Skip to main content

Vitamin B6: Effects of Deficiency, and Metabolic and Therapeutic Functions

  • Living reference work entry
  • First Online:
Handbook of Famine, Starvation, and Nutrient Deprivation

Abstract

The vitamin B6 vitamers include pyridoxine, pyridoxal, and pyridoxamine, as well as their phosphorylated forms such as pyridoxal phosphate , which is a key coenzyme for a surprising variety of enzymes involved in myriad aspects of metabolism. Vitamin B6 also contributes to the synthesis of many neurotransmitters. Given this widespread role, it is not surprising that vitamin B6 deficiency can induce many negative effects including convulsive seizures in infants, developmental delay, hypertension, and susceptibility to atherosclerosis. Conversely, the administration of vitamin B6 vitamers, or the manipulation of vitamer-bound enzymes, has shown promise against cancer, parasitic diseases such as malaria, and Parkinson’s disease. In this chapter, we examine the critical and broad role played by vitamin B6 vitamers and their coenzymes in metabolism, with a focus on the detrimental effects of deficiency and their therapeutic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

5-HT:

Serotonin

AADC:

L-Aromatic amino acid decarboxylase

AGE:

Advanced glycation end product

CBS:

Cystathionine β-synthase

DA:

Dopamine

DOPA:

Dihydroxyphenylalanine

GABA:

ɣ-Aminobutyric acid

GABA-T:

GABA transaminase

GAD:

Glutamic acid decarboxylase

Gc:

Glucocorticoid

NAS:

N-Acetylserotonin

NE:

Norepinephrine

ODC:

Ornithine decarboxylase

PL:

Pyridoxal

PLP:

Pyridoxal phosphate

PM:

Pyridoxamine

PN:

Pyridoxine

References

  • Ahmed N, Thornalley PJ (2007) Advanced glycation endproducts: what is their relevance to diabetic complications? Diabetes Obes Metab 9:233–245

    Article  CAS  PubMed  Google Scholar 

  • Alkan A, Kutlu R, Aslan M et al (2004) Pyridoxine-dependent seizures: magnetic resonance spectroscopy findings. J Child Neurol 19:75–78

    Article  PubMed  Google Scholar 

  • Alkan A, Sarac K, Kutlu R et al (2003) Early- and late-state subacute sclerosing panencephalitis: chemical shift imaging and single-voxel MR spectroscopy. AJNR Am J Neuroradiol 24:501–506

    PubMed  Google Scholar 

  • Bamberger CM, Else T, Ellebrecht I et al (2004) Vitamin B6 modulates glucocorticoid-dependent gene transcription in a promoter- and cell type-specific manner. Exp Clin Endocrinol Diabetes 112:595–600

    Article  CAS  PubMed  Google Scholar 

  • Baum MK, Mantero-Atienza E, Shor-Posner G et al (1991) Association of vitamin B6 status with parameters of immune function in early HIV-1 infection. J Acquir Immune Defic Syndr 4:1122–1132

    CAS  PubMed  Google Scholar 

  • Baxter P (2003) Pyridoxine-dependent seizures: a clinical and biochemical conundrum. Biochim Biophys Acta 1647:36–41

    Article  CAS  PubMed  Google Scholar 

  • Bendich A, Cohen M (1990) Vitamin B6 safety issues. Ann N Y Acad Sci 585:321–330

    Article  CAS  PubMed  Google Scholar 

  • Brenner BM, Cooper ME, De Zeeuw D et al (2001) Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 345:861–869

    Article  CAS  PubMed  Google Scholar 

  • Chang KC, Liang JT, Tsai PS et al (2009) Prevention of arterial stiffening by pyridoxamine in diabetes is associated with inhibition of the pathogenic glycation on aortic collagen. Br J Pharmacol 157:1419–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang SJ, Chuang HJ, Chen HH (1999) Vitamin B6 down-regulates the expression of human GPIIb gene. J Nutr Sci Vitaminol (Tokyo) 45:471–479

    Article  CAS  Google Scholar 

  • Check WA (1979) CDC study: no evidence for teratogenicity of Bendectin. JAMA 242:2518

    Article  CAS  PubMed  Google Scholar 

  • Chen JL, Francis J (2012) Pyridoxamine, advanced glycation inhibition, and diabetic nephropathy. J Am Soc Nephrol 23:6–8

    Article  CAS  PubMed  Google Scholar 

  • Clayton PT (2006) B6-responsive disorders: a model of vitamin dependency. J Inherit Metab Dis 29:317–326

    Article  CAS  PubMed  Google Scholar 

  • Cohen AC (1969) Pyridoxine in the prevention and treatment of convulsions and neurotoxicity due to cycloserine. Ann N Y Acad Sci 166:346–349

    Article  CAS  PubMed  Google Scholar 

  • Coursin DB (1954) Convulsive seizures in infants with pyridoxine-deficient diet. J Am Med Assoc 154:406–408

    Article  CAS  PubMed  Google Scholar 

  • Dakshinamurti K (1982) Neurobiology of pyridoxine. Adv Nutr Res 4:143–179

    Article  CAS  PubMed  Google Scholar 

  • Dakshinamurti K (1990) Vitamin B6. Ann N Y Acad Sci 585:1–570

    Article  Google Scholar 

  • Dakshinamurti K (1997) Vitamin receptors. In: Meyers RA (ed) Encyclopedia of molecular biology and molecular medicine, 3rd edn. Wiley-VcH Vertage Gmbh & Co., Weinheim, pp 235–244

    Google Scholar 

  • Dakshinamurti K, Dakshinamurti S (2001) Blood pressure regulation and micronutrients. Nutr Res Rev 14:3–44

    Article  CAS  PubMed  Google Scholar 

  • Dakshinamurti K, Lal KJ (1992) Vitamins and hypertension. World Rev Nutr Diet 69:40–73

    Article  CAS  PubMed  Google Scholar 

  • Dakshinamurti K, Lal KJ, Ganguly PK (1998) Hypertension, calcium channel and pyridoxine (vitamin B6). Mol Cell Biochem 188:137–148

    Article  CAS  PubMed  Google Scholar 

  • Dakshinamurti K, Leblancq WD, Herchl R et al (1976) Nonparallel changes in brain monoamines of pyridoxine-deficient growing rats. Exp Brain Res 26:355–366

    Article  CAS  PubMed  Google Scholar 

  • Dakshinamurti K, Paulose CS, Viswanathan M et al (1988) Neuroendocrinology of pyridoxine deficiency. Neurosci Biobehav Rev 12:189–193

    Article  CAS  PubMed  Google Scholar 

  • Dakshinamurti K, Paulose CS, Vriend J (1986) Hypothyroidism of hypothalamic origin in pyridoxine-deficient rats. J Endocrinol 109:345–349

    Article  CAS  PubMed  Google Scholar 

  • Dakshinamurti K, Sethi R Dhalla NS (2000) Treatment of iatrogenic and age-related hypertension and pharmaceutical compositions useful therein. USA Patent 6,051,587

    Google Scholar 

  • Dakshinamurti K, Sharma SK, Geiger JD (2003) Neuroprotective actions of pyridoxine. Biochim Biophys Acta 1647:225–229

    Article  CAS  PubMed  Google Scholar 

  • Dakshinamurti K, Sharma SK, Sundaram M (1991) Domoic acid induced seizure activity in rats. Neurosci Lett 127:193–197

    Article  CAS  PubMed  Google Scholar 

  • Dakshinamurti K, Sharma SK, Sundaram M et al (1993) Hippocampal changes in developing postnatal mice following intrauterine exposure to domoic acid. J Neurosci 13:4486–4495

    CAS  PubMed  Google Scholar 

  • Dakshinamurti K, Stephens MC (1969) Pyridoxine deficiency in the neonatal rat. J Neurochem 16:1515–1522

    Article  CAS  PubMed  Google Scholar 

  • Dakshinamurti S, Dakshinamurti K (2014) Vitamin B6. In: Zempleni J, Suttie JW, Gregory JF, Stover PJ (eds) Handbook of vitamins, 5th edn. CRC Press, Boca Raton, pp 351–395

    Google Scholar 

  • Davis BA, Cowing BE (2000) Pyridoxal supplementation reduces cell proliferation and DNA synthesis in estrogen-dependent and -independent mammary carcinoma cell lines. Nutr Cancer 38:281–286

    Article  CAS  PubMed  Google Scholar 

  • Deitrick CL, Katholi RE, Huddleston DJ et al (2001) Clinical adaptation of a high-performance liquid chromatographic method for the assay of pyridoxal 5′-phosphate in human plasma. J Chromatogr B Biomed Sci Appl 751:383–387

    Article  CAS  PubMed  Google Scholar 

  • Dhalla NS, Sethi R Dakshinamurti K (2000) Treatment of cardiovascular and related pathologies. USA Patent 6,043,259

    Google Scholar 

  • Dobbelstein H, Korner WF, Mempel W et al (1974) Vitamin B6 deficiency in uremia and its implications for the depression of immune responses. Kidney Int 5:233–239

    Article  CAS  PubMed  Google Scholar 

  • Friso S, Girelli D, Martinelli N et al (2005) Reply to J Dierkes et al. Am J Clin Nutr 81:727–728

    CAS  Google Scholar 

  • Friso S, Girelli D, Martinelli N et al (2004) Low plasma vitamin B-6 concentrations and modulation of coronary artery disease risk. Am J Clin Nutr 79:992–998

    CAS  PubMed  Google Scholar 

  • Garg MB, Ackland SP (2011) Pyridoxine to protect from oxaliplatin-induced neurotoxicity without compromising antitumour effect. Cancer Chemother Pharmacol 67:963–966

    Article  CAS  PubMed  Google Scholar 

  • Gospe SM (2002) Pyridoxine-dependent seizures: findings from recent studies pose new questions. Pediatr Neurol 26:181–185

    Article  PubMed  Google Scholar 

  • Guo L, Heinzinger NK, Stevenson M et al (1994) Inhibition of gp120-CD4 interaction and human immunodeficiency virus type 1 infection in vitro by pyridoxal 5′-phosphate. Antimicrob Agents Chemother 38:2483–2487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartman TJ, Woodson K, Stolzenberg-Solomon R et al (2001) Association of the B-vitamins pyridoxal 5′-phosphate (B(6)), B(12), and folate with lung cancer risk in older men. Am J Epidemiol 153:688–694

    Article  CAS  PubMed  Google Scholar 

  • Jain SK, Lim G (2001) Pyridoxine and pyridoxamine inhibits superoxide radicals and prevents lipid peroxidation, protein glycosylation, and (Na+ + K+)-ATPase activity reduction in high glucose-treated human erythrocytes. Free Radic Biol Med 30:232–237

    Article  CAS  PubMed  Google Scholar 

  • Jansen MC, Bueno-De-Mesquita HB, Buzina R et al (1999) Dietary fiber and plant foods in relation to colorectal cancer mortality: the seven countries study. Int J Cancer 81:174–179

    Article  CAS  PubMed  Google Scholar 

  • Komatsu S, Yanaka N, Matsubara K et al (2003) Antitumor effect of vitamin B6 and its mechanisms. Biochim Biophys Acta 1647:127–130

    Article  CAS  PubMed  Google Scholar 

  • Korchak HM, Eisenstat BA, Hoffstein ST et al (1980) Anion channel blockers inhibit lysosomal enzyme secretion from human neutrophils without affecting generation of superoxide anion. Proc Natl Acad Sci U S A 77:2721–2725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krauth-Siegel LR, Comini MA, Schlecker T (2007) The trypanothione system. Subcell Biochem 44:231–251

    Article  PubMed  Google Scholar 

  • Kwak HK, Hansen CM, Leklem JE et al (2002) Improved vitamin B-6 status is positively related to lymphocyte proliferation in young women consuming a controlled diet. J Nutr 132:3308–3313

    CAS  PubMed  Google Scholar 

  • Lal KJ, Dakshinamurti K (1993) Calcium channels in vitamin B6 deficiency-induced hypertension. J Hypertens 11:1357–1362

    Article  CAS  PubMed  Google Scholar 

  • Lal KJ, Dakshinamurti K (1995) The relationship between low-calcium-induced increase in systolic blood pressure and vitamin B6. J Hypertens 13:327–332

    Article  CAS  PubMed  Google Scholar 

  • Lal KJ, Sharma SK, Dakshinamurti K (1993) Regulation of calcium influx into vascular smooth muscle by vitamin B6. Clin Exp Hypertens 15:489–500

    Article  CAS  PubMed  Google Scholar 

  • Larsson SC, Orsini N, Wolk A (2010) Vitamin B6 and risk of colorectal cancer: a meta-analysis of prospective studies. JAMA 303:1077–1083

    Article  CAS  PubMed  Google Scholar 

  • Lecklem JE (2001) Vitamin B6. In: Rucker RB, Suttie JW, Mccormick DB (eds) Handbook of vitamins, 3rd edn. CRC Press, New York, pp 339–396

    Google Scholar 

  • Matsubara K, Komatsu S, Oka T et al (2003) Vitamin B6-mediated suppression of colon tumorigenesis, cell proliferation, and angiogenesis (review). J Nutr Biochem 14:246–250

    Article  CAS  PubMed  Google Scholar 

  • McCarty MF (2000) High-dose pyridoxine as an ‘anti-stress’ strategy. Med Hypotheses 54:803–807

    Google Scholar 

  • Metz TO, Alderson NL, Thorpe SR et al (2003) Pyridoxamine, an inhibitor of advanced glycation and lipoxidation reactions: a novel therapy for treatment of diabetic complications. Arch Biochem Biophys 419:41–49

    Article  CAS  PubMed  Google Scholar 

  • Muller IB, Wu F, Bergmann B et al (2009) Poisoning pyridoxal 5-phosphate-dependent enzymes: a new strategy to target the malaria parasite plasmodium falciparum. PLoS One 4:e4406

    Article  PubMed  PubMed Central  Google Scholar 

  • Namazi MR (2003) Pyridoxal 5′-phosphate as a novel weapon against autoimmunity and transplant rejection. FASEB J 17:2184–2186

    Article  CAS  PubMed  Google Scholar 

  • Oka T, Komori N, Kuwahata M et al (1995) Pyridoxal 5′-phosphate modulates expression of cytosolic aspartate aminotransferase gene by inactivation of glucocorticoid receptor. J Nutr Sci Vitaminol (Tokyo) 41:363–375

    Article  CAS  Google Scholar 

  • Paulose CS, Dakshinamurti K, Packer S et al (1988) Sympathetic stimulation and hypertension in the pyridoxine-deficient adult rat. Hypertension 11:387–391

    Article  CAS  PubMed  Google Scholar 

  • Pietz J, Benninger C, Schafer H et al (1993) Treatment of infantile spasms with high-dosage vitamin B6. Epilepsia 34:757–763

    Article  CAS  PubMed  Google Scholar 

  • Reinken L, Mangold B (1973) Pyridoxal phosphate values in premature infants. Int J Vitam Nutr Res 43:472–478

    CAS  PubMed  Google Scholar 

  • Rimland B, Callaway E, Dreyfus P (1978) The effect of high doses of vitamin B6 on autistic children: a double-blind crossover study. Am J Psychiatry 135:472–475

    Article  CAS  PubMed  Google Scholar 

  • Roubenoff R, Roubenoff RA, Selhub J et al (1995) Abnormal vitamin B6 status in rheumatoid cachexia. Association with spontaneous tumor necrosis factor alpha production and markers of inflammation. Arthritis Rheum 38:105–109

    Article  CAS  PubMed  Google Scholar 

  • Russo S, Kema IP, Fokkema MR et al (2003) Tryptophan as a link between psychopathology and somatic states. Psychosom Med 65:665–671

    Article  CAS  PubMed  Google Scholar 

  • Said HM (2004) Recent advances in carrier-mediated intestinal absorption of water-soluble vitamins. Annu Rev Physiol 66:419–446

    Article  CAS  PubMed  Google Scholar 

  • Salhany JM, Stevenson M (1996) Hypothesis: potential utility of pyridoxal 5′-phosphate (vitamin B6) and levamisole in immune modulation and HIV-1 infection. AIDS Patient Care STDs 10:353–356

    Article  CAS  PubMed  Google Scholar 

  • Sato D, Kobayashi S, Yasui H et al (2010) Cytotoxic effect of amide derivatives of trifluoromethionine against the enteric protozoan parasite Entamoeba histolytica. Int J Antimicrob Agents 35:56–61

    Article  CAS  PubMed  Google Scholar 

  • Seiler N (2003) Thirty years of polyamine-related approaches to cancer therapy. Retrospect and prospect. Part 1. Selective enzyme inhibitors. Curr Drug Targets 4:537–564

    Article  CAS  PubMed  Google Scholar 

  • Sharma SK, Bolster B, Dakshinamurti K (1994) Picrotoxin and pentylene tetrazole induced seizure activity in pyridoxine-deficient rats. J Neurol Sci 121:1–9

    Article  CAS  PubMed  Google Scholar 

  • Sharma SK, Dakshinamurti K (1992a) Determination of vitamin B6 vitamers and pyridoxic acid in biological samples. J Chromatogr 578:45–51

    Article  CAS  PubMed  Google Scholar 

  • Sharma SK, Dakshinamurti K (1992b) Seizure activity in pyridoxine-deficient adult rats. Epilepsia 33:235–247

    Article  CAS  PubMed  Google Scholar 

  • Sharma SK, Dakshinamurti K (1994) Effects of serotonergic agents on plasma prolactin levels in pyridoxine-deficient adult male rats. Neurochem Res 19:687–692

    Article  CAS  PubMed  Google Scholar 

  • Siow YL, Dakshinamurti K (1986) Effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 1-methyl-4-phenylpyridinium on aromatic L-amino acid decarboxylase in rat brain. Biochem Pharmacol 35:2640–2641

    Article  CAS  PubMed  Google Scholar 

  • Smith DB, Gallagher BB (1970) The effect of penicillamine on seizure threshold. The role of pyridoxine. Arch Neurol 23:59–62

    Article  CAS  PubMed  Google Scholar 

  • Stephens MC, Havlicek V, Dakshinamurti K (1971) Pyridoxine deficiency and development of the central nervous system in the rat. J Neurochem 18:2407–2416

    Article  CAS  PubMed  Google Scholar 

  • Teitelbaum JS, Zatorre RJ, Carpenter S et al (1990) Neurologic sequelae of domoic acid intoxication due to the ingestion of contaminated mussels. N Engl J Med 322:1781–1787

    Article  CAS  PubMed  Google Scholar 

  • Thomas MC, Tikellis C, Burns WM et al (2005) Interactions between renin angiotensin system and advanced glycation in the kidney. J Am Soc Nephrol 16:2976–2984

    Article  CAS  PubMed  Google Scholar 

  • Viswanathan M, Siow YL, Paulose CS et al (1988) Pineal indoleamine metabolism in pyridoxine-deficient rats. Brain Res 473:37–42

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Dakshinamurti K, Musat S et al (1999) Pyridoxal 5′-phosphate is an ATP-receptor antagonist in freshly isolated rat cardiomyocytes. J Mol Cell Cardiol 31:1063–1072

    Article  CAS  PubMed  Google Scholar 

  • Wu F, Christen P, Gehring H (2011) A novel approach to inhibit intracellular vitamin B6-dependent enzymes: proof of principle with human and plasmodium ornithine decarboxylase and human histidine decarboxylase. FASEB J 25:2109–2122

    Article  CAS  PubMed  Google Scholar 

  • Yoo DY, Kim W, Kim IH et al (2012) Combination effects of sodium butyrate and pyridoxine treatment on cell proliferation and neuroblast differentiation in the dentate gyrus of d-galactose-induced aging model mice. Neurochem Res 37:223–231

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Tsuchiya K, Kinoshita T et al (2016) Vitamin B6 prevents IL-1beta protein production by inhibiting NLRP3 inflammasome activation. J Biol Chem 291:24517–24527

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Czubryt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Dakshinamurti, K., Dakshinamurti, S., Czubryt, M.P. (2017). Vitamin B6: Effects of Deficiency, and Metabolic and Therapeutic Functions. In: Preedy, V., Patel, V. (eds) Handbook of Famine, Starvation, and Nutrient Deprivation. Springer, Cham. https://doi.org/10.1007/978-3-319-40007-5_81-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40007-5_81-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40007-5

  • Online ISBN: 978-3-319-40007-5

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics