Skip to main content
Log in

The Atmospheric Dynamics of Venus

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

We review our current knowledge of the atmospheric dynamics of Venus prior to the Akatsuki mission, in the altitude range from the surface to approximately the cloud tops located at about 100 km altitude. The three-dimensional structure of the wind field in this region has been determined with a variety of techniques over a broad range of spatial and temporal scales (from the mesoscale to planetary, from days to years, in daytime and nighttime), spanning a period of about 50 years (from the 1960s to the present). The global panorama is that the mean atmospheric motions are essentially zonal, dominated by the so-called super-rotation (an atmospheric rotation that is 60 to 80 times faster than that of the planetary body). The zonal winds blow westward (in the same direction as the planet rotation) with a nearly constant speed of \(\sim 100~\mathrm{m}\, \mathrm{s}^{-1}\) at the cloud tops (65–70 km altitude) from latitude 50°N to 50°S, then decreasing their speeds monotonically from these latitudes toward the poles. Vertically, the zonal winds decrease with decreasing altitude towards velocities \(\sim 1\text{--}3~\mathrm{m}\,\mathrm{s}^{-1}\) in a layer of thickness \(\sim 10~\text{km}\) close to the surface. Meridional motions with peak speeds of \(\sim 15~\mathrm{m}\,\mathrm{s}^{-1}\) occur within the upper cloud at 65 km altitude and are related to a Hadley cell circulation and to the solar thermal tide. Vertical motions with speeds \(\sim1\text{--}3~\mathrm{m}\, \mathrm{s}^{-1}\) occur in the statically unstable layer between altitudes of \(\sim 50 \text{--} 55~\text{km}\). All these motions are permanent with speed variations of the order of \(\sim10\%\). Various types of wave, from mesoscale gravity waves to Rossby-Kelvin planetary scale waves, have been detected at and above cloud heights, and are considered to be candidates as agents for carrying momentum that drives the super-rotation, although numerical models do not fully reproduce all the observed features. Momentum transport by atmospheric waves and the solar tide is thought to be an indispensable component of the general circulation of the Venus atmosphere. Another conspicuous feature of the atmospheric circulation is the presence of polar vortices. These are present in both hemispheres and are regions of warmer and lower clouds, seen prominently at infrared wavelengths, showing a highly variable morphology and motions. The vortices spin with a period of 2–3 days. The South polar vortex rotates around a geographical point which is itself displaced from the true pole of rotation by \(\sim 3\) degrees. The polar vortex is surrounded and constrained by the cold collar, an infrared-dark region of lower temperatures. We still lack detailed models of the mechanisms underlying the dynamics of these features and how they couple (or not) to the super-rotation. The nature of the super-rotation relates to the angular momentum stored in the atmosphere and how it is transported between the tropics and higher latitudes, and between the deep atmosphere and upper levels. The role of eddy processes is crucial, but likely involves the complex interaction of a variety of different types of eddy, either forced directly by radiative heating and mechanical interactions with the surface or through various forms of instability. Numerical models have achieved some significant recent success in capturing some aspects of the observed super-rotation, consistent with the scenario discussed by Gierasch (J. Atmos. Sci. 32:1038–1044, 1975) and Rossow and Williams (J. Atmos. Sci. 36:377–389, 1979), but many uncertainties remain, especially in the deep atmosphere. The theoretical framework developed to explain the circulation in Venus’s atmosphere is reviewed, as well as the numerical models that have been built to elucidate the super-rotation mechanism. These tools are used to analyze the respective roles of the different waves in the processes driving the observed motions. Their limitations and suggested directions for improvements are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

References

  • M.J. Alexander, A mechanism for the Venus thermospheric super-rotation. Geophys. Res. Lett. 19, 2207–2210 (1992)

    Article  ADS  Google Scholar 

  • F. Altieri, A. Migliorini, L. Zasova, A. Shakun, G. Piccioni, G. Bellucci, Modeling VIRTIS/VEX \(\mathrm{O}_{2}(a1\Delta g)\) nightglow profiles affected by the propagation of gravity waves in the Venus upper mesosphere. J. Geophys. Res., Planets 119, 2300–2316 (2014)

    Article  ADS  Google Scholar 

  • H. Ando, T. Imamura, T. Tsuda, S. Tellmann, M. Pätzold, B. Häusler, Vertical wavenumber spectra of gravity waves in the Venus atmosphere obtained from Venus Express radio occultation data: evidence for saturation. J. Atmos. Sci. 72, 2318–2329 (2015)

    Article  ADS  Google Scholar 

  • H. Ando, N. Sugimoto, M. Takagi, H. Kashimura, T. Imamura, Y. Matsuda, The puzzling Venusian polar atmospheric structure reproduced by a general circulation model. Nat. Commun. 1, 101038 (2016)

    Google Scholar 

  • D.G. Andrews, J.R. Holton, C.B. Leovy, Middle Atmosphere Dynamics (Academic Press, New York, 1987). 489 pp

    Google Scholar 

  • M. Angelats-i-Coll, F. Forget, M.A. López-Valverde, F. Gonzalez-Galindo, The first Mars thermospheric general circulation model: the Martian atmosphere from the ground to 240 km. Geophys. Res. Lett. 32(4), L05201 (2005). doi:10.1029/2004GL021368

    Article  Google Scholar 

  • J. Apt, R.A. Brown, R.M. Goody, The character of the thermal emission from Venus. J. Geophys. Res. 85, 7934–7940 (1980)

    Article  ADS  Google Scholar 

  • N. Baker, C.B. Leovy, Zonal winds near Venus’ cloud top level: a model study of the interaction between the zonal mean circulation and the semidiurnal tide. Icarus 69, 202–220 (1987)

    Article  ADS  Google Scholar 

  • R.D. Baker, G. Schubert, P.W. Jones, Cloud-level penetrative compressible convection in the Venus atmosphere. J. Atmos. Sci. 55, 3–18 (1998)

    Article  ADS  Google Scholar 

  • R.D. Baker, G. Schubert, P.W. Jones, Convectively generated internal gravity waves in the lower atmosphere of Venus. Part I: no wind shear. J. Atmos. Sci. 57, 184–199 (2000a)

    Article  ADS  Google Scholar 

  • R.D. Baker, G. Schubert, P.W. Jones, Convectively generated internal gravity waves in the lower atmosphere of Venus. Part II: mean wind shear and wave–mean flow interaction. J. Atmos. Sci. 57, 200–215 (2000b)

    Article  ADS  Google Scholar 

  • M.P. Baldwin, L.J. Gray, T.J. Dunkerton, K. Hamilton, P.H. Haynes, W.J. Randel, J.R. Holton, M.J. Alexander, I. Hirota, T. Horinouchi, D.B.A. Jones, J.S. Kinnersley, C. Marquardt, K. Sato, M. Takahashi, The quasi-biennial oscillation. Rev. Geophys. 39, 179–229 (2001)

    Article  ADS  Google Scholar 

  • J.K. Barstow, C.C.C. Tsang, C.F. Wilson, P.G.J. Irwin, F.W. Taylor, K. McGouldrick, P. Drossart, G. Piccioni, S. Tellman, Models of the global cloud structure on Venus derived from Venus Express observations. Icarus 217, 542–560 (2012)

    Article  ADS  Google Scholar 

  • M.J.S. Belton, G.R. Smith, G. Schubert, A. Del Genio, Cloud patterns, waves and convection in the Venus atmosphere. J. Atmos. Sci. 33, 1394–1417 (1990)

    Article  ADS  Google Scholar 

  • M.J.S. Belton et al., Images from Galileo of the Venus cloud deck. Science 253, 1531–1536 (1991)

    Article  ADS  Google Scholar 

  • J.L. Bertaux, I.V. Khatunsev, A. Hauchecorne, W.J. Markiewicz, E. Marq, S. Lebonnois, M. Patsaeva, A. Turin, A. Fedorova, Influence of Venus topography on the zonal wind and UV albedo at cloud top level: the role of stationary gravity waves. J. Geophys. Res., Planets 121, 1087–1101 (2016). doi:10.1002/2015JE004958

    Article  ADS  Google Scholar 

  • J.E. Blamont, R.E. Young, A. Seiff, B. Ragent, R. Sagdeev, V.M. Linkin, V.V. Kerzhanovich, A.P. Ingersoll, D. Crisp, L.S. Elson, R.A. Preston, G.S. Golytsin, V.N. Ivanov, Implications of the VEGA balloon results for Venus atmospheric dynamics. Science 231, 1422–1425 (1986)

    Article  ADS  Google Scholar 

  • S.W. Bougher, R.E. Dickinson, Mars mesosphere and thermosphere. I—global mean heat budget and thermal structure. J. Geophys. Res. 93, 7325–7337 (1988). doi:10.1029/JA093iA07p07325

    Article  ADS  Google Scholar 

  • S.W. Bougher, R.E. Dickinson, E.C. Ridley, R.G. Roble, A.F. Nagy, T.E. Cravens, Venus mesosphere and thermosphere: II. Global circulation, temperature, and density variations. Icarus 68, 284–312 (1986). doi:10.1016/0019-1035(86)90025-4

    Article  ADS  Google Scholar 

  • S.W. Bougher, R.G.E. Roble, R.E. Dickinson, E.C. Ridley, Venus mesosphere and thermosphere: III. Three-dimensional general circulation with coupled dynamics and composition. Icarus 73, 545–573 (1988). doi:10.1016/0019-1035(88)90064-4

    Article  ADS  Google Scholar 

  • S.W. Bougher, R.G. Roble, E.C. Ridley, R.E. Dickinson, The Mars thermosphere. II—general circulation with coupled dynamics and composition. J. Geophys. Res. 95, 14811–14827 (1990). doi:10.1029/JB095iB09p14811

    Article  ADS  Google Scholar 

  • S.W. Bougher, M.J. Alexander, H.G. Mayer, Upper atmosphere dynamics: global circulation and gravity waves, in Venus II, ed. by S.W. Bougher, D.M. Hunten, R.J. Phillips (University of Arizona Press, Tucson, 1997), pp. 259–291

    Google Scholar 

  • A.S. Brecht, S.W. Bougher, Dayside thermal structure of Venus’ upper atmosphere characterized by a global model. J. Geophys. Res. 117, E08002 (2012). doi:10.1029/2012JE004079

    Article  ADS  Google Scholar 

  • A.S. Brecht, S.W. Bougher, J.-C. Gérard, C.D. Parkinson, S. Rafkin, B. Foster, Understanding the variability of nightside temperatures, NO UV and \(\mathrm{O}_{2}\) IR nightglow emissions in the Venus upper atmosphere. J. Geophys. Res., Planets 116, E08004 (2011). doi:10.1029/2010JE003770

    ADS  Google Scholar 

  • R. Carlson et al., Galileo infrared imaging spectroscopy measurements at venus. Science 253, 1541–1548 (1991)

    Article  ADS  Google Scholar 

  • L. Colin, Basic facts about Venus, in Venus I, ed. by D.M. Hunten, L. Colin, T.M. Donahue, V.I. Moroz (University of Arizona Press, Tucson, 1983), pp. 10–26

    Google Scholar 

  • C.C. Counselman III., S.A. Gourevich, R.W. King, G.B. Loriot, Zonal and meridional circulation of the lower atmosphere of Venus determined by radio interferometry. J. Geophys. Res. 85, 8026–8030 (1980)

    Article  ADS  Google Scholar 

  • C. Covey, G. Schubert, Planetary-scale waves in the Venus atmosphere. J. Atmos. Sci. 39, 2397–2413 (1982)

    Article  ADS  Google Scholar 

  • D. Crisp, Radiative forcing of Venus mesosphere: I. Solar fluxes and heating rates. Icarus 67, 484–514 (1986)

    Article  ADS  Google Scholar 

  • A.D. Del Genio, W.B. Rossow, Planetary-scale waves and the cyclic nature of cloud top dynamics on Venus. J. Atmos. Sci. 47, 293–318 (1990)

    Article  ADS  Google Scholar 

  • A.R. Dobrovolkis, D.J. Diner, Barotropic instability with divergence: theory and applications to Venus. J. Atmos. Sci. 47, 1578–1588 (1990)

    Article  ADS  Google Scholar 

  • P. Drossart, F. Montmessin, The legacy of Venus Express: highlights from the first European planetary mission to Venus. Astron. Astrophys. Rev. 23, 5 (2015)

    Article  ADS  Google Scholar 

  • L.S. Elson, Barotropic instability in the upper atmosphere of Venus. Geophys. Res. Lett. 5(7), 603–605 (1978)

    Article  ADS  Google Scholar 

  • L.S. Elson, Wave instability in the polar region of Venus. J. Atmos. Sci. 39, 2356–2362 (1982)

    Article  ADS  Google Scholar 

  • L.W. Esposito, Ultraviolet contrasts and the absorbers near the Venus cloud tops. J. Geophys. Res. 85, 8151–8157 (1980)

    Article  ADS  Google Scholar 

  • L.W. Esposito, J.L. Bertaux, V. Krasnopolsky, V.I. Moroz, L.V. Zasova, in Chemistry of Lower Atmosphere and Clouds, ed. by S.W. Bougher, D.M. Hunten, R.J. Phillips ((University of Arizona Press, Tucson, 1997), pp. 415–458

    Google Scholar 

  • V. Eymet, R. Fournier, J.-L. Dufresne, S. Lebonnois, F. Hourdin, M.A. Bullock, Net-exchange parameterization of the thermal infrared radiative transfer in Venus’ atmosphere. J. Geophys. Res. 114, E11008 (2009). doi:10.1029/2008JE003276

    Article  ADS  Google Scholar 

  • A. Fedorova, E. Marcq, M. Luginin, O. Korablev, J.-L. Bertaux, F. Montmessin, Variations of water vapor and cloud top altitude in the Venus’ mesosphere from SPICAV/VEx observations. Icarus 275, 143–162 (2016)

    Article  ADS  Google Scholar 

  • S.B. Fels, R.S. Lindzen, The interaction of thermally excited gravity waves with mean flows. Geophys. Fluid Dyn. 6, 149–191 (1974)

    Article  ADS  Google Scholar 

  • F.M. Flasar, K.H. Baines, M.K. Bird, T. Tokano, R.A. West, Atmospheric dynamics and meteorology, in Titan from Cassini-Huygens, ed. by R.H. Brown, J.-P. Lebreton, J. Hunter-Waite (Springer, Netherlands, 2009), pp. 323–352

    Chapter  Google Scholar 

  • T. Fukuhara, M. Futaguchi, G.L. Hashimoto, T. Horinouchi, T. Imamura, N. Iwagaimi, T. Kouyama, S. Murakami, M. Nakamura, K. Ogohara, M. Sato, T.M. Sato, M. Suzuki, M. Taguchi, S. Takagi, M. Ueno, S. Watanabe, M. Yamada, A. Yamazaki, Large stationary gravity wave in the atmosphere of Venus. Nat. Geosci. 10, 85–88 (2017)

    Article  ADS  Google Scholar 

  • I.G. Garate-Lopez, R. Hueso, A. Sánchez-Lavega, J. Peralta, G. Piccioni, P. Drossart, A chaotic permanent vortex in Venus’ southern pole. Nat. Geosci. 6, 254–257 (2013)

    Article  ADS  Google Scholar 

  • I.G. Garate-Lopez, A. Garcia-Muñoz, R. Hueso, A. Sanchez-Lavega, Three-dimensional thermal structure of the South polar vortex of Venus. Icarus 245, 16–31 (2015)

    Article  ADS  Google Scholar 

  • R.F. Garcia, P. Drossart, G. Piccioni, M. López-Valverde, G. Occhipinti, Gravity waves in the upper atmosphere of Venus revealed by CO2 nonlocal thermodynamic equilibrium emissions. J. Geophys. Res. 114, E00B32 (2009). doi:10.1029/2008JE003073

    Article  ADS  Google Scholar 

  • A. García-Muñoz, P. Wolkenberg, A. Sánchez-Lavega, R. Hueso, I. Garate-Lopez, A model of scattered thermal radiation for Venus from 3 to \(5~\upmu \text{m}\). Planet. Space Sci. 81, 65–73 (2013)

    Article  ADS  Google Scholar 

  • P.J. Gierasch, Meridional circulation and the maintenance of the Venus atmospheric rotation. J. Atmos. Sci. 32, 1038–1044 (1975)

    Article  ADS  Google Scholar 

  • P.J. Gierasch, Waves in the atmosphere of Venus. Nature 328, 510–512 (1987)

    Article  ADS  Google Scholar 

  • P.J. Gierasch, R.M. Goody, R.E. Young, D. Crisp, C. Edwards, R. Kahn, D. McCleese, D. Rider, A. Del Genio, R. Greeley, A. Hou, C.B. Leovy, N. Newman, The general circulation of the Venus atmosphere: an assessment, in Venus II, ed. by S.W. Bougher, D.M. Hunten, R.J. Phillips (University of Arizona Press, Tucson, 1997), pp. 459–500

    Google Scholar 

  • G. Gilli, M.a. López-Valverde, P. Drossart, G. Piccioni, S. Erard, A. Cardesín Moinelo, Limb observations of CO2 and CO non-LTE emissions in the Venus atmosphere by VIRTIS/Venus Express. J. Geophys. Res. 114, E00B29 (2009). doi:10.1029/2008JE003112

    Article  ADS  Google Scholar 

  • G. Gilli, S. Lebonnois, F. González-Galindo, M.A. López-Valverde, A. Stolzenbach, F. Lefèvre, J.-Y. Chaufray, F. Lott, Thermal structure of the upper atmosphere of Venus simulated by a ground-to-thermosphere GCM. Icarus 281, 55–72 (2017)

    Article  ADS  Google Scholar 

  • F. Gonzalez-Galindo, F. Forget, M.A. López-Valverde, M. Angelats-i-Coll, A ground-to-exosphere Martian general circulation model: 1. Seasonal, diurnal, and solar cycle variation of thermospheric temperatures. J. Geophys. Res., Planets 114, E04001 (2009). doi:10.1029/2008JE003246

    ADS  Google Scholar 

  • D. Grassi, A. Migliorini, L. Montabone, S. Lebonnois, A. Cardesin-Moinelo, G. Piccioni, P. Drossart, L.V. Zasova, Thermal structure of Venusian nighttime mesosphere as observed by VIRTIS-Venus Express. J. Geophys. Res. 115, E09007 (2010). doi:10.1029/2009JE003553

    Article  ADS  Google Scholar 

  • D. Grassi et al., The Venus nighttime atmosphere as observed by the VIRTIS-M instrument. Average fields from the complete infrared data set. J. Geophys. Res., Planets 119, 837–849 (2014). doi:10.1002/2013JE004586

    Article  ADS  Google Scholar 

  • R. Greeley, K. Bender, P.E. Thomas, G. Schubert, D. Limonadi, C.M. Weitz, Wind-related features and processed on Venus. Icarus 115, 399–420 (1995)

    Article  ADS  Google Scholar 

  • S.D. Griffiths, The nonlinear evolution of zonally symmetric equatorial inertial instability. J. Fluid Mech. 474, 245–273 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • J. Gula, R. Plougonven, V. Zeitlin, Ageostrophic instabilities of fronts in a channel in a stratified rotating fluid. J. Fluid Mech. 627, 485–507 (2009). doi:10.1017/S0022112009006508

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • D.L. Hartmann, Barotropic instability of the polar night jet stream. J. Atmos. Sci. 40(4), 817–835 (1983)

    Article  ADS  Google Scholar 

  • I.M. Held, A.Y. Hou, Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci. 37, 515–533 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  • A. Herrnstein, T.E. Dowling, Effect of topography on the spin-up of a Venus atmospheric model. J. Geophys. Res. 112, E04S08 (2007). doi:10.1029/2006JE002804

    Article  ADS  Google Scholar 

  • R. Hide, Dynamics of the atmospheres of the major planets, with an appendix on the viscous boundary layer at the rigid bounding surface of an electrically conducting rotating fluid in the presences of a magnetic field. J. Atmos. Sci. 26, 841–853 (1969)

    Article  ADS  Google Scholar 

  • D.P. Hinson, J.M. Jenkins, Magellan radio occultation measurements of atmospheric waves on Venus. Icarus 114, 310–327 (1995)

    Article  ADS  Google Scholar 

  • J.L. Hollingsworth, R.E. Young, G. Schubert, C. Covey, A.S. Grossman, A simple-physics global circulation model for Venus: sensitivity assessments of atmospheric super-rotation. Geophys. Res. Lett. 34, L05202 (2007). doi:10.1029/2006GL028567

    Article  ADS  Google Scholar 

  • J.R. Holton, An Introduction to Dynamic Meteorology (Academic Press, Netherlands, 2004)

    Google Scholar 

  • N. Hoshino, H. Fujiwara, M. Takagi, Y. Takahashi, Y. Kasaba, Characteristics of planetary-scale waves simulated by a new Venusian mesosphere and thermosphere general circulation model. Icarus 217, 818–830 (2012). doi:10.1016/j.icarus.2011.06.039

    Article  ADS  Google Scholar 

  • N. Hoshino, H. Fujiwara, M. Takagi, Y. Kasaba, Effects of gravity waves on the day-night difference of the general circulation in the Venusian lower thermosphere. J. Geophys. Res., Planets 118, 2004–2015 (2013). doi:10.1002/jgre.20154

    Article  ADS  Google Scholar 

  • B.J. Hoskins, M.E. McIntyre, A.W. Robertson, On the use and significance of isentropic potential vorticity maps. Q. J. R. Meteorol. Soc. 111, 877–946 (1985)

    Article  ADS  Google Scholar 

  • A.Y. Hou, Axisymmetric circulations forced by heat and momentum sources—a simple model applicable to the Venus atmosphere. J. Atmos. Sci. 41, 3437–3455 (1984)

    Article  ADS  Google Scholar 

  • A.Y. Hou, B.F. Farrell, Super-rotation induced by critical-level absorption of gravity waves on Venus: an assessment. J. Atmos. Sci. 44, 1049–1061 (1987)

    Article  ADS  Google Scholar 

  • B.L. Hua, D.W. Moore, S. Le Gentil, Inertial nonlinear equilibration of equatorial flows. J. Fluid Mech. 331, 345–371 (1997)

    Article  ADS  MATH  Google Scholar 

  • R. Hueso, A. Sánchez-Lavega, G. Piccioni, P. Drossart, J.C. Gérard, I. Khatuntsev, L. Zasova, A. Migliorini, Morphology and dynamics of Venus oxygen airglow from Venus Express/VIRTIS observations. J. Geophys. Res., Planets 113, E00B02 (2008). doi:10.1029/2008JE003081

    Google Scholar 

  • R. Hueso, J. Peralta, A. Sánchez-Lavega, Assessing the long-term variability of Venus winds at cloud level from VRTIS-Venus Express. Icarus 217, 585–598 (2012)

    Article  ADS  Google Scholar 

  • R. Hueso, J. Peralta, I. Garate-Lopez, T.V. Bandos, A. Sánchez-Lavega, Six years of Venus winds at the upper cloud level from UV, visible and near infrared observations from VIRTIS on Venus Express. Planet. Space Sci. 113–114, 78–99 (2015). doi:10.1016/j.pss.2017.03.014

    Article  Google Scholar 

  • S. Iga, Y. Matsuda, Shear instability in a shallow water model with implications for the Venus atmosphere. J. Atmos. Sci. 62, 2514–2527 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  • N.I. Ignatiev, D.V. Titov, G. Piccioni, P. Drossart, W.J. Markiewicz, V. Cottini, Th. Roatsch, M. Almeida, N. Manoel, Altimetry of the Venus cloud tops from the Venus Express observations. J. Geophys. Res. 114, E00B43 (2009)

    Article  ADS  Google Scholar 

  • K. Ikeda, Development of radiative transfer model for Venus atmosphere and simulation of super-rotation using a general circulation model. Ph.D. dissertation, The University of Tokyo, 2011

  • K. Ikeda, M. Yamamoto, M. Takahashi, Super-rotation of the Venus atmosphere simulated by an Atmospheric General Circulation Model. IUGG/IAMAS Meeting, Perugia, Italy, 2–13 July 2007

  • T. Imamura, Momentum balance of the Venusian midlatitude mesosphere. J. Geophys. Res. 102, 6615–6620 (1997)

    Article  ADS  Google Scholar 

  • T. Imamura, Meridional propagation of planetary-scale waves in vertical shear: implication for the Venus atmosphere. J. Atmos. Sci. 63, 1623–1636 (2006)

    Article  ADS  Google Scholar 

  • T. Imamura, T. Horinouchi, T. Dunkerton, The lateral transport of zonal momentum due to Kelvin waves in a meridional circulation. J. Atmos. Sci. 61, 1966–1975 (2004)

    Article  ADS  Google Scholar 

  • T. Imamura, T. Higuchi, Y. Maejima, M. Takagi, N. Sugimoto, K. Ikeda, H. Ando, Inverse insolation dependence of Venus’ cloud-level convection. Icarus 228, 181–188 (2014)

    Article  ADS  Google Scholar 

  • J.M. Jenkins, P.J. Steffes, D. Hinson, J. Twicken, L. Tyler, Radio occultation studies of Venus’ atmosphere with the Magellan spacecraft. Icarus 110, 79–94 (1994)

    Article  ADS  Google Scholar 

  • E. Kalnay de Rivas, Further numerical calculations of the circulation of the atmosphere of Venus. J. Atmos. Sci. 32, 1017–1024 (1975). doi:10.1175/1520-0469(1975)032

    Article  ADS  Google Scholar 

  • V.V. Kerzhanovich, S.S. Limaye, Circulation of the atmosphere from the surface to 100 km. Adv. Space Res. 5, 59–83 (1985)

    Article  ADS  Google Scholar 

  • V.V. Kerzhanovich, M.Ya. Marov, The atmospheric dynamics of Venus according to Doppler measurements by the Venera entry probes, in Venus I, ed. by D.M. Hunten, L. Colin, T.M. Donahue, V.I. Moroz (University of Arizona Press, Tucson, 1983), pp. 766–778

    Google Scholar 

  • I.V. Khatuntsev, M.V. Patsaeva, D.V. Titov, N.I. Ignatiev, A.V. Turin, S.S. Limaye, W.J. Markiewicz, M. Almeida, Th. Roatsch, R. Moissl, Cloud level winds from the Venus express monitoring camera imaging. Icarus 226, 140–158 (2013)

    Article  ADS  Google Scholar 

  • A. Kido, Y. Wakata, Multiple equilibrium states appear in a Venus-like atmospheric general circulation model. J. Meteorol. Soc. Jpn. 86, 969–979 (2008). doi:10.2151/jmsj.86.969

    Article  Google Scholar 

  • A.J. Kliore, I.R. Patel, Thermal structure of the atmosphere of Venus from pioneer Venus radio occultations. Icarus 52, 320–334 (1982). doi:10.1029/JA085iA13p07957

    Article  ADS  Google Scholar 

  • A.J. Kliore, V.I. Moroz, G.M. Keating, (eds.), The Venus international reference atmosphere. Adv. Space Res. 5 (1985), 305 pp

  • T. Kouyama, T. Imamura, M. Nakamura, T. Satoh, Y. Futaana, Horizontal structure of planetary-scale waves at the cloud top of Venus deduced from Galileo SSI images with an improved cloud-tracking technique. Planet. Space Sci. 60, 207–216 (2012). doi:10.1016/j.pss/2011.08.008

    Article  ADS  Google Scholar 

  • T. Kouyama, T. Imamura, M. Nakamura, T. Satoh, Y. Futaana, Long-term variation in the cloud-tracked zonal velocities at the cloud top of Venus deduced from Venus Express VMC images. J. Geophys. Res., Planets 118, 37–46 (2013). doi:10.1029/2011JE004013

    Article  ADS  Google Scholar 

  • T. Kouyama, T. Imamura, M. Nakamura, T. Satoh, Y. Futaana, Vertical propagation of planetary-scale waves in variable background winds in the upper cloud region of Venus. Icarus 248, 560–568 (2015). doi:10.1016/j.icarus.2014.07.011

    Article  ADS  Google Scholar 

  • S. Lebonnois, F. Hourdin, V. Eymet, A. Crespin, R. Fournier, F. Forget, Super-rotation of Venus’ atmosphere analyzed with a full general circulation model. J. Geophys. Res. 115, E06006 (2010a). doi:10.1029/2009JE003458

    Article  ADS  Google Scholar 

  • S. Lebonnois, F. Hourdin, V. Eymet, A. Crespin, R. Fournier, F. Forget, Super-rotation of Venus’ atmosphere analysed with a full general circulation model. J. Geophys. Res. 115, E06006 (2010b). doi:10.1029/2009JE003458

    Article  ADS  Google Scholar 

  • S. Lebonnois, C. Covey, A. Grossman, H. Parish, G. Schubert, R. Walterscheid, P. Lauritzen, C. Jablonowski, Angular momentum budget in general circulation models of superrotating atmospheres: a critical diagnostic. J. Geophys. Res. 117, E12004 (2012). doi:10.1029/2012JE004223

    Article  ADS  Google Scholar 

  • S. Lebonnois, C. Lee, M. Yamamoto, J. Dawson, S.R. Lewis, J. Mendonca, P.L. Read, H. Parish, G. Schubert, L. Bengtsson, D. Grinspoon, S. Limaye, H. Schmidt, H. Svedhem, D. Titov, Models of Venus atmosphere, in Towards Understanding the Climate of Venus: Application of Terrestrial Models to Our Sister Planet, ed. by L. Bengtsson, R.-M. Bonnet, D. Grinspoon, S. Koumoutsaris, S. Lebonnois, D. Titov. ISSI Scientific Report Series, vol. 11 (Springer, Netherlands, 2013), pp. 129–156

    Chapter  Google Scholar 

  • S. Lebonnois, N. Sugimoto, G. Gilli, Wave analysis in the atmosphere of Venus below 100-km altitude, simulated by the LMD Venus GCM. Icarus 278, 38–51 (2016)

    Article  ADS  Google Scholar 

  • C. Lee, M.I. Richardson, A general circulation model ensemble study of the atmospheric circulation of Venus. J. Geophys. Res. 115, E04002 (2010). doi:10.1029/2009JE003490

    Article  ADS  Google Scholar 

  • C. Lee, M.I. Richardson, A discrete ordinate, multiple scattering, radiative transfer model of the Venus atmosphere from 0.1 to 260 μm. J. Atmos. Sci. 68, 1323–1339 (2011). doi:10.1175/2011JAS3703.1

    Article  ADS  Google Scholar 

  • C. Lee, M.I. Richardson, Angular momentum conservation in a simplified Venus general circulation model. Icarus 221, 1173–1176 (2012). doi:10.1016/j.icarus.2012.10.007

    Article  ADS  Google Scholar 

  • C. Lee, S.R. Lewis, P.L. Read, A numerical model of the atmosphere of Venus. Adv. Space Res. 36, 2142–2145 (2005). doi:10.1016/j.asr.2005.03.120

    Article  ADS  Google Scholar 

  • C. Lee, S.R. Lewis, P.L. Read, Super-rotation in a Venus general circulation model. J. Geophys. Res. 112, E04S11 (2007). doi:10.1029/2006JE002874

    ADS  Google Scholar 

  • C. Lee, S.R. Lewis, P.L. Read, A bulk cloud parameterization in a Venus general circulation model. Icarus 206, 662–668 (2010)

    Article  ADS  Google Scholar 

  • E. Lellouch, T. Clancy, D. Crisp, A. Kliore, D. Titov, S.W. Bougher, Monitoring of mesospheric structure and dynamics, in Venus II, ed. by S.W. Bougher, D.M. Hunten, R.J. Phillips (University of Arizona Press, Tucson, 1997), pp. 295–324

    Google Scholar 

  • E. Lellouch, G. Paubert, R. Moreno, a. Moullet, Monitoring Venus’ mesospheric winds in support of Venus Express: IRAM 30-M and APEX Observations. Planet. Space Sci. 56(10), 1355–1367 (2008). doi:10.1016/j.pss.2008.06.010

    Article  ADS  Google Scholar 

  • C.B. Leovy, Rotation of the upper atmosphere of Venus. J. Atmos. Sci. 30, 1218–1220 (1973). doi:10.1175/1520-0469(1973)030

    Article  ADS  Google Scholar 

  • S.S. Leroy, A.P. Ingersoll, Convective generation of gravity waves in Venus’s atmosphere: gravity wave spectrum and momentum transport. J. Atmos. Sci. 52, 3717–3737 (1995)

    Article  ADS  Google Scholar 

  • S.S. Leroy, A.P. Ingersoll, Radio scintillations in Venus’s atmosphere: application of a theory of gravity wave generation. J. Atmos. Sci. 53, 1018–1028 (1996)

    Article  ADS  Google Scholar 

  • S.R. Lewis, C. Lee, P.L. Read, A Venus atmospheric general circulation model for Venus Express, in European Planetary Science Congress, Berlin, Germany, 18–22 Sept. 2006

    Google Scholar 

  • S.R. Lewis, J. Dawson, S. Lebonnois, M. Yamamoto, Modelling efforts, in Towards Understanding the Climate of Venus, ed. by L. Bengtsson, R.-M. Bonnet, D. Grinspoon, S. Koumoutsaris, S. Lebonnois, D. Titov. ISSI Scientific Report Series, vol. 11 (Springer, Netherlands, 2013), pp. 111–128

    Chapter  Google Scholar 

  • S.S. Limaye, Venus atmospheric circulation: observations and implications of the thermal structure. Adv. Space Res. 5(9), 51–62 (1985)

    Article  ADS  Google Scholar 

  • S.S. Limaye, Venus: cloud level circulation during 1982 as determined from Pioneer cloud photopolarimeter images. II - solar longitude dependent circulation. Icarus 73, 212–226 (1988)

    Article  ADS  Google Scholar 

  • S.S. Limaye, Venus atmospheric circulation: known and unknown. J. Geophys. Res. 112, E04S09 (2007). doi:10.1029/2006JE002814

    Article  ADS  Google Scholar 

  • S.S. Limaye, M. Rengel, Atmospheric circulation and dynamics of Venus, in Towards Understanding the Climate of Venus, ed. by L. Bengtsson, R.-M. Bonnet, D. Grinspoon, S. Koumoutsaris, S. Lebonnois, D. Titov. ISSI Scientific Report Series, vol. 11 (Springer, Netherlands, 2013), pp. 55–72

    Chapter  Google Scholar 

  • S. Limaye, V. Suomi, A normalized view of Venus. J. Atmos. Sci. 34, 205–215 (1977)

    Article  ADS  Google Scholar 

  • S.S. Limaye, V.E. Suomi, Cloud motions on Venus—global structure and organization. J. Atmos. Sci. 38, 1220–1235 (1981)

    Article  ADS  Google Scholar 

  • S.S. Limaye, C.J. Grund, S.P. Burre, Zonal mean circulation at the cloud level on Venus: spring and fall 1979 OCPP observations. Icarus 51, 416–439 (1982)

    Article  ADS  Google Scholar 

  • S.S. Limaye, J.P. Kossin, C. Rozoff, G. Piccioni, D.V. Titov, W.J. Markiewicz, Vortex circulation on Venus: dynamical similarities with terrestrial hurricanes. Geophys. Res. Lett. 36, L04,204 (2009). doi:10.1029/2008GL036093

    Article  Google Scholar 

  • R.S. Lindzen, Instability of plane parallel shear flow (towards a mechanistic picture of how it works). Pure Appl. Geophys. 16, 103–121 (1988)

    Article  ADS  Google Scholar 

  • V.M. Linkin, V.V. Kerzhanovich, A.N. Lipatov, K.M. Pichkadze, A.A. Shurupov, A.V. Tertebrashvili, A.P. Ingersoll, D. Crisp, A.W. Grossman, R.E. Young, A. Seiff, B. Ragent, J.E. Blamont, L.S. Elson, R. Preston, VEGA balloon dynamics and vertical winds in the Venus middle cloud region. Science 231, 1417–1419 (1986)

    Article  ADS  Google Scholar 

  • M.A. López-Valverde, P. Drossart, R. Carlson, R. Mehlman, M. Roos-Serote, Non-LTE infrared observations at Venus: from NIMS/Galileo to VIRTIS/Venus Express. Planet. Space Sci. 55, 1757–1771 (2007). doi:10.1016/j.pss.2007.01.008

    Article  ADS  Google Scholar 

  • R.D. Lorenz, Surface winds on Venus: probability distribution from in-situ measurements. Icarus 264, 311–315 (2016)

    Article  ADS  Google Scholar 

  • D. Luz, D.L. Berry, G. Piccioni, P. Drossart, R. Politi, C.F. Wilson, S. Erard, F. Nuccilli, Venus’s southern polar vortex reveals precessing circulation. Science 332, 577–580 (2011). doi:10.1126/science.1201629

    Article  ADS  Google Scholar 

  • P. Machado, D. Luz, Th. Widemann, E. Lellouch, O. Witasse, Mapping zonal winds at Venus’s cloud tops from ground-based Doppler velocimetry. Icarus 221, 248–261 (2013)

    Article  ADS  Google Scholar 

  • P. Machado, Th. Widemann, D. Luz, J. Peralta, Wind circulation regimes at Venus’ cloud tops: ground-based Doppler velocimetry using CFHT/ESPaDOnS and comparison with simultaneous cloud tracking measurements using VEx/VIRTIS in February, 2011. Icarus 243, 249–263 (2014)

    Article  ADS  Google Scholar 

  • P. Machado, T. Widemann, J. Peralta, R. Gonçalves, J.-F. Donati, D. Luz, Venus cloud-tracked and Doppler velocimetry winds from CFHT/ESPaDOnS and Venus Express/VIRTIS in April 2014. Icarus 285, 8–26 (2017)

    Article  ADS  Google Scholar 

  • W.J. Markiewicz, D.V. Titov, S.S. Limaye, H.U. Keller, N. Ignatiev, R. Jaumann, N. Thomas, H. Michalik, R. Moissl, P. Russo, Morphology and dynamics of the upper cloud layer of Venus. Nature 450, 633–636 (2007)

    Article  ADS  Google Scholar 

  • M.Y. Marov, Results of Venus missions. Annu. Rev. Astron. Astrophys. 16, 141–169 (1978). doi:10.1146/annurev.aa.16.090178.001041

    Article  ADS  Google Scholar 

  • H.G. Mayr, I. Harris, Quasi-axisymmetric circulation and super-rotation in planetary atmospheres. Astron. Astrophys. 121, 124–136 (1983)

    ADS  MATH  Google Scholar 

  • J.M. Mendonca, P.L. Read, Exploring the Venus global super-rotation using a comprehensive general circulation model. Planet. Space Sci. 134, 1–18 (2016). doi:10.1016/j.pss.2016.09.001

    Article  ADS  Google Scholar 

  • J.M. Mendonca, P.L. Read, C.F. Wilson, S.R. Lewis, Zonal winds at high latitudes on Venus: an improved application of cyclostrophic balance to Venus Express observations. Icarus 217, 629–639 (2012). doi:10.1016/j.icarus.2011.07.010

    Article  ADS  Google Scholar 

  • J.M. Mendonca, P.L. Read, C.F. Wilson, C. Lee, A new fast and flexible radiative transfer method for Venus general circulation models. Planet. Space Sci. 105, 80–93 (2015). doi:10.1016/j.pss.2014.11.008

    Article  ADS  Google Scholar 

  • D.V. Michelangeli, R.W. Zurek, L.S. Elson, Barotropic instability of midlatitude zonal jets on Mars, Earth and Venus. J. Atmos. Sci. 44, 2031–2041 (1987)

    Article  ADS  Google Scholar 

  • A. Migliorini, D. Grassi, L. Montabone, S. Lebonnois, P. Drossart, G. Piccioni, Investigation of air temperature on the nightside of Venus derived from VIRTIS-H on board Venus-Express. Icarus 217, 640–647 (2012). doi:10.1016/j.icarus.2011.07.013

    Article  ADS  Google Scholar 

  • J.L. Mitchell, G.K. Vallis, The transition to super-rotation in terrestrial atmospheres. J. Geophys. Res. 115, E12008 (2010). doi:10.1029/2010JE003587

    Article  ADS  Google Scholar 

  • R. Moissl, I. Khatuntsev, S.S. Limaye, D.V. Titov, W.J. Markiewicz, N.I. Ignatiev, T. Roatsch et al., Venus cloud top winds from tracking UV features in Venus monitoring camera images. J. Geophys. Res., Planets 114, E00B31 (2009). doi:10.1029/2008JE003117

    Article  Google Scholar 

  • V.I. Moroz, The atmosphere of Venus. Space Sci. Rev. 29, 3–127 (1981)

    Article  ADS  Google Scholar 

  • V.I. Moroz, L.V. Zasova, VIRA-2: a review of inputs for updating the Venus international reference atmosphere. Adv. Space Res. 19, 1191–1201 (1997)

    Article  ADS  Google Scholar 

  • M. Newman, C. Leovy, Maintenance of strong rotational winds in Venus’ middle atmosphere by thermal tides. Science 257, 647–650 (1992)

    Article  ADS  Google Scholar 

  • M. Newman, G. Schubert, A.J. Kliore, I.R. Patel, Zonal winds in the middle atmosphere of Venus from Pioneer Venus radio occultation data. J. Atmos. Sci. 41, 1901–1913 (1984)

    Article  ADS  Google Scholar 

  • G.S. Orton, J. Caldwell, A.J. Friedson, T.Z. Martin, Middle infrared thermal maps of Venus at the time of the Galileo encounter. Science 253, 1536–1538 (1991)

    Article  ADS  Google Scholar 

  • H.F. Parish, G. Schubert, C. Covey, R.L. Walterscheid, A. Grossman, S. Lebonnois, Decadal variations in a Venus general circulation model. Icarus 212, 42–65 (2011). doi:10.1016/j.icarus.2010.11.015

    Article  ADS  Google Scholar 

  • J.B. Pechmann, A.P. Ingersoll, Thermal tides in the atmosphere of Venus: comparison of model results with observations. J. Atmos. Sci. 41, 3290–3313 (1984)

    Article  ADS  Google Scholar 

  • J. Peralta, R. Hueso, A. Sánchez-Lavega, Cloud brightness distribution and turbulence in Venus using Galileo Violet images. Icarus 188, 305–314 (2007a). doi:10.1016/j.icarus.2007.03.028

    Article  ADS  Google Scholar 

  • J. Peralta, R. Hueso, A. Sánchez-Lavega, A reanalysis of Venus winds at two cloud levels from Galileo SSI images. Icarus 190, 469–477 (2007b). doi:10.1016/j.icarus.2007.03.028

    Article  ADS  Google Scholar 

  • J. Peralta, R. Hueso, A. Sanchez-Lavega, G. Piccioni, O. Lanciano, P. Drossart, Characterization of mesoscale gravity waves in the upper and lower clouds of Venus from VEX-VIRTIS images. J. Geophys. Res. 113, E00B18 (2008). doi:10.1029/2008JE003185

    Article  ADS  Google Scholar 

  • J. Peralta, D. Luz, D.L. Berry, A. Sánchez-Lavega, R. Hueso, G. Piccioni, P. Drossart, Solar migrating atmospheric tides in the winds of the polar region of Venus. Icarus 220, 958–970 (2012). doi:10.1016/j.icarus.2012.06.015

    Article  ADS  Google Scholar 

  • J. Peralta, T. Imamura, P.L. Read, D. Luz, A. Piccialli, M.A. López-Valverde, Analytical solution for waves in planets with atmospheric super-rotation. I. Acoustic and inertia-gravity waves. Astrophys. J. Suppl. Ser. 213, 17 (2014a). doi:10.1088/0067-0049/213/1/17

    Article  ADS  Google Scholar 

  • J. Peralta, T. Imamura, P.L. Read, D. Luz, A. Piccialli, M.A. López-Valverde, Analytical solution for waves in planets with atmospheric super-rotation. II. Lamb, surface, and centrifugal waves. Astrophys. J. Suppl. Ser. 213, 18 (2014b). doi:10.1088/0067-0049/213/1/18

    Article  ADS  Google Scholar 

  • J. Peralta, A. Sanchez-Lavega, M.A. Lopez-Valverde, D. Luz, P. Machado, Venus’s major cloud feature as an equatorially-trapped wave distorted by the wind. Geophys. Res. Lett. 42, 705–711 (2015)

    Article  ADS  Google Scholar 

  • J. Peralta, M.A. Lopez-Valverde, G. Gilli, A. Piccialli, Dayside temperatures in the Venus upper atmosphere from Venus Express/VIRTIS nadir measurements at 4.3 microns. Astron. Astrophys. 585, A53 (2016). doi:10.1051/0004-6361/201527191

    Article  ADS  Google Scholar 

  • J. Peralta, Y. Joo Lee, K. McGouldrick, H. Sagawa, A. Sanchez-Lavega, T. Imamura, T. Widemann, M. Nakamura, Overview of useful spectral regions for Venus: an update to encourage observations complementary to the Akatsuki mission. Icarus 288, 235–239 (2017)

    Article  ADS  Google Scholar 

  • A. Petculescu, R.M. Lueptow, Atmospheric acoustics of Titan, Mars, Venus, and Earth. Icarus 186, 413–419 (2007)

    Article  ADS  Google Scholar 

  • A. Piccialli, A.D.V. Titov, D. Grassi, I. Khatuntsev, P. Drossart, G. Piccioni, A. Migliorini, Cyclostrophic winds from the visible and infrared thermal imaging spectrometer temperature sounding: a preliminary analysis. J. Geophys. Res. 113, E00B11 (2008). doi:10.1029/2008JE003127

    Article  ADS  Google Scholar 

  • A. Piccialli, S. Tellmann, D.V. Titov, S.S. Limaye, I.V. Khatuntsev, M. Pätzold, B. Häusler, Dynamical properties of the Venus mesosphere from the radio-occultation experiment VeRa onboard Venus Express. Icarus 217, 669–681 (2012). doi:10.1016/j.icarus.2011.07.016

    Article  ADS  Google Scholar 

  • A. Piccialli, D.V. Titov, A. Sanchez-Lavega, J. Peralta, O. Shalygina, W.J. Markiewicz, H. Svedhem, High latitude gravity waves at the Venus cloud tops as observed by the Venus Monitoring Camera on board Venus Express. Icarus 227, 94–111 (2014)

    Article  ADS  Google Scholar 

  • G. Piccioni, P. Drossart, A. Sanchez-Lavega, R. Hueso et al., South polar features on Venus similar to those near the North Pole. Nature 450, 637–640 (2007)

    Article  ADS  Google Scholar 

  • R.A. Plumb, Angular momentum advection by axisymmetric motions. Q. J. R. Meteorol. Soc. 103, 479–485 (1977)

    Article  ADS  Google Scholar 

  • J.B. Pollack, O.B. Toon, R.C. Whitten, R. Boese, B. Ragent, M. Tomasko, L. Esposito, L. Travis, D. Wiedman, Distribution and source of the UV absorption in Venus’ atmosphere. J. Geophys. Res. 85, 8141–8150 (1980)

    Article  ADS  Google Scholar 

  • C.H.B. Prieslty, Turbulent Transfer in the Lower Atmosphere (Chicago University Press, Chicago, 1959)

    Google Scholar 

  • V. Ramanathan, R.D. Cess, An analysis of the strong zonal circulation within the stratosphere of Venus. Icarus 25, 89–103 (1975)

    Article  ADS  Google Scholar 

  • P.L. Read, Super-rotation and diffusion of axial angular momentum: II. A review of quasi-axisymmetric models of planetary atmospheres. Q. J. R. Meteorol. Soc. 112, 253–272 (1986)

    Article  ADS  Google Scholar 

  • P.L. Read, The dynamics and circulation of Venus atmosphere, in Towards Understanding the Climate of Venus, ed. by L. Bentgsson et al.(Springer, New York, 2013), pp. 73–110

    Chapter  Google Scholar 

  • B. Ribstein, V. Zeitlin, A.-S. Tissier, Barotropic, baroclinic and inertial instabilities of the easterly Gaussian jet on the equatorial \(\beta\)-plane in rotating shallow water. Phys. Fluids 26, 056605 (2014). doi:10.1063/1.4875030

    Article  ADS  Google Scholar 

  • C. Roldan, M.A. Lopez-Valverde, M. Lopez-Puertas, D.P. Edwards, Non-LTE infrared emissions of CO2 in the atmosphere of Venus. Icarus 147, 11–25 (2000). doi:10.1006/icar.2000.6432

    Article  ADS  Google Scholar 

  • M. Roos-Serote, P. Drossart, Th. Encrenaz, E. Lellouch, R.W. Carlson, K.H. Baines, F.W. Taylor, S.B. Calcutt, Thermal structure and dynamics of the atmosphere of Venus between 70 and 90 km from the Galileo-NIMS spectra. Icarus 114, 300–309 (1995)

    Article  ADS  Google Scholar 

  • W.B. Rossow, A general circulation model of a Venus-like atmosphere. J. Atmos. Sci. 40, 273–302 (1983). doi:10.1175/1520-0469

    Article  ADS  Google Scholar 

  • W.B. Rossow, G.P. Williams, Large scale motions in the Venus stratosphere. J. Atmos. Sci. 36, 377–389 (1979)

    Article  ADS  Google Scholar 

  • W.B. Rossow, A. Del Genio, S.S. Limaye, L.D. Travis, Cloud morphology and motions from Pioneer Venus images. J. Geophys. Res. 85, 8107–8128 (1980a)

    Article  ADS  Google Scholar 

  • W.B. Rossow, S.B. Fels, P.H. Stone, Comments on ‘A three-dimensional model of dynamical processes in the Venus atmosphere’. J. Atmos. Sci. 37, 250–252 (1980b)

    Article  ADS  Google Scholar 

  • W.B. Rossow, A.D. del Genio, T. Eichler, Cloud-tracked winds from Pioneer Venus OCPP images. J. Atmos. Sci. 47, 2053–2084 (1990)

    Article  ADS  Google Scholar 

  • R.Z. Sagdeev et al., Overview of VEGA Venus balloon in situ meteorological measurements. Science 231, 1411–1414 (1986)

    Article  ADS  Google Scholar 

  • S. Sakai, Rossby-Kelvin instability: a new type of ageostrophic instability caused by a resonance between Rossby waves and gravity waves. J. Fluid Mech. 202, 149–176 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • A. Sánchez-Lavega, An Introduction to Planetary Atmospheres (Taylor & Francis/CRC Press, Boca Raton, 2011)

    Google Scholar 

  • A. Sánchez-Lavega, R. Hueso, G. Piccioni, P. Drossart, J. Peralta, S. Pérez-Hoyos, C. Wilson, F. Taylor, K. Baines, D. Luz, S. Erard, S. Lebonnois, Variable winds on Venus mapped in three dimensions. Geophys. Res. Lett. 35, L13204 (2008). doi:10.1029/2008GL033817

    Article  ADS  Google Scholar 

  • A. Sánchez-Lavega, J. Peralta, J.M. Gómez-relad, R. Hueso, S. Pérez-Hoyos, I. Mendikoa, J.F. Rojas, T. Horinouchi, Y.J. Lee, S. Watanabe, Venus cloud morphology and motions from ground-based images at the time of the Akatsuki orbit insertion. Astrophys. J. Lett. 833, 07 (2016), 7 pp

    Article  ADS  Google Scholar 

  • T.M. Sato, H. Sawada, T. Kouyama, K. Mitsuyama, T. Satoh, S. Ohtsuki, M. Ueno, Y. Kasaba, M. Nakamura, T. Imamura, Cloud top structure of Venus revealed by Subaru/COMICS mid-infrared images. Icarus 243, 386–399 (2014)

    Article  ADS  Google Scholar 

  • P.J. Schinder, P.J. Gierasch, S.S. Leroy, M.D. Smith, Waves, advection, and cloud patterns on Venus. J. Atmos. Sci. 47, 2037–2052 (1990)

    Article  ADS  Google Scholar 

  • E.K. Schneider, Axially symmetric steady state models of the basic state for instability and climate studies. Part II. Nonlinear calculations. J. Atmos. Sci. 34, 280–296 (1977)

    Article  ADS  Google Scholar 

  • J.T. Schofield, D.J. Diner, Rotation of Venus’s polar dipole. Nature 305, 116–119 (1983). doi:10.1038/305116a0

    Article  ADS  Google Scholar 

  • J.T. Schofield, F.W. Taylor, Measurements of the mean, solar-fixed temperature and cloud structure of the middle atmosphere of Venus. Q. J. R. Meteorol. Soc. 109, 57–80 (1983)

    Article  ADS  Google Scholar 

  • G. Schubert, General circulation and the dynamical state of the Venus atmosphere, in Venus I, ed. by D.M. Hunten, L. Colin, T.M. Donahue, V.I. Moroz (University of Arizona Press, Tucson, 1983), pp. 681–765

    Google Scholar 

  • G. Schubert, R.L. Walterscheid, Propagation of small-scale acoustic-gravity waves in the Venus atmosphere. J. Atmos. Sci. 41, 1202–1213 (1984)

    Article  ADS  Google Scholar 

  • G. Schubert, C. Covey, A. Del Genio, L.S. Elson, G. Keating, A. Seiff, R.E. Young, J. Apt, C.C. Counselman, A.J. Kliore, S.S. Limaye, H.E. Revercomb, L.A. Sromovsky, V.E. Suomi, F. Taylor, R. Woo, U. Von Zahn, Structure and circulation of the Venus atmosphere. J. Geophys. Res. 85(A13), 8007–8025 (1980)

    Article  ADS  Google Scholar 

  • W.H. Schubert et al., Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atm. Sci. 56, 1197–1223 (1999)

    Article  ADS  Google Scholar 

  • A. Seiff, Dynamical implications of the observed thermal contrasts in Venus’s upper atmosphere. Icarus 51, 574–592 (1982)

    Article  ADS  Google Scholar 

  • A. Seiff, D.B. Kirk, R.E. Young, R.C. Blanchard, J.T. Findlay, G.M. Kelly, S.C. Sommer, Measurements of thermal structure and thermal contrasts in the atmosphere of Venus and related dynamical observations: results from the four Pioneer Venus probes. J. Geophys. Res. 85, 7903–7933 (1980)

    Article  ADS  Google Scholar 

  • M.D. Smith, P.J. Gierasch, P.J. Schinder, A global traveling wave on Venus. Science 256, 652–655 (1992)

    Article  ADS  Google Scholar 

  • M.D. Smith, P.J. Gierasch, P.J. Schinder, Global-scale waves in the Venus atmosphere. J. Atmos. Sci. 50, 4080–4096 (1993). doi:10.1175/1520-0469(1993)050<4080:GSWITV>2.0.CO;2

    Article  ADS  Google Scholar 

  • M. Sornig et al., Venus upper atmosphere winds from ground-based heterodyne spectroscopy of CO2 at \(10~\upmu \text{m}\) wavelength. Planet. Space Sci. 56, 1399–1406 (2012)

    Article  ADS  Google Scholar 

  • P.H. Stone, The meteorology of the jovian atmosphere, in Jupiter: Studies of the Interior, Atmosphere, Magnetosphere, and Satellites, ed. by T. Gehrels, M.S. Matthews (University of Arizona Press, Tucson, 1976), pp. 586–618. ISBN 0-8165-0530-6

    Google Scholar 

  • N. Sugimoto, M. Takagi, Y. Matsuda, Baroclinic instability in the Venus atmosphere simulated by GCM. J. Geophys. Res., Planets 119, 1950–1968 (2014a). doi:10.1002/2014JE004624

    Article  ADS  Google Scholar 

  • N. Sugimoto, M. Takagi, Y. Matsuda, Waves in a Venus general circulation model. Geophys. Res. Lett. 41, 7461–7467 (2014b). doi:10.1002/2014GL061807

    Article  ADS  Google Scholar 

  • V.E. Suomi, S.S. Limaye, Venus—further evidence of vortex circulation. Science 201, 1009–1111 (1978)

    Article  ADS  Google Scholar 

  • M. Takagi, Y. Matsuda, Sensitivity of thermal tides in the Venus atmosphere to basic zonal flow and Newtonian cooling. Geophys. Res. Lett. 32, L02203 (2005). doi:10.1029/2004GL022060

    ADS  Google Scholar 

  • M. Takagi, Y. Matsuda, A further study on the stability of a baroclinic flow in cyclostrophic balance. Geophys. Res. Lett. 32, L19804 (2005b). doi:10.1029/2005GL023700

    ADS  Google Scholar 

  • M. Takagi, Y. Matsuda, Dynamical effect of thermal tides in the lower Venus atmosphere. Geophys. Res. Lett. 33, L13102 (2006). doi:10.1029/2006GL026168

    Article  ADS  Google Scholar 

  • M. Takagi, Y. Matsuda, A study on the stability of a baroclinic flow in cyclostrophic balance on the sphere. Geophys. Res. Lett. 33, L14807 (2006b). doi:10.1029/2006GL026200

    Article  ADS  Google Scholar 

  • M. Takagi, Y. Matsuda, Effects of thermal tides on the Venus atmospheric super-rotation. J. Geophys. Res. 112, D09112 (2007). doi:10.1029/2006JD007901

    Article  ADS  Google Scholar 

  • F.W. Taylor, The Scientific Exploration of Venus (Cambridge University Press, Cambridge, 2014)

    Book  Google Scholar 

  • F.W. Taylor, D.J. Diner, L.S. Elson, M.S. Hanner, D.J. McCleese, J.V. Martonchik, P.E. Reichley et al., Infrared remote sounding of the middle atmosphere of Venus from the Pioneer orbiter. Science 203, 779–781 (1979). doi:10.1126/science.203.4382.779

    Article  ADS  Google Scholar 

  • F.W. Taylor, R. Beer, M.T. Chahine, D.J. Diner, L.S. Elson, R.D. Haskins, D.J. McCleese, J.V. Martonchik, P.E. Reichley, S.P. Bradley, J. Delderfield, J.T. Schofield, C.B. Farmer, L. Froidevaux, J. Leung, M.T. Coffey, J.C. Gille, Structure and meteorology of the middle atmosphere of Venus: infrared remote sounding from the Pioneer orbiter. J. Geophys. Res. 85, 7963–8006 (1980)

    Article  ADS  Google Scholar 

  • S. Tellmann, M. Pätzold, B. Häusler, M.K. Bird, G.L. Tyler, Structure of the Venus neutral atmosphere as observed by the radio science experiment VeRa on Venus Express. J. Geophys. Res. 114, E00B36 (2009)

    Article  ADS  Google Scholar 

  • S. Tellmann, B. Häusler, D.P. Hinson, G.L. Tyler, T.P. Andert, M.K. Bird, T. Imamura, M. Pätzold, S. Remus, Small-scale temperature fluctuations seen by the VeRa radio science experiment on Venus Express. Icarus 221, 471–480 (2012)

    Article  ADS  Google Scholar 

  • D.V. Titov et al., Morphology of the cloud tops as observed by the Venus Express monitoring camera. Icarus 217, 682–701 (2012)

    Article  ADS  Google Scholar 

  • A. Toigo, P.J. Gierasch, M.D. Smith, High resolution cloud feature tracking on Venus by Galileo. Icarus 109, 318–336 (1994)

    Article  ADS  Google Scholar 

  • M.G. Tomasko, L.R. Doose, P.H. Smith, A.P. Odell, Measurements of the flux of sunlight in the atmosphere of Venus. J. Geophys. Res. 85, 8167–8186 (1980)

    Article  ADS  Google Scholar 

  • L.D. Travis, Nature of the atmospheric dynamics on Venus from power spectrum analysis of Mariner 10 images. J. Atmos. Sci. 35, 1584–1595 (1978)

    Article  ADS  Google Scholar 

  • G.K. Vallis, Atmospheric and Oceanic Fluid Dynamics (Cambridge University Press, UK, 2006)

    Book  MATH  Google Scholar 

  • T. Widemann et al., New wind measurements in Venus lower mesosphere from visible spectroscopy. Planet. Space Sci. 55, 1741–1756 (2007)

    Article  ADS  Google Scholar 

  • T. Widemann et al., Venus Doppler winds at cloud tops observed with ESPaDOnS at CFHT. Planet. Space Sci. 56, 1320–1334 (2008)

    Article  ADS  Google Scholar 

  • M. Yamamoto, M. Takahashi, The fully developed super-rotation simulated by a general circulation model of a Venus-like atmosphere. J. Atmos. Sci. 60, 561–574 (2003a)

    Article  ADS  Google Scholar 

  • M. Yamamoto, M. Takahashi, Super-rotation and equatorial waves in a T21 Venus-like AGCM. Geophys. Res. Lett. 30, 1449 (2003b). doi:10.1029/2003GL016924

    Article  ADS  Google Scholar 

  • M. Yamamoto, M. Takahashi, Dynamics of Venus’ super-rotation: the eddy momentum transport processes newly found in a GCM. Geophys. Res. Lett. 31, L09701 (2004). doi:10.1029/2004GL019518

    ADS  Google Scholar 

  • M. Yamamoto, M. Takahashi, Super-rotation maintained by meridional circulation and waves in a Venus-like AGCM. J. Atmos. Sci. 63, 3296–3314 (2006)

    Article  ADS  Google Scholar 

  • M. Yamamoto, M. Takahashi, Dynamical effects of solar heating below the cloud layer in a Venus-like atmosphere. J. Geophys. Res. 114, E12004 (2009). doi:10.1029/2009JE003381

    Article  ADS  Google Scholar 

  • M. Yamamoto, M. Takahashi, Venusian middle-atmospheric dynamics in the presence of a strong planetary-scale 5.5-day wave. Icarus 217, 702–713 (2012). doi:10.1016/j.icarus.2011.06.017

    Article  ADS  Google Scholar 

  • M. Yamamoto, M. Takahashi, Dynamics of polar vortices at cloud top and base on Venus inferred from a general circulation model: case of a strong diurnal thermal tide. Planet. Space Sci. 113, 109–119 (2015)

    Article  ADS  Google Scholar 

  • M. Yamamoto, H. Tanaka, Formation and maintenance of the 4-day circulation in the Venus middle atmosphere. J. Atmos. Sci. 54, 1472–1489 (1997)

    Article  ADS  Google Scholar 

  • R.E. Young, J.B. Pollack, A three-dimensional model of dynamical processes in the Venus atmosphere. J. Atmos. Sci. 34, 1315–1351 (1977)

    Article  ADS  Google Scholar 

  • R.E. Young, H. Houben, L. Pfister, Baroclinic instability in the Venus atmosphere. J. Atmos. Sci. 41, 2310–2333 (1984)

    Article  ADS  Google Scholar 

  • R.E. Young, R.L. Walterscheid, G. Schubert, A. Seiff, V.M. Linkin, A.N. Lipatov, Characteristics of gravity waves generated by surface topography on Venus: comparison with the VEGA balloon results. J. Atmos. Sci. 44, 2628–2639 (1987)

    Article  ADS  Google Scholar 

  • R.E. Young, R.L. Walterscheid, G. Schubert, L. Pfister, H. Houben, D.L. Bindschadler, Characteristics of finite amplitude stationary gravity waves in the atmosphere of Venus. J. Atmos. Sci. 51, 1857–1875 (1994)

    Article  ADS  Google Scholar 

  • A.M. Zalucha, A.S. Brecht, S. Rafkin, S.W. Bougher, M.J. Alexander, Incorporation of a gravity wave momentum deposition parameterization into the Venus Thermosphere General Circulation Model (VTGCM). J. Geophys. Res., Planets 118, 147–160 (2013). doi:10.1029/2012JE004168

    Article  ADS  Google Scholar 

  • L. Zasova, I.V. Khatountsev, N.I. Ignatiev, V.I. Moroz, Local time variations of the middle atmosphere of Venus: solar-related structures. Adv. Space Res. 29, 243–248 (2002). doi:10.1016/S0273-1177(01)00574-9

    Article  ADS  Google Scholar 

  • L.V. Zasova, N. Ignatiev, I. Khatuntsev, V. Linkin, Structure of the Venus atmosphere. Planet. Space Sci. 55, 1712–1728 (2007). doi:10.1016/j.pss.2007.01.011

    Article  ADS  Google Scholar 

  • S. Zhang, S.W. Bougher, M.J. Alexander, The impact of gravity waves on the Venus thermosphere and \(\mathrm{O}_{2}\) IR nightglow. J. Geophys. Res. 101, 23195–23205 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

ASL was supported by the Spanish MICIIN AYA2015-65041-P (MINECO/FEDER, UE), Grupos Gobierno Vasco IT765-013. We appreciate the careful and detailed comments provided by two anonymous reviewers. PLR acknowledges support from the UK Science and Technology Facilities Council under grants ST/I001948/1 and ST/K00106X/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agustín Sánchez-Lavega.

Additional information

Venus III

Edited by Bruno Bézard, Christopher T. Russell, Takehiko Satoh, Suzanne E. Smrekar and Colin F. Wilson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Lavega, A., Lebonnois, S., Imamura, T. et al. The Atmospheric Dynamics of Venus. Space Sci Rev 212, 1541–1616 (2017). https://doi.org/10.1007/s11214-017-0389-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-017-0389-x

Keywords

Navigation