Skip to main content

Nanocellulose: Insight into Health and Medical Applications

  • Living reference work entry
  • First Online:
Handbook of Ecomaterials

Abstract

Discovering biomaterials of renewable and sustainable has become primary goal among researchers as a way to mitigate environmental impact. One of those abundantly present is cellulosic materials. Agricultural waste such as banana rachis, wheat straw, cassava bagasse, and coconut husk have been identified as a reliable resources in the production of cellulose fibers, a natural fillers for composite applications. Due to its high strength and stiffness, biodegradable, and biocompatible, this material has found its way in health and medical applications. Crystalline nanocellulose offers several advantages as pharmaceutical excipient that favors the extended and control release of the drugs. Whereas cellulose fiber has been incorporated and used as reinforce material for various hydrogel and composites in the development of biomaterial implants that are used as cell scaffolds or in vitro tissue reconstruction including skins replacements for burnings and wounds dressing, blood vessel growth, gum and bone reconstruction, and cardiac valve and blood stent. This chapter will focus on those development and potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Klemm D, Schumann D, Kramer F, Heßler N, Hornung M, Schmauder HP, Marsch S (2006) Nanocelluloses as innovative polymers in research and application. Adv Polym Sci 205:49–96

    Article  Google Scholar 

  2. Henriksson M, Berglund LA (2007) Structure and properties of cellulose nanocomposite films containing melamine formaldehyde. J Appl Polym Sci 106:2817–2824

    Article  Google Scholar 

  3. Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A Mater Sci Process 89:461–466

    Article  Google Scholar 

  4. Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stab 59:101–106

    Article  Google Scholar 

  5. Dufresne A (2012) Nanocellulose. From nature to high performance tailored materials. Berlin/Boston, Walter de Gruyter GmbH

    Book  Google Scholar 

  6. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466

    Article  Google Scholar 

  7. Siró I, David P (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  Google Scholar 

  8. Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. Bioresources 3:929–980

    Google Scholar 

  9. Levis SR, Deasy PB (2001) Production and evaluation of size reduced grades of microcrystalline cellulose. Int J Pharm 213:13–24

    Article  Google Scholar 

  10. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  Google Scholar 

  11. Kalia S, Dufresne A, Cherian BM, Kaith BS, Avérous L, Njuguna J, Nassiopoulos E (2011). Cellulose-based bio- and nanocomposites: a review. Int J Polym Sci 2011:Article ID 837875

    Google Scholar 

  12. Olyveira GM, Acasigua GAX, Costa LMM, Scher CR, Filho LX, Pranke P, Basmaji P (2013) Human dental pulp stem cell behavior using natural nanotolith/bacterial cellulose scaffolds for regenerative medicine. J Biomed Nanotechnol 9:1–8

    Article  Google Scholar 

  13. Takata T, Wang H-L, Miyauchi M (2001) Migration of osteoblastic cells on various guided bone regeneration membranes. Clin Oral Impl Res 12:332–338

    Article  Google Scholar 

  14. He X, Xiao Q, Lu C, Wang Y, Zhang X, Zhao J, Zhang W, Zhang X, Deng Y (2004) Uniaxially aligned electrospun all-cellulose nanocomposite nanofibers reinforced with cellulose nanocrystals: scaffold for tissue engineering. Biomacromolecules 15:618–627

    Article  Google Scholar 

  15. Favi PM, Benson RS, Neilsen NR, Hammonds RL, Bates CC, Stephens CP, Dhar MS (2013) Cell proliferation, viability, and in vitro differentiation of equine mesenchymal stem cells seeded on bacterial cellulose hydrogel scaffolds. Mater Sci Eng C 33:1935–1944

    Article  Google Scholar 

  16. Jackson JK, Letchford K, Wasserman BZ, Ye L, Hamad WY, Burt HM (2011) The use of nanocrystalline cellulose for the binding and controlled release of drugs. Int J Nanomedicine 6:321–330

    Google Scholar 

  17. Müller A, Ni Z, Hessler N, Wesarg F, Müller FA, Kralisch D, Fischer D (2013) The biopolymer bacterial nanocellulose as drug delivery system: investigation of drug loading and release using the model protein albumin. J Pharm Sci 102:579–592

    Article  Google Scholar 

  18. Kolakovic R, Peltonen L, Laukkanen A, Hirvonen J, Laaksonen T (2012) Nanofibrillar cellulose films for controlled drug delivery. Eur J Pharm Biopharm 82:308–315

    Article  Google Scholar 

  19. Gama M, Gatenholm P, Klemm D (2013) Bacterial nanocellulose: a sophisticated multifunctional material. CRC Press/Taylor & Francis Group, Boca Raton, p 263

    Google Scholar 

  20. Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose – artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603

    Article  Google Scholar 

  21. Wang Y, Wei X, Li J, Wang F, Wang Q, Kong L (2013) Homogeneous isolation of nanocellulose from cotton cellulose by high pressure homogenization. J Mater Sci Chem Eng 1:49–52

    Google Scholar 

  22. Abraham E, Deepa B, Pothen LA, Cintil J, Thomas S, John MJ, Anandjiwala R, Narine SS (2013) Environmental friendly method for the extraction of coir fibre and isolation of nanofiber. Carbohydr Polym 92:1477–1483

    Article  Google Scholar 

  23. Cherian BM, Leão AL, de Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 81:720–725

    Article  Google Scholar 

  24. Julie Chandra CS, George N, Narayanankutty SK (2016) Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohydr Polym 142:158–166

    Article  Google Scholar 

  25. Mathew AP, Oksman K, Karim Z, Liu P, Khan SA, Naseri N (2014) Process scale up and characterization of wood cellulose nanocrystals hydrolysed using bioethanol pilot plant. Ind Crop Prod 58:212–219

    Article  Google Scholar 

  26. Surip SN, Wan Jaafar WNR, Azmi NN, Anwar UMK (2012) Microscopy observation on nanocellulose from kenaf fibre. Adv Mater Res 488–489:72–75

    Article  Google Scholar 

  27. Kalita E, Nath BK, Deb P, Agan F, Islam MR, Saikia K (2015) High quality fluorescent cellulose nanofibers from endemic rice husk: isolation and characterization. Carbohydr Polym 122:308–313

    Article  Google Scholar 

  28. Chen Y, Wu Q, Huang B, Huang M, Ai X (2015) Isolation and characteristics of cellulose and nanocellulose from lotus leaf stalk agro-waste. Bioresources 10(1):684–696

    Google Scholar 

  29. Li J, Wei X, Wang Q, Chen J, Chang G, Kong L, Su J, Liu Y (2012) Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr Polym 90:1609–1613

    Article  Google Scholar 

  30. Ansel HC, Allen LV Jr, Popovich NG (1999) Pharmaceutical dosage forms and drug delivery systems. Lippincott Williams & Wilkins, Baltimore

    Google Scholar 

  31. Kumar V, Kothari SH (1999) Effect of compressional force on the crystallinity of directly compressible cellulose excipients. Int J Pharm 177:173–182

    Article  Google Scholar 

  32. Thoorens G, Krier F, Leclercq B, Carlin B, Evrard B (2014) Microcrystalline cellulose, a direct compression binder in a quality by design environment – a review. Int J Pharm 473:64–72

    Article  Google Scholar 

  33. USP37-NF32 (2014) Excipient performance. U.S. Pharmacopeia, pp 752–769

    Google Scholar 

  34. Carlin B (2008) Direct compression and the role of filler-binders. In: Augsburger LL, Augsburger LL, Hoag SW, Hoag SW (eds) Pharmaceutical dosage forms: tablets. Informa, New York, pp 173–216

    Chapter  Google Scholar 

  35. Dammström S, Salmén L, Gatenholm P (2005) The effect of moisture on the dynamic properties of bacterial cellulose/glucuronoxylan nanocomposites. Polymer 46:10364–10371

    Article  Google Scholar 

  36. Azwa ZN, Yousif BF, Manalo AC, Karunasena W (2013) A review on the degradability of polymeric composites based on natural fibres. Mater Des 47:424–442

    Article  Google Scholar 

  37. Shlieout G, Arnold K, Muller G (2002) Powder and mechanical properties of microcrystalline cellulose with different degrees of polymerization. AAPS PharmSciTech 3:E11

    Article  Google Scholar 

  38. Suzuki T, Nakagami H (1999) Effect of crystallinity of microcrystalline cellulose on the compactability and dissolution of tablets. Eur J Pharm Biopharm 47:225–230

    Article  Google Scholar 

  39. Das K, Ray D, Bandyopadhyay NR, Sengupta S (2010) Study of the properties of microcrystalline cellulose particles from different renewable resources by XRD, FTIR, nanoindentation, TGA and SEM. J Polym Environ 18:355–363

    Article  Google Scholar 

  40. Landín M, Martínez-Pacheco R, Gómez-Amoza JL, Souto C, Concheiro A, Rowe RC (1993) Effect of batch variation and source of pulp on the properties of microcrystalline cellulose. Int J Pharm 91:133–141

    Article  Google Scholar 

  41. Dybowski U (1997) Does polymerisation degree matter? Manuf Chem Aerosol News, pp 19–21

    Google Scholar 

  42. FMC (2013) Fun facts about Avicel1 microcrystalline cellulose also known as cellulose gel. http://www.fmcbiopolymer.com/Food/Home/News/FiftyYearso-fAvicel.aspx. Accessed 18 Aug 2017

  43. Rubinstein MH (1988) Tablets. In: Aulton ME, Aulton ME (eds) Pharmaceutics: the science of dosage form design. Churchill Livingstone, New York, pp 304–321

    Google Scholar 

  44. Saigal N, Baboota S, Ahuja A, Ali J (2009) Microcrystalline cellulose as a versatile excipient in drug research. J Young Pharm 1:6–12

    Article  Google Scholar 

  45. Pesonen T, Paronen P (1990) The effect of particle and powder properties on the mechanical properties of directly compressed cellulose tablets. Drug Dev Ind Pharm 16:31–54

    Article  Google Scholar 

  46. Westermarck S, Juppo AM, Kervinen L, Yliruusi J (1999) Microcrystalline cellulose and its microstructure in pharmaceutical processing. Eur J Pharm Biopharm 48:199–206

    Article  Google Scholar 

  47. Bolhuis GK, Chowhan ZT (1996) Materials for direct compaction. In: Alderborn G, Alderborn G, Nyström C, Nyström C (eds) Pharmaceutical powder compaction technology. Marcel Dekker, Inc., New York, pp 419–500

    Google Scholar 

  48. Ferrari F, Bertoni M, Bonferoni MC, Rossi S, Caramella C, Nyström C (1996) Investigation on bonding and disintegration properties of pharmaceutical materials. Int J Pharm 136:71–79

    Article  Google Scholar 

  49. Doelker E (1993) Comparative compaction properties of various microcrystalline cellulose types and generic products. Drug Dev Ind Pharm 19:2399–2471

    Article  Google Scholar 

  50. Lahdenpää E, Niskanen M, Yliruusi J (1997) Crushing strength, disintegration time and weight variation of tablets compressed from three Avicelä PH grades and their mixtures. Eur J Pharm Biopharm 43:315–322

    Article  Google Scholar 

  51. Chamsai B, Sriamornsak P (2013) Novel disintegrating microcrystalline cellulose pellets with improved drug dissolution performance. Powder Tech 233:278–285

    Article  Google Scholar 

  52. Sun CC (2008) Mechanism of moisture induced variations in true density and compaction properties of microcrystalline cellulose. Int J Pharm 346:93–101

    Article  Google Scholar 

  53. Amidon GE, Houghton ME (1995) The effect of moisture on the mechanical and powder flow properties of microcrystalline cellulose. Pharm Res 12:923–929

    Article  Google Scholar 

  54. Nokhodchi A (2005) An overview of the effect of moisture on compaction and compression. Pharm Technol:46–66

    Google Scholar 

  55. Patel S, Kaushal AM, Bansal AK (2006) Compression physics in the formulation development of tablets. Crit Rev Ther Drug Carrier Syst 23:1–65

    Article  Google Scholar 

  56. Ph.Eur.8.0 (2014) Microcrystalline cellulose. European Pharmacopoeia, pp 1824–1828

    Google Scholar 

  57. Mohd Amin MCI, Abadi AG, Ahmad N, Katas H, Jamal JA (2012) Bacterial cellulose film coating as drug delivery system: physicochemical, thermal and drug release properties. Sains Malays 41(5):561–568

    Google Scholar 

  58. Halib N, Mohd Amin MCI, Ahmad I, Abrami M, Fiorentino S, Farra R, Grassi G, Musiani F, Lapasin R, Grassi M (2014) Topological characterization of a bacterial cellulose – acrylic acid polymeric matrix. Eur J Pharm Sci 62:326–333

    Article  Google Scholar 

  59. Censi R, Di Martino P, Vermonden T, Hennink WE (2012) Hydrogels for protein delivery in tissue engineering. J Control Release 161(2):680–692

    Article  Google Scholar 

  60. Hestrin S, Schramm M (1954) Biochem J 58:345

    Article  Google Scholar 

  61. Huang Y, Zhu C, Yang J, Nie Y, Chen C, Sun D (2014) Recent advances in bacterial cellulose. Cellulose 21:1–30

    Article  Google Scholar 

  62. Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325

    Article  Google Scholar 

  63. Martin JD, Clift E, Foster J, Vanhecke D, Studer D, Wick P et al (2011) Investigating the interaction of cellulose nanofibers derived from cotton with a sophisticated 3D human lung cell coculture. Biomacromolecules 12:3666–3673

    Article  Google Scholar 

  64. Yanamala N, Farcas MT, Hatfield MK, Kisin ER, Kagan VE, Geraci CL, Shvedova AA (2014) In vivo evaluation of the pulmonary toxicity of cellulose nanocrystals: a renewable and sustainable nanomaterial of the future. ACS Sustain Chem Eng 2(7):1691–1698

    Article  Google Scholar 

  65. Vartiainen J, Pöhler T, Sirola K, Pylkkänen L, Alenius H, Hokkinen J, Tapper U, Lahtinen P, Kapanen A, Putkisto K, Hiekkataipale P, Eronen P, Ruokolainen J, Laukkanen A (2011) Health and environmental safety aspects of friction grinding and spray drying of microfibrillated cellulose. Cellulose 18:775–786

    Article  Google Scholar 

  66. Cullen RT, Searl A, Miller BG, Davis JMG, Jones AD (2000) Pulmonary and intraperitoneal inflammation induced by cellulose fibres. J Appl Toxicol 20:49–60

    Article  Google Scholar 

  67. Stefaniak AB, Seehra MS, Fix NR, Leonard SS (2014) Lung biodurability and free radical production of cellulose nanomaterials. Inhal Toxicol 26(12):733–749

    Article  Google Scholar 

  68. Chen YM, Xi T, Zheng Y, Guo T, Hou J, Wan Y, Gao C (2009) In vitro cytotoxicity of bacterial cellulose scaffold for tissue engineered bone. J Bioact Compat Polym 24:137–145

    Article  Google Scholar 

  69. Jeong SI, Lee SE, Yang H, Jin YH, Park CS, Park YS (2010) Toxicologic evaluation of bacterial synthesized cellulose in endothelial cells and animals. Mol Cell Toxicol 6:373–380

    Article  Google Scholar 

  70. Kim G-D, Yang H, Park HR, Park C-S, Park YS, Lee SE (2013) Evaluation of immunoreactivity of in vitro and in vivo models against bacterial synthesized cellulose to be used as a prosthetic biomaterial. Biochip J 7:201–209

    Article  Google Scholar 

  71. Dugan JM, Gough JE, Eichhorn SJ (2013) Bacterial cellulose scaffolds and cellulose nanowhiskers for tissue engineering. Nanomedicine 8:287–298

    Article  Google Scholar 

  72. Miyamoto T, Takahashi S, Ito H, Inagaki H, Noishiki Y (1989) Tissue biocompatibility of cellulose and its derivatives. J Biomed Mater Res 23:125–133

    Article  Google Scholar 

  73. Märtson M, Viljanto J, Hurme T, Laippala P, Saukko P (1999) Is cellulose sponge degradable or stable as implantation material? An in vivo subcutaneous study in the rat. Biomaterials 20:1989–1995

    Article  Google Scholar 

  74. Helenius G, Bäckdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res A 76:431–438

    Article  Google Scholar 

  75. Andrade FK, Silva JP, Carvalho M, Castanheira EMS, Soares R, Gama M (2011) Studies on the hemocompatibility of bacterial cellulose. J Biomed Mater Res A 98:554–566

    Article  Google Scholar 

  76. Rosamond W, Flegal K, Furie K, Go A, Greenlund K, Haase N, Hailpern S, Ho M, Howard V, Kissela B, American Heart Association Statistics Committee and Stroke Statistics Subcommittee (2008) Heart disease and stroke statistics – 2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 117(4):e25–e146

    Article  Google Scholar 

  77. Fink H, Ahrenstedt L, Bodin A, Brumer H, Gatenholm P, Krettek A, Risberg B (2011) Bacterial cellulose modified with xyloglucan bearing the adhesion peptide RGD promotes endothelial cell adhesion and metabolism – a promising modification for vascular grafts. J Tissue Eng Regen Med 5(6):454–463

    Article  Google Scholar 

  78. Hamilton, D., & Vorp, D. (2004). Encyclopedia of biomaterials and biomedical engineering. Online Version, 2551–2561

    Google Scholar 

  79. Backdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27(9):2141–2149

    Article  Google Scholar 

  80. Esguerra M, Fink H, Laschke MW, Jeppsson A, Delbro D, Gatenholm P, Menger MD, Risberg B (2010) Intravital fluorescent microscopic evaluation of bacterial cellulose as scaffold for vascular grafts. J Biomed Mater Res A93(1):140–149

    Google Scholar 

  81. Fink H, Faxalv L, Molnar GF, Drotz K, Risberg B, Lindahl TL, Sellborn A (2010) Real-time measurements of coagulation on bacterial cellulose and conventional vascular graft materials. Acta Biomater 6(3):1125–1130

    Article  Google Scholar 

  82. Bodin A, Ahrenstedt L, Fink H, Brumer H, Risberg B, Gatenholm P (2007a) Modification of nanocellulose with a xyloglucan-RGD conjugate enhances adhesion and proliferation of endothelial cells: implications for tissue engineering. Biomacromolecules 8(12):3697–3704

    Article  Google Scholar 

  83. Bodin A, Backdahl H, Fink H, Gustafsson L, Risberg B, Gatenholm P (2007b) Influence of cultivation conditions on mechanical and morphological properties of bacterial cellulose tubes. Biotechnol Bioeng 97(2):425–434

    Article  Google Scholar 

  84. Ratliff CR, Fletcher KR (2007) Skin tears: a review of the evidence to support prevention and treatment. Ostomy Wound Manage 53(3):32–42

    Google Scholar 

  85. Singer AJ, Dagum AB (2008) Current management of acute cutaneous wounds. N Engl J Med 359(10):1037–1046

    Article  Google Scholar 

  86. Roberts MJ (2007) Preventing and managing skin tears: a review. J Wound Ostomy Continence Nurs 34(3):256–259

    Article  Google Scholar 

  87. Solway DR, Consalter M, Levinson DJ (2010) Microbial cellulose wound dressing in the treatment of skin tears in the frail elderly. Wounds 22(1):17–19

    Google Scholar 

  88. Sibbald RG, Woo KY (2008) The biology of chronic foot ulcers in persons with diabetes. Diabetes Metab Res Rev 24(Suppl 1):25S–30S

    Article  Google Scholar 

  89. Hinchliffe RJ, Valk GD, Apelquist J, Armstrong DG, Bakker K, Game FL, Hartemann-Heurtier A, Londahl M, Price PE, van Houtum WH, Jeffcoate WJ (2008) A systemic review of the effectiveness of interventions to enhance the healing of chronic ulcers of the foot in diabetes. Diabetes Metab Res Rev 24(1 Suppl):119S–144S

    Article  Google Scholar 

  90. Jeffcoate WJ, Price P, Harding KG (2004) Wound healing and treatments for people with diabetic foot ulcers. Diabetes Metab Res Rev 20(1 Suppl):78S–89S

    Article  Google Scholar 

  91. Robson MC, Hill DP, Wooske ME, Steel DL (2000) Wound healing trajectories as predictors of effectiveness of therapeutic agents. Arch Surg 135(7):773

    Article  Google Scholar 

  92. Alvarez OM, Patel M, Brooker J, Markowitz L (2004) Effectiveness of a biocellulose wound dressing for the treatment of chronic venous ulcers: results of a single center randomized study involving 24 patients. Wounds 16:224–233

    Google Scholar 

  93. Schoen FJ, Levy RJ (1999) Tissue heart valves: current challenges and future research perspectives. J Biomed Mater Res 47:439–465

    Article  Google Scholar 

  94. Mori Y, Tokura H, Yoshikawa M (1997) Properties of hydrogels synthesized by freezing and thawing aqueous polyvinyl alcohol solutions and their applications. J Mater Sci 32:491–496

    Article  Google Scholar 

  95. Gordon MJ (1999) Controlling the mechanical properties of PVA hydrogels for biomedical applications. MESc thesis, University of Western Ontario

    Google Scholar 

  96. Stauffer SR, Peppas NA (1992) Poly(vinyl alcohol) hydrogels prepared by freezing-thawing cyclic processing. Polymer 33:3932–3935

    Article  Google Scholar 

  97. Wan WK, Campbell G, Zhang ZF, Hui AJ, Boughner DR (2002) Optimizing the tensile properties of polyvinyl alcohol hydrogel for the construction of a bioprosthetic heart valve stent. J Biomed Mater Res 63:854–861

    Article  Google Scholar 

  98. Mohammadi H, Boughner D, Millon LE, Wan WK (2009) Design and simulation of a poly(vinyl alcohol) – bacterial cellulose nanocomposite mechanical aortic heart valve prosthesis. Proc Inst Mech Eng H J Eng Med 223(6):697–711

    Article  Google Scholar 

  99. Kralisch D, Hessler N, Klemm D, Erdmann R, Schmidt W (2010) White biotechnology for cellulose manufacturing – the HoLiR concept. Biotechnol Bioeng 105(4):740–747

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Halib .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Halib, N., Ahmad, I. (2018). Nanocellulose: Insight into Health and Medical Applications. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-48281-1_5-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48281-1_5-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48281-1

  • Online ISBN: 978-3-319-48281-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics