article  CAS  Google Scholar 

  71. B. Zheng, L. S. Roach, R. F. Ismagilov: Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets, J. Am. Chem. Soc. 125, 11170–11171 (2003)

    Article  CAS  Google Scholar 

  72. B. Zheng, J. D. Tice, L. S. Roach, R. F. Ismagilov: A droplet-based, composite PDMS/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-chip X-ray diffraction, Angew. Chem. Int. Ed. 43, 2508–2511 (2004)

    Article  CAS  Google Scholar 

  73. D. Dendukuri, K. Tsoi, T. A. Hatton, P. S. Doyle: Controlled synthesis of nonspherical microparticles using microfluidics, Langmuir 21, 2113–2116 (2005)

    Article  CAS  Google Scholar 

  74. A. Terray, J. Oakey, D. W. M. Marr: Microfluidic control using colloidal devices, Science 296(7), 1841–1844 (2005)

    Article  Google Scholar 

  75. B. R. Acharya, T. Krupenkin, S. Ramachandran, Z. Wang, C. C. Huang, J. A. Rogers: Tunable optical fiber devices based on broadband long-period gratings and pumped microfluidics, Appl. Phys. Lett. 83(24), 4912–4914 (2003)

    Article  CAS  Google Scholar 

  76. F. Cattaneo, K. Baldwin, S. Yang, T. Krupenkine, S. Ramachandran, J. A. Rogers: Digitally tunable microfluidic optical fiber devices, J. Microelectromech. Syst. 12(6), 907–912 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mike Tan Ph.D. or Abraham Lee Prof. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this entry

Cite this entry

Tan, M., Lee, A. (2007). Micro/Nanodroplets in Microfluidic Devices. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-29857-1_21

Download citation

Publish with us

Policies and ethics