Skip to main content

Atmospheric Dynamics of Terrestrial Planets

Handbook of Exoplanets

Abstract

The solar system presents us with a number of planetary bodies with shallow atmospheres that are sufficiently Earth-like in their form and structure to be termed “terrestrial.” These atmospheres have much in common, in having circulations that are driven primarily by heating from the Sun and radiative cooling to space, which vary markedly with latitude. The principal response to this forcing is typically in the form of a (roughly zonally symmetric) meridional overturning that transports heat vertically upward and in latitude. But even within the solar system, these planets exhibit many differences in the types of large-scale waves and instabilities that also contribute substantially to determining their respective climates. Here we argue that the study of simplified models (either numerical simulations or laboratory experiments) provides considerable insights into the likely roles of planetary size, rotation, thermal stratification, and other factors in determining the styles of global circulation and dominant waves and instability processes. We discuss the importance of a number of key dimensionless parameters, for example, the thermal Rossby and the Burger numbers as well as nondimensional measures of the frictional or radiative timescales, in defining the type of circulation regime to be expected in a prototypical planetary atmosphere subject to axisymmetric driving. These considerations help to place each of the solar system terrestrial planets into an appropriate dynamical context and also lay the foundations for predicting and understanding the climate and circulation regimes of (as yet undiscovered) Earth-like extrasolar planets. However, as recent discoveries of “super-Earth” planets around some nearby stars are beginning to reveal, this parameter space is likely to be incomplete, and other factors, such as the possibility of tidally locked rotation and tidal forcing, may also need to be taken into account for some classes of extrasolar planet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Andrews DG, Holton JR, Leovy CB (1987) Middle atmosphere dynamics. Academic, New York

    Google Scholar 

  • Barnes JR (1980) Time spectral analysis of mid-latitude disturbances in the Martian atmosphere. J Atmos Sci 37:2002–2015

    Article  ADS  Google Scholar 

  • Barnes JR (1981) Midlatitude disturbances in the Martian atmosphere: a second Mars year. J Atmos Sci 38:225–234

    Article  ADS  Google Scholar 

  • Bastin M, Read PL (1998) Experiments on the structure of baroclinic waves and zonal jets in an internally heated rotating cylinder of fluid. Phys Fluids 10:374–389

    Article  ADS  Google Scholar 

  • Beaulieu JP et al (2006) Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing. Nature 439:437–440

    Article  ADS  Google Scholar 

  • Bourke W (1974) A multilevel spectral model. I. Formulation and hemispheric integrations. Mon Weather Rev 102:687–701

    Article  ADS  Google Scholar 

  • Carone L, Keppens R, Decin L (2015) Connecting the dots – II: phase changes in the climate dynamics of tidally locked exoplanets. Mon Not R Astr Soc 453:2412–2437

    Article  ADS  Google Scholar 

  • Carone L, Keppens R, Decin L (2016) Connecting the dots – III: nightside cooling and surface friction affect climates of tidally-locked terrestrial planets. Mon Not R astr Soc 461:1981–2002

    Article  ADS  Google Scholar 

  • Collins M, Lewis SR, Read PL, Hourdin F (1996) Baroclinic wave transitions in the martian atmosphere. Icarus 120:344–357

    Article  ADS  Google Scholar 

  • Crossfield IJM (2015) Observations of exoplanet atmospheres. Pub Astron Soc Pac 127:941–960

    Article  ADS  Google Scholar 

  • Danilov S, Gurarie D (2002) Rhines scale and the spectra of β-plane turbulence with bottom drag. Phys Rev E 65:067301

    Article  ADS  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Quarterly Q J R Meteorol Soc 137(656):553–597

    Article  ADS  Google Scholar 

  • Del Genio A, Suozzo RJ (1987) A comparative study of rapidly and slowly rotating circulation regimes in a terrestrial general circulation model. J Atmos Sci 44:973–986

    Article  ADS  Google Scholar 

  • Edson A, Lee S, Bannon P, Kasting JF, Pollard D (2011) Atmospheric circulation of terrestrial planets orbiting low mass stars. Icarus 212:1–13

    Article  ADS  Google Scholar 

  • Forget F, Bertrand T, Vangvichith M, Leconte J, EM Lellouch E (2017) A post-New Horizons global climate model of Pluto including the N2, CH4 and CO cycles. Icarus 287:54–71

    Article  ADS  Google Scholar 

  • Fraedrich K, Kirk E, Lunkeit F (1998) Puma: Portable University Model of the Atmosphere. Deutsches Klimarechenzentrum Technical Report 16

    Google Scholar 

  • Frisius T, Lunkeit F, Fraedrich K, James IN (1998) Storm-track organization and variability in a simplified global circulation model. Quart J R Meteor Soc 124:1019–1043

    Article  ADS  Google Scholar 

  • Fultz D, Long RR, Owens GV et al. (1959) Studies of thermal convection in a rotating cylinder with some implications for large-scale atmospheric motions. Meteorological monographs, vol 4. American Meteorological Society, Boston

    Chapter  Google Scholar 

  • Geisler JE, Pitcher EJ, Malone RC (1983) Rotating-fluid experiments with an atmospheric general circulation model. J Geophys Res 88:9706–9716

    Article  ADS  Google Scholar 

  • Ghil M, Childress S (1987) Topics in geophysical fluid dynamics: atmospheric dynamics, dynamo theory and climate dynamics. Springer, New York

    Book  Google Scholar 

  • Gill AE (1980) Some simple solutions for heat induced tropical circulation. Quart J R Meteorol Soc 106:447–462

    Article  ADS  Google Scholar 

  • Held IM (1978) The vertical scale of an unstable baroclinic wave and its importance for eddy heat flux parameterizations. J Atmos Sci 35:572–576

    Article  ADS  Google Scholar 

  • Held IM, Hou AY (1980) Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J Atmos Sci 37:515–533

    Article  ADS  MathSciNet  Google Scholar 

  • Hide R (1953) Some experiments on thermal convection in a rotating liquid. Quart J R Meteorol Soc 79:161

    Article  ADS  Google Scholar 

  • Hide R, Mason PJ (1975) Sloping convection in a rotating fluid. Adv Phys 24:47–99

    Article  ADS  Google Scholar 

  • Hoskins BJ, Simmons AJ (1975) A multi-layer spectral model and the semi-implicit method. Quart J R Meteor Soc 101:637–655

    Article  ADS  Google Scholar 

  • Hou AY (1984) Axisymmetric circulations forced by heat and momentum sources: a simple model applicable to the Venus atmosphere. J Atmos Sci 41:3437–3455

    Article  ADS  Google Scholar 

  • Hubbard WB, Yelle RV, Lunine JL (1990) Nonisothermal Pluto atmosphere models. Icarus 84:1–11

    Article  ADS  Google Scholar 

  • Ingersoll AP, Dobrovolskis AR (1978) Venus’ rotation and atmospheric tides. Nature

    Google Scholar 

  • Jenkins GS (1996) A sensitivity study of changes in Earth’s rotation rate with an atmospheric general circulation model. Glob Plan Change 11:141–154

    Article  ADS  Google Scholar 

  • Joshi MM (2003) Climate model studies of synchronously rotating planets. Astrobiology 3:415–427

    Article  ADS  Google Scholar 

  • Joshi MM, Haberle RM, Reynolds RT (1997) Simulations of the atmospheres of synchronously rotating terrestrial planets orbiting M Dwarfs: conditions for atmospheric collapse and the implications for habitability. Icarus 129:450–465

    Article  ADS  Google Scholar 

  • Kållberg P, Berrisford P, Hoskins B et al. (2004) ERA-40 atlas. ERA40 Project Reports Series 19, ECMWF

    Google Scholar 

  • Kaspi Y, Showman AP (2015) Atmospheric dynamics of terrestrial exoplanets over a wide range of orbital and atmospheric parameters. Astrophys J 804:60

    Article  ADS  Google Scholar 

  • Kraucunas I, Hartmann DL (2005) Equatorial superrotation and the factors controlling the zonal-mean zonal winds in the tropical upper troposphere. J Atmos Sci 62:371–389

    Article  ADS  Google Scholar 

  • Lebonnois S, Hourdin F, Eymet V et al (2010) Superrotation of Venus’ atmosphere analyzed with a full general circulation model. J Geophys Res 115:E06006

    Article  ADS  Google Scholar 

  • Lebonnois S, Burgalat J, Rannou P, Charnay B (2012) Titan global climate model: a new 3-dimensional version of the IPSL Titan GCM. Icarus 218(1):707–722

    Article  ADS  Google Scholar 

  • Lebonnois S, Sugimoto N, Gilli G (2016) Wave analysis in the Venus atmosphere below 100-km, simulated by the LMD Venus GCM. Icarus 278:38–51

    Article  ADS  Google Scholar 

  • Leconte J, Wu H, Menou K, Murray N (2015) Asynchronous rotation of Earth-mass planets in the habitable zone of lower-mass stars. Science

    Google Scholar 

  • Leovy CB (1973) Rotation of the upper atmosphere of Venus. J Atmos Sci 30:1218–1220

    Article  ADS  Google Scholar 

  • Lewis S, Read P (2003) Equatorial jets in the dusty Martian atmosphere. J Geophys Res E: Planets 108(4):15

    Google Scholar 

  • Lewis SR, Collins M, Read PL et al (1999) A climate database for Mars. J Geophys Res 104:24177–24194

    Article  ADS  Google Scholar 

  • Lorenz EN (1969) The nature and theory of the general circulation of the atmosphere. T. P. 115, No. 218, W. M. O., Geneva

    Google Scholar 

  • Lorenz EN (1993) The essence of chaos. UCL Press, London

    Book  Google Scholar 

  • Mayor M, Udry S, Lovis C et al (2009) The HARPS search for southern extra-solar planets XIII. A planetary system with 3 super-Earths (4.2, 6.9, and 9.2 M). Astron Astrophys 493:639–644

    Article  ADS  Google Scholar 

  • McGovern WE, Gross SH, Rasool SI (1965) Rotation period of the planet Mercury. Nature 208:375

    Article  ADS  Google Scholar 

  • Merlis TM, Schneider T (2010) Atmospheric dynamics of Earth-like tidally locked aquaplanets. J Adv Model Earth Syst 2:13

    Article  Google Scholar 

  • Mitchell J, Vallis GK (2010) The transition to superrotation in terrestrial atmospheres. J Geophys Res (Planets) 115:E12,008, 17

    Google Scholar 

  • Navarra A, Boccaletti C (2002) Numerical general circulation experiments of sensitivity to Earth rotation rate. Climate Dyn 19:467–483

    Article  ADS  Google Scholar 

  • Noda S, Ishiwatari M, Nakajima K et al (2017) The circulation and day-night heat transport in the atmosphere of a synchronously rotating aquaplanet: dependence on planetary rotation rate. Icarus 282:1–18

    Article  ADS  Google Scholar 

  • Penn J, Vallis GK (2017) The thermal phase curve offset on tidally and nontidally locked exoplanets: A shallow water model. Astrophys J 842(2):101. http://stacks.iop.org/0004-637X/842/i=2/a=101

    Article  ADS  Google Scholar 

  • Pettengill GH, Dyce RB (1965) A radar determination of the rotation of the planet Mercury. Nature 206:1240

    Article  ADS  Google Scholar 

  • Pinto JRD, Mitchell JL (2014) Atmospheric superrotation in an idealized GCM: parameter dependence of the eddy response. Icarus 238:93–109

    Article  ADS  Google Scholar 

  • Potter SF, Vallis GK, Mitchell JL (2014) Spontaneous superrotation and the role of Kelvin waves in an idealized dry GCM. J Atmos Sci 71(2):596–614

    Article  ADS  Google Scholar 

  • Read PL (1986) Super-rotation and diffusion of axial angular momentum: II. A review of quasi-axisymmetric models of planetary atmospheres. Quart J R Meteorol Soc 112:253–272

    Article  ADS  Google Scholar 

  • Read PL (2001) Transition to geostrophic turbulence in the laboratory, and as a paradigm in atmospheres and oceans. Surv Geophys 22:265–317

    Article  ADS  Google Scholar 

  • Read PL, Lebonnois S (2018, in press) Super-rotation on Venus, Titan and elsewhere. Ann Rev Earth Plan Sci 46

    Google Scholar 

  • Read PL, Lewis SR (2004) The Martian climate revisited: atmosphere and environment of a desert planet. Springer-Praxis, Berlin/Heidelberg/New York

    Google Scholar 

  • Read PL, Pérez EP, Moroz IM, Young RMB (2015) General circulation of planetary atmospheres: insights from rotating annulus and related experiments. In: von Larcher T, Williams PD (eds) Modelling atmospheric and oceanic flows: insights from laboratory experiments and numerical simulations. American Geophysical Union/Wiley, Hoboken, pp 9–44

    Google Scholar 

  • Rhines PB (1975) Waves and turbulence on a β-plane. J Fluid Mech 69:417–443

    Article  ADS  Google Scholar 

  • Sánchez-Lavega A, Lebonnois S, Imamura T, Read P, Luz D (2017) The atmospheric dynamics of Venus. Space Sci Rev 212:1541–1616

    Article  ADS  Google Scholar 

  • Saravanan R (1993) Equatorial superrotation and maintenance of the general circulation in two-level models. J Atmos Sci 50:1221–1227

    Article  ADS  Google Scholar 

  • Schneider T (2006) The general circulation of the atmosphere. Ann Rev Earth Plan Sci 34:655–688

    Article  ADS  Google Scholar 

  • Selsis F, Kasting JF, Levrard B et al (2007) Habitable planets around the star Gliese 581? Astron Astrophys 476:1373–1387

    Article  ADS  Google Scholar 

  • Showman AP, Cho J, Menou K (2010) Atmospheric circulation of extrasolar planets. In: Seager S (ed) Exoplanets. University of Arizona Press, Arizona, pp 471–516

    Google Scholar 

  • Showman AP, Lewis NK, Fortney JJ (2015) Three-dimensional atmospheric circulation of warm and hot Jupiters: effects of orbital distance, rotation period and nonsynchronous rotation. Astrophys J 801:95

    Article  ADS  Google Scholar 

  • Stone P (1978) Baroclinic adjustment. J Atmos Sci 35:561–571

    Article  ADS  Google Scholar 

  • Suarez MJ, Duffy DG (1992) Terrestrial superrotation: a bifurcation of the general circulation. J Atmos Sci 49:1541–1554

    Article  ADS  Google Scholar 

  • Udry S, Bonfils X, Delfosse X et al (2007) The HARPS search for southern extra-solar planets XI. Super-Earths (5 and 8 M) in a 3-planet system. Astron Astrophys 469:L43–L47

    Article  ADS  Google Scholar 

  • Vallis GK (2016) Geophysical fluid dynamics: whence, whither and why? Proc Roy Soc A 472: 1–23

    Article  Google Scholar 

  • Vallis GK (2017) Atmospheric and oceanic fluid dynamics: fundamentals and large-scale circulation, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Vallis GK, Maltrud ME (1993) Generation of mean flows and jets on a beta plane and over topography. J Phys Oceanog 23:1346–1362

    Article  ADS  Google Scholar 

  • Vallis GK, Colyer G, Geen R et al (2017) Isca, v1.0: a framework for the global modelling of the atmospheres of earth and other planets at varying levels of complexity. Geo Model Dev Disc 2017:1–25. https://www.geosci-model-dev-discuss.net/gmd-2017-243/

    Google Scholar 

  • von Hardenberg J, Fraedrich K, Lunkeit F, Provenzale A (2000) Transient chaotic mixing during a baroclinic life cycle. Chaos 10:122–134

    Article  ADS  MathSciNet  Google Scholar 

  • Wang Y, Read PL, Tabataba-Vakili F, Young RMB (2017) Comparative terrestrial atmospheric circulation regimes in simplified global circulation models: I. From cyclostrophic super-rotation to geostrophic turbulence. Quart J R Meteorol Soc submitted

    Google Scholar 

  • Williams GP (1988a) The dynamical range of global circulations – I. Clim Dyn 2:205–260

    Article  Google Scholar 

  • Williams GP (1988b) The dynamical range of global circulations – II. Clim Dyn 3:45–84

    Article  Google Scholar 

  • Williams GP (2003) Barotropic instability and equatorial superrotation. J Atmos Sci 62:2136–2152

    Article  ADS  MathSciNet  Google Scholar 

  • Williams GP, Holloway JL (1982) The range and unity of planetary circulations. Nature 297: 295–299

    Article  ADS  Google Scholar 

  • Wordsworth RD, Read PL, Yamazaki YH (2008) Turbulence, waves and jets in a differentially heated rotating annulus experiment. Phys Fluids 20:126602. https://doi.org/10.1063/1.2990,042

    Article  ADS  Google Scholar 

  • Yelle RV, Lunine JL, Pollack JB, Brown RH (1995) Lower atmospheric structure and surface-atmosphere interactions on Triton. In: Cruikshank DP, Matthews MS Schumann AM (eds) Neptune and triton. University of Arizona Press, Tucson, pp 1031–1105

    Google Scholar 

  • Zalucha AM (2016) An atmospheric general circulation model for Pluto with predictions for New Horizons temperature profiles. Mon Not R astr Soc 459:902–923

    Article  ADS  Google Scholar 

  • Zalucha AM, Michaels TI (2013) A 3D general circulation model for Pluto and Triton with fixed volatile abundance and simplified surface forcing. Icarus 223:819–831

    Article  ADS  Google Scholar 

  • Zurita-Gotor P, Lindzen R (2007) Theories of baroclinic adjustment and eddy equilibration. In: Schneider T, Sobel A (eds) The global circulation of the atmosphere: phenomena, theory, challenges. Princeton University Press, Princeton

    Google Scholar 

Download references

Acknowledgements

Thanks are due to the many colleagues and students who have contributed to our understanding of this subject and carried out some of the research described herein, particularly Raymond Hide, Sebastien Lebonnois, James Penn, Fachreddin Tabataba-Vakili, Yixiong Wang, and Gareth Williams. GKV also acknowledges support from the Leverhulme Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter L. Read .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Read, P.L., Lewis, S.R., Vallis, G.K. (2018). Atmospheric Dynamics of Terrestrial Planets. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-30648-3_50-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30648-3_50-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30648-3

  • Online ISBN: 978-3-319-30648-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Atmospheric Dynamics of Terrestrial Planets
    Published:
    17 May 2018

    DOI: https://doi.org/10.1007/978-3-319-30648-3_50-2

  2. Original

    Atmospheric Dynamics of Terrestrial Planets
    Published:
    27 February 2018

    DOI: https://doi.org/10.1007/978-3-319-30648-3_50-1