Skip to main content

The Future of Diabetes

  • Reference work entry
  • First Online:
Principles of Diabetes Mellitus

Abstract

Understanding the “future” of diabetes requires an appreciation of its relationship to the epidemic of obesity and inactivity affecting most of the world, as well as a realization that addressing issues with adherence – as defined by lifestyle and by use of appropriate medications – are crucial to future efforts to improve diabetes outcome. We need to ascertain appropriate therapeutic targets for specific groups of individuals with diabetes as we develop novel therapeutic approaches. Among such approaches are novel insulin secretagogues, including agents derived from gut hormones, which may as well have further beneficial effects, inhibitors of counter-regulatory hormones, agents aimed at reducing cellular inflammation, specific adipokines, and peroxisome proliferator-activated receptor modulators. Furthermore, technologies to mimic the action of the pancreas in controlling glycemia are being developed and show promise in the treatment of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. West K. Epidemiology of diabetes and its vascular complications. New York: Elsevier; 1978.

    Google Scholar 

  2. Danaei G, et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet. 2011;378:31–40.

    Article  CAS  PubMed  Google Scholar 

  3. IDF Atlas, 7th Edition, downloaded December 9, 2015 from http://www.diabetesatlas.org/

  4. Boyle JP, et al. Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence. Popul Health Metrics. 2010;8:29.

    Article  Google Scholar 

  5. Bloomgarden Z, Ning G. Diabetes and aging. J Diabetes. 2013;5:369–71.

    Article  PubMed  Google Scholar 

  6. Bloomgarden ZT, Drexler A, Einhorn D, Grunberger G, Guan Y, Handelsman Y, Hu JC, Li X, Liu J, Wang W, Weng J, Ning G. The Journal of diabetes: continuing the dialogue. J Diabetes. 2013;5:95–6.

    Article  PubMed  Google Scholar 

  7. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in the > United States, 2011–2012. JAMA. 2014;311(8):806–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Centers for Disease Control and Prevention. Nutrition, physical activity and obesity: data, trends and maps. Downloaded April 8, 2016 from https://nccd.cdc.gov/NPAO_DTM/IndicatorSummary.aspx?category=28&indicator=29&year=2014&yearId=18

  9. Ohn JH, Kwak SH, Cho YM, Lim S, Jang HC, Park KS, Cho NH. 10-year trajectory of β-cell function and insulin sensitivity in the development of type 2 diabetes: a community-based prospective cohort study. Lancet Diabetes Endocrinol. 2016;4(1):44–51. doi:10.1016/S2213-8587(15)00336-8. pii: S2213-8587(15)00336-8.

    Article  Google Scholar 

  10. Ligthart S, van Herpt TT, Leening MJ, Kavousi M, Hofman A, Stricker BH, van Hoek M, Sijbrands EJ, Franco OH, Dehghan A. Lifetime risk of developing impaired glucose metabolism and eventual progression from prediabetes to type 2 diabetes: a prospective cohort study. Lancet Diabetes Endocrinol. 2016; 4(1):44-51.

    Google Scholar 

  11. Martínez-González MA, de la Fuente-Arrillaga C, Nunez-Cordoba JM, Basterra-Gortari FJ, Beunza JJ, Vazquez Z, Benito S, Tortosa A, Bes-Rastrollo M. Adherence to Mediterranean diet and risk of developing diabetes: prospective cohort study. BMJ. 2008;336:1348–51.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gong Q, Gregg EW, Wang J, An Y, Zhang P, Yang W, Li H, Li H, Jiang Y, Shuai Y, Zhang B, Zhang J, Gerzoff RB, Roglic G, Hu Y, Li G, Bennett PH. Long-term effects of a randomised trial of a 6-year lifestyle intervention in impaired glucose tolerance on diabetes-related microvascular complications: the China Da Qing Diabetes Prevention Outcome Study. Diabetologia. 2011;54(2):300–7.

    Article  CAS  PubMed  Google Scholar 

  13. Li G, Zhang P, Wang J, An Y, Gong Q, Gregg EW, Yang W, Zhang B, Shuai Y, Hong J, Engelgau MM, Li H, Roglic G, Hu Y, Bennett PH. Cardiovascular mortality, all-cause mortality, and diabetes incidence after lifestyle intervention for people with impaired glucose tolerance in the Da Qing Diabetes Prevention Study: a 23-year follow-up study. Lancet Diabetes Endocrinol. 2014;2(6):474–80.

    Article  PubMed  Google Scholar 

  14. Naci H, Ioannidis JP. Comparative effectiveness of exercise and drug interventions on mortality outcomes: metaepidemiological study. BMJ. 2013;347:f5577.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Centers for Disease Control and Prevention Division of Nutrition, Physical Activity, and Obesity. Facts about physical activity. Downloaded December 24, 2015 from http://www.cdc.gov/physicalactivity/data/databases.htm

  16. Kirkman MS, Rowan-Martin MT, Levin R, Fonseca VA, Schmittdiel JA, Herman WH, Aubert RE. Determinants of adherence to diabetes medications: findings from a large pharmacy claims database. Diabetes Care. 2015;38:604–9.

    PubMed  PubMed Central  Google Scholar 

  17. Rosenbaum L. Beyond belief–how people feel about taking medications for heart disease. N Engl J Med. 2015;372:183–7.

    Article  CAS  PubMed  Google Scholar 

  18. Polonsky W. Poor medication adherence in diabetes: what’s the problem? J Diabetes. 2015;7(6):777–8.

    Google Scholar 

  19. Miller GE, Sarpong EM, Hill SC. Does increased adherence to medications change health care financial burdens for adults with diabetes? J Diabetes. 2015. doi:10.1111/1753-0407.12292.

    PubMed  Google Scholar 

  20. Gonzalez JS, Peyrot M, McCarl LA, et al. Depression and diabetes treatment nonadherence: a meta-analysis. Diabetes Care. 2008;31:2398–403.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhang Y, Ting RZW, Yang W, et al. Depression in Chinese patients with type 2 diabetes: associations with hyperglycemia, hypoglycemia, and poor treatment adherence. J Diabetes. 2015. doi:10.1111/1753-0407.12238.

    PubMed Central  Google Scholar 

  22. Kerse N, Buetow S, Mainous 3rd AG, Young G, Coster G, Arroll B. Physician–patient relationship and medication compliance: a primary care investigation. Ann Fam Med. 2004;2:455–61.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Larkin AT, Hoffman C, Stevens A, Douglas A, Bloomgarden Z. Determinants of adherence to diabetes treatment. J Diabetes. 2015. doi:10.1111/1753-0407.12264.

    PubMed  Google Scholar 

  24. Dominguez H, et al. Initiation and persistence to statin treatment in patients with diabetes receiving glucose-lowering medications 1997–2006. Open Cardiovasc Med J. 2009;3:152–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bloomgarden Z, Li XY. Helping people with diabetes to exercise. J Diabetes. 2015;7(2):150–2.

    Article  PubMed  Google Scholar 

  26. Bloomgarden Z, Ning G. Self-monitoring of blood glucose for type 2 diabetes. J Diabetes. 2015;7(5):593–4.

    Article  PubMed  Google Scholar 

  27. Bloomgarden Z, Dagogo-Jack S. Five Ms of adherence. J Diabetes. 2011;3:169–71.

    Article  PubMed  Google Scholar 

  28. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352:854–65.

    Article  Google Scholar 

  29. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–53.

    Article  Google Scholar 

  30. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359:1577–89.

    Article  CAS  PubMed  Google Scholar 

  31. Duckworth W, Abraira C, Moritz T, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360:129–39.

    Article  CAS  PubMed  Google Scholar 

  32. Hayward RA, Reaven PD, Wiitala WL, et al. Follow-up of glycemic control and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2015;372:2197–206.

    Article  CAS  PubMed  Google Scholar 

  33. Duckworth WC, Abraira C, Moritz TE, et al. The duration of diabetes affects the response to intensive glucose control in type 2 subjects: the VA Diabetes Trial. J Diabetes Complications. 2011;25:355–61.

    Article  PubMed  Google Scholar 

  34. Reaven PD, Moritz TE, Schwenke DC, et al. Intensive glucose-lowering therapy reduces cardiovascular disease events in veterans affairs diabetes trial participants with lower calcified coronary atherosclerosis. Diabetes. 2009;58:2642–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Action to Control Cardiovascular Risk in Diabetes Study G, Gerstein HC, Miller ME, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358:2545–59.

    Article  Google Scholar 

  36. Reference to ACCORD-ON renal study to be added.

    Google Scholar 

  37. Azad N, Agrawal L, Emanuele NV, et al. Association of blood glucose control and pancreatic reserve with diabetic retinopathy in the Veterans Affairs Diabetes Trial (VADT). Diabetologia. 2014;57:1124–31.

    Article  CAS  PubMed  Google Scholar 

  38. Bloomgarden ZT. Is glycemic control a quinidine-like intervention? J Diabetes. 2014;6(5):387–8.

    Article  PubMed  Google Scholar 

  39. Hirshberg B, Katz A. Insights from cardiovascular outcome trials with novel antidiabetes agents: what have we learned? An industry perspective. Curr Diab Rep. 2015;15(11):87.

    Article  PubMed  Google Scholar 

  40. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444:840–6.

    Article  CAS  PubMed  Google Scholar 

  41. Burcelin R, Knauf C, Cani PD. Pancreatic alpha-cell dysfunction in diabetes. Diabetes Metab. 2008;34 Suppl 2:S49–55.

    Article  CAS  PubMed  Google Scholar 

  42. Cooper MS, Stewart PM. 11β-hydroxysteroid dehydrogenase type 1 and its role in the hypothalamus-pituitary-adrenal axis, metabolic syndrome, and inflammation. J Clin Endocrinol Metab. 2009;94:4645–54.

    Article  CAS  PubMed  Google Scholar 

  43. Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet. 2006;368:1696–705.

    Article  CAS  PubMed  Google Scholar 

  44. Doyle M, Egan J. Mechanisms of Action of GLP-1 in the Pancreas. Pharmacol Ther. 2007;113(3):546–93.

    Article  CAS  PubMed  Google Scholar 

  45. Bailey CJ. The current drug treatment landscape for diabetes and perspectives for the future. Clin Pharmacol Ther. 2015;98(2):170–84.

    Article  CAS  PubMed  Google Scholar 

  46. Agius L. Lessons from glucokinase activators: the problem of declining efficacy. Expert Opin Ther Pat. 2014;24(11):1155–9.

    Article  CAS  PubMed  Google Scholar 

  47. Matschinsky FM, et al. Glucokinase activators for diabetes therapy. Diabetes Care. 2011;34 Suppl 2:S236–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Burant CF. Activation of GPR40 as a therapeutic target for the treatment of type 2 diabetes. Diabetes Care. 2013;36 Suppl 2:S175–9. doi:10.2337/dcS13-2037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mohammad S. GPR40 agonists for the treatment of type 2 diabetes mellitus: benefits and challenges. Curr Drug Targets. 2015.

    Google Scholar 

  50. Fouqueray P, Leverve X, Fontaine E, et al. Imegliminda new oral anti-diabetic that targets the three key defects of type 2 diabetes. J Diabetes Metab. 2011;2:126.

    Article  Google Scholar 

  51. Fouqueray P, Pirags V, Diamant M, Schernthaner G, Lebovitz HE, Inzucchi SE, Bailey CJ. The efficacy and safety of imeglimin as add-on therapy in patients with type 2 diabetes inadequately controlled with sitagliptin monotherapy. Diabetes Care. 2014;37(7):1924–30.

    Article  CAS  PubMed  Google Scholar 

  52. Pacini G, Mari A, Fouqueray P, Bolze S, Roden M. Imeglimin increases glucose-dependent insulin secretion and improves β-cell function in patients with type 2 diabetes. Diabetes Obes Metab. 2015;17(6):541–5. doi:10.1111/dom.12452. Epub 2015 Mar 25.

    Article  CAS  PubMed  Google Scholar 

  53. Bagger JI, Knop FK, Holst JJ, Vilsbøll T. Glucagon antagonism as a potential therapeutic target in type 2 diabetes. Diabetes Obes Metab. 2011;13:965–71.

    Article  CAS  PubMed  Google Scholar 

  54. O’Harte* FPM, Franklin ZJ, Irwin N. Two novel glucagon receptor antagonists prove effective therapeutic agents in high-fat-fed and obese diabetic mice. Diabetes, Obes Metab. 2014. 16(12):1214–22.

    Google Scholar 

  55. Hughes KA, Webster SP, Walker BP. 11-b-Hydroxysteroid dehydrogenase type 1 (11 b -HSD1) inhibitors in Type 2 diabetes mellitus and obesity. Expert Opin Investig Drugs. 2008;17(4):481–96.

    Article  CAS  PubMed  Google Scholar 

  56. Kazda CM, Ding Y, Kelly RP, Garhyan P, Shi C, Lim CN, Fu H, Watson DE, Lewin AJ, Landschulz WH, Deeg MA, Moller DE, Hardy TA. Evaluation of Efficacy and Safety of the Glucagon Receptor Antagonist LY2409021 in Patients With Type 2 Diabetes: 12- and 24-Week Phase 2 Studies. Diabetes Care. 2016;39(7):1241–9.

    Google Scholar 

  57. Rosenstock J, Banarer S, Fonseca VA, et al. The 11-beta-hydroxysteroid dehydrogenase type 1 inhibitor INCB13739 improves hyperglycemia in patients with type 2 diabetes inadequately controlled by metformin monotherapy. Diabetes Care. 2010;33:1516–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Anderson A, Walker BR. 11β-HSD1 inhibitors for the treatment of type 2 diabetes and cardiovascular disease. Drugs. 2013;73(13):1385–93.

    Google Scholar 

  59. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011;11:98–107.

    Article  CAS  PubMed  Google Scholar 

  60. Goldfine AB, Fonseca V, Jablonski KA, et al. Salicylate (salsalate) in patients with type 2 diabetes: a randomized trial. Ann Intern Med. 2013;159:1–12.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Spohn G, Schori C, Keller I, Sladko K, Sina C, Guler R, Schwarz K, Johansen P, Jennings GT, Bachmann MF. Preclinical efficacy and safety of an anti-IL-1β vaccine for the treatment of type 2 diabetes. Mol Ther – Methods Clin Dev. 2014. 1: Article number: 14048.

    Google Scholar 

  62. Chou K, Perry CM. Metreleptin: first global approval. Drugs. 2013;73:989–97.

    Article  CAS  PubMed  Google Scholar 

  63. Moon H-S, Matarese G, Brennan AM, Chamberland JP, Liu X, Fiorenza CG, Mylvaganam GH, Abanni L, Carbone F, Williams CJ, De Paoli AM, Schneider BE, Mantzoros CS. Efficacy of metreleptin in obese patients with type 2 diabetes: cellular and molecular pathways underlying leptin tolerance. Diabetes. 2011;60(6):1647–56.

    Google Scholar 

  64. Lima S, Quonb MJ, Koh KK. Modulation of adiponectin as a potential therapeutic strategy. Atherosclerosis. 2014;233(2):721–8.

    Article  Google Scholar 

  65. Zhang J, Li Y*. Fibroblast growth factor 21 analogs for treating metabolic disorders. Front Endocrinol (Lausanne). 2015;6:168. Published online 2015 Nov 5.

    Google Scholar 

  66. Gaich G, Chien JY, Fu H, Glass LC, Deeg MA, Holland WL, Kharitonenkov A, Bumol T, Schilske HK, Moller DE. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab. 2013;18(3):333–40.

    Article  CAS  PubMed  Google Scholar 

  67. Rizos CV, Elisaf MS, Mikhailidis DP, Liberopoulos EN. How safe is the use of thiazolidinediones in clinical practice? Expert Opin Drug Saf. 2009;8(1):15–32.

    Article  CAS  PubMed  Google Scholar 

  68. Joshi SR. Saroglitazar for the treatment of dyslipidemia in diabetic patients. Expert Opin Pharmacother. 2015;16(4):597–606.

    Article  CAS  PubMed  Google Scholar 

  69. Bojic LA, Huff MW. Peroxisome proliferator-activated receptor delta: amultifaceted metabolic player. Curr Opin Lipidol. 2013;24:171–7.

    Article  CAS  PubMed  Google Scholar 

  70. Reitman ML. FGF21 mimetic shows therapeutic promise. Cell Metab. 2013;18(3):307–9.

    Google Scholar 

  71. DePaoli AM, Higgins LS, Henry RR, Mantzoros C, Dunn FL, INT131-007 Study Group. Can a selective PPARγ modulator improve glycemic control in patients with type 2 diabetes with fewer side effects compared with pioglitazone? Diabetes Care. 2014;37(7):1918–23.

    Google Scholar 

  72. Sadry SA, Drucker DJ. Emerging combinatorial hormone therapies for the treatment of obesity and T2DM. Nat Rev Endocrinol. 2013;9:425–33; published online 12 March 2013.

    Article  CAS  PubMed  Google Scholar 

  73. Roth JD, et al. Leptin responsiveness restored by amylin agonism in diet-induced obesity: evidence from nonclinical and clinical studies. Proc Natl Acad Sci U S A. 2008;105:7257–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Müller TD, et al. Restoration of leptin responsiveness in diet-induced obese mice using an optimized leptin analog in combination with exendin-4 or FGF21. J Pept Sci. 2012;18:383–93.

    Article  PubMed  Google Scholar 

  75. Fosgerau K, et al. The novel GLP-1-gastrin dual agonist, ZP3022, increases beta-cell mass and prevents diabetes in db/db mice. Diabetes Obes Metab. 2013;15:62–71.

    Article  CAS  PubMed  Google Scholar 

  76. Roth JD, et al. Combination therapy with amylin and peptide YY[3–36] in obese rodents: anorexigenic synergy and weight loss additivity. Endocrinology. 2007;148:6054–61.

    Article  CAS  PubMed  Google Scholar 

  77. Ravussin E, et al. Enhanced weight loss with pramlintide/metreleptin: an integrated neurohormonal approach to obesity pharmacotherapy. Obesity (Silver Spring). 2009;17:1736–43.

    Article  CAS  Google Scholar 

  78. Nathan DM, Russell S. The future of care for type 1 diabetes. CMAJ. 2013;185(4): 285–6.

    Google Scholar 

  79. White SA, Shaw JA, Sutherland DE. Pancreas transplantation. Lancet. 2009;373(9677):1808–17.

    Article  CAS  PubMed  Google Scholar 

  80. Harlan DM, Kenyon NS, Korsgren O, et al. Current advances and travails in islet transplantation. Diabetes. 2009;58:2175–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schweicher J, Nyitray C, Desai TA. Membranes to achieve immunoprotection of transplanted islets. Front Biosci. 2014;19:49–76.

    Article  CAS  Google Scholar 

  82. http://www.jdrf.ca/our-research/treat/artificial-pancreas-project/

  83. http://www.apathome.eu/news/aphome-project-successfully-completed/

  84. Steil GM, Rebrin K, Darwin C. Feasibility of automating insulin delivery for the treatment of type 1 diabetes. Diabetes. 2006;55:3344–5.

    Article  CAS  PubMed  Google Scholar 

  85. Doyle FJ, Huyett LM, Lee JB. Closed-loop artificial pancreas systems: engineering the algorithms. Diabetes Care. 2014;37:1191–7.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Trevitt S, Simpson S, Wood A. Artificial pancreas device systems for the closed-loop control of type 1 diabetes: what systems are in development? J Diabetes Sci Technol. 2016;10(3):714–23.

    Google Scholar 

  87. Hovorka R, Kumareswaran K, Harris J, et al. Overnight closed loop insulin delivery (artificial pancreas) in adults with type 1 diabetes: crossover randomised controlled studies. BMJ. 2011;342:d1855. 8. Luijf YM, DeVries JH, Zwinderman K, et al. Day and night closed-loop control in adults with type 1 diabetes: a comparison of two closed-loop algorithms driving continuous subcutaneous insulin infusion versus patient self-management.

    Google Scholar 

  88. Breton M, Farret A, Bruttomesso D, et al. Fully integrated artificial pancreas in type 1 diabetes: modular closed-loop glucose control maintains near normoglycemia. Diabetes. 2012;61:2230–7. Diabetes Care. 2013;36:3882–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kovatchev BP, Renard E, Cobelli C, et al. Feasibility of outpatient fully integrated closed-loop control: first studies of wearable artificial pancreas. Diabetes Care. 2013;36:1851–8.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Phillip M, Battelino T, Atlas E, et al. Nocturnal glucose control with an artificial pancreas at a diabetes camp. N Engl J Med. 2013;368:824–33.

    Article  CAS  PubMed  Google Scholar 

  91. Thabit H, Lubina-Solomon A, Stadler M, et al. Home use of closed-loop insulin delivery for overnight glucose control in adults with type 1 diabetes: a 4-week, multicentre, randomised crossover study. Lancet Diabetes Endocrinol. 2014;2:701–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hovorka R, Elleri D, Thabit H, et al. Overnight closed-loop insulin delivery in young people with type 1 diabetes: a free-living, randomized clinical trial. Diabetes Care. 2014;37:1204–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Thabit H, Tauschmann M, Allen JM, Leelarathna L, Hartnell S, Wilinska ME, Acerini CL, Dellweg S, Benesch C, Heinemann L, Mader JK, Holzer M, Kojzar H, Exall J, Yong J, Pichierri J, Barnard KD, Kollman C, Cheng P, Hindmarsh PC, Campbell FM, Arnolds S, Pieber TR, Evans ML, Dunger DB, Hovorka R, APCam Consortium, AP@home Consortium. Home use of an artificial beta cell in type 1 diabetes. N Engl J Med. 2015;373(22):2129–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kropff J, Del Favero S, Place J, Toffanin C, Visentin R, Monaro M, Messori M, Di Palma F, Lanzola G, Farret A, Boscari F, Galasso S, Magni P, Avogaro A, Keith-Hynes P, Kovatchev BP, Bruttomesso D, Cobelli C, DeVries JH, Renard E, Magni L, AP@home consortium. 2 month evening and night closed-loop glucose control in patients with type 1 diabetes under free-living conditions: a randomised crossover trial. Lancet Diabetes Endocrinol. 2015;3(12):939–47.

    Article  PubMed  Google Scholar 

  95. Castle JR, Engle JM, El Youssef J, et al. Novel use of glucagon in a closed-loop system for prevention of hypoglycemia in type 1 diabetes. Diabetes Care. 2010;33:1282–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Russell SJ, El-Khatib F, Sinha M, et al. Outpatient glycemic control with a bionic pancreas in type 1 diabetes. N Engl J Med. 2014;371:313–25.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Trevitt S, Simpson S, Wood A. Artificial pancreas device systems for the closed-loop control of type 1 diabetes: what systems are in development? J Diabetes Sci Technol. 2016;10(3):714–23.

    Google Scholar 

  98. Iacovacci V, Ricotti L, Menciassi A, Dario P. The bioartificial pancreas (BAP): biological, chemical and engineering challenges. Biochem Pharmacol. 2016;100:12–27.

    Google Scholar 

  99. Cengiz E. Undeniable need for ultrafast-acting insulin: the pediatric perspective. J Diabetes Sci Technol. 2012;6:797–801.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Barnard K, Wysocki T, Allen JM, Elleri D, Thabit H, Leelarathna L, Gulati A, Nodale M, Dunger DB, Tinati T, Hovorka R. Closing the loop overnight at home setting: psychosocial impact for adolescents with type 1 diabetes and their parents. BMJ Open Diabetes Res Care. 2014;2(1).

    Google Scholar 

  101. Heinemann L, Krinelke L. Insulin infusion set: the Achilles heel of continuous subcutaneous insulin infusion. J Diabetes Sci Technol. 2012;6:954–64.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Freckmann G, Baumstark A, Jendrike N, Zschornack E, Kocher S, Tshiananga J, Heister F, Haug C. System accuracy evaluation of 27 blood glucose monitoring systems according to DIN EN ISO 15197. Diabetes Technol Ther. 2010;12:221–31.

    Article  CAS  PubMed  Google Scholar 

  103. Garg SK, Voelmle M, Gottlieb PA. Time lag characterization of two continuous glucose monitoring systems. Diabetes Res Clin Pract. 2010;87:348–53.

    Article  CAS  PubMed  Google Scholar 

  104. Moser EG, Morris AA, Garg SK. Emerging diabetes therapies and technologies. Diabetes Res Clin Pract. 2012;97:16–26.

    Article  PubMed  Google Scholar 

  105. Berney T, Berishvili E. Toward clinical application of the bioartificial pancreas. Transplantation. 2015;99(11):2241–2.

    Article  PubMed  Google Scholar 

  106. Shapiro AM, Ricordi C, Hering BJ, et al. International trial of the Edmonton protocol for islet transplantation. N Engl J Med. 2006;355:1318–30.

    Article  CAS  PubMed  Google Scholar 

  107. Veiseh O, Doloff JC, Ma M, Vegas AJ, Tam HH, Bader AR, et al. Size-and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat Mater. 2015;4:643–52.

    Article  Google Scholar 

  108. Pepper AR, Gala-Lopez B, Pawlick R, Merani S, Kin T, Shapiro AJ. A prevascularized subcutaneous device-less site for islet and cellular transplantation. Nat Biotechnol. 2015;33(5):518–23.

    Article  CAS  PubMed  Google Scholar 

  109. Malek R, Davis SN. Novel methods of insulin replacement: the artificial pancreas and encapsulated islets. Rev Recent Clin Trials. 2016;11(2):106–23.

    Google Scholar 

  110. McEvoy MA, Correll N. Materials that couple sensing, actuation, computation, and communication. Science. 2015;347(6228):1261689.

    Article  CAS  PubMed  Google Scholar 

  111. Yang T, Ji R, Deng XX, Du FS, Li ZC. Glucose-responsive hydrogels based on dynamic covalent chemistry and inclusion complexation. Soft Matter. 2014;10(15):2671–8.

    Article  CAS  PubMed  Google Scholar 

  112. Jiang G, Jiang T, Chen H, Li L, Liu Y, Zhou H, et al. Preparation of multi-responsive micelles for controlled release of insulin. Colloid Polym Sci. 2015;293(1):209–15.

    Article  CAS  Google Scholar 

  113. Yu J, Zhang Y, Ye Y, DiSanto R, Sun W, Ranson D, Ligler FS, Buse JB, Gu Z. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc Natl Acad Sci U S A. 2015;112(27):8260–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Aungst TD, WaiTam LM, Patel D. Digital health and the future of diabetes management. J Diabetes Metab Disord Control. 2015;2(4):00048.

    Article  Google Scholar 

  115. Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT. EDC-2: the endocrine society’s second scientific statement on endocrine-disrupting chemicals. Endocr Rev. 2015;36(6):E1–150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Margot S-K. The decline of big soda. New York Times, October 2, 2015.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariela Glandt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Glandt, M., Bloomgarden, Z. (2017). The Future of Diabetes. In: Poretsky, L. (eds) Principles of Diabetes Mellitus. Springer, Cham. https://doi.org/10.1007/978-3-319-18741-9_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18741-9_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18740-2

  • Online ISBN: 978-3-319-18741-9

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics