Skip to main content

Engineering of the Bladder and Urethra

  • Living reference work entry
  • First Online:
Organ Tissue Engineering

Part of the book series: Reference Series in Biomedical Engineering ((TIENRE))

  • 87 Accesses

Abstract

Many conditions can damage the lower urinary tract tissues, including trauma, inflammation, cancer, and congenital anomaly. Unfortunately, reconstruction of the human bladder and urethra remains a great urological challenge. This is due to the limited availability of tissue substitutes that can be used for reconstruction. Consequently, the use of intestinal tissue has remained as the gold standard for bladder reconstruction and repair, despite the associated complications, such as mucus production, electrolyte imbalances, recurrent infections, and malignancies. Similarly, the option for urethral tissue reconstruction is also limited. The autologous buccal mucosa is the most widely used material currently; however, donor site morbidity and stricture recurrence are continued problems. Tissue engineering has been introduced as a promising solution to repair and reconstruct lower urinary tract tissues, including the bladder and urethra. Clinical translation of tissue-engineered products has made significant progress in developing tangible therapies and inspiring the next generation of medical science over recent decades. Cell-based tissue engineering approaches have been employed to treat bladder and urethral pathologies in patients, demonstrating that multicellular tissues and organs with complex functions can be built for clinical use. This chapter covers the recent advancements in tissue engineering in the lower urinary tract tissues. Specifically, we discuss the strategic approaches, components used, supporting technologies, and tissue applications of the bladder and urethra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbas TO, Yalcin HC, Pennisi CP (2019) From acellular matrices to smart polymers: degradable scaffolds that are transforming the shape of urethral tissue engineering. Int J Mol Sci 20(7):1763

    Article  Google Scholar 

  • Adamowicz J et al (2019a) Reconstructive urology and tissue engineering: converging developmental paths. J Tissue Eng Regen Med 13(3):522–533

    Article  Google Scholar 

  • Adamowicz J et al (2019b) Reconstructive urology and tissue engineering: converging developmental paths. J Tissue Eng Regen Med 13(3):522–533

    Article  Google Scholar 

  • Aguilar MR, San Román J (2019) Chapter 1 - introduction to smart polymers and their applications. In: Aguilar MR, Román JS (eds) Smart polymers and their applications, 2nd edn. Woodhead Publishing, Sawston, pp 1–11

    Google Scholar 

  • Ahmed S et al (2019) New generation of bioreactors that advance extracellular matrix modelling and tissue engineering. Biotechnol Lett 41(1):1–25

    Article  Google Scholar 

  • Ajalloueian F et al (2018) Bladder biomechanics and the use of scaffolds for regenerative medicine in the urinary bladder. Nat Rev Urol 15:155

    Article  Google Scholar 

  • Akkad T et al (2007) Influence of intravesical potassium on pelvic floor activity in women with recurrent urinary tract infections: comparative urodynamics might lead to enhanced detection of dysfunctional voiding. BJU Int 100(5):1071–1074

    Google Scholar 

  • Alberts B et al (2002) Molecular biology of the cell, vol 91, 4th edn. Garland Science, New York, p 401

    Google Scholar 

  • Algarrahi K et al (2018) Repair of injured urethras with silk fibroin scaffolds in a rabbit model of onlay urethroplasty. J Surg Res 229:192–199

    Article  Google Scholar 

  • Anderson CB, McKiernan JM (2018) Surgical complications of urinary diversion. Urol Clin North Am 45(1):79–90

    Article  Google Scholar 

  • Andersson KE, McCloskey KDJN (2014) Lamina propria: the functional center of the bladder? Neurourol Urodyn 33(1):9–16

    Article  Google Scholar 

  • Anirudha S et al (2018) Tissue-engineered neo-urinary conduit from decellularized trachea. Tissue Eng Part A 24(19–20):1456–1467

    Google Scholar 

  • Anumanthan G et al (2008) Directed differentiation of bone marrow derived mesenchymal stem cells into bladder urothelium. J Urol 180(4 Suppl):1778–1783

    Article  Google Scholar 

  • Atala A (2009) Engineering organs. Curr Opin Biotechnol 20(5):575–592

    Article  Google Scholar 

  • Atala A (2011) Tissue engineering of human bladder. Br Med Bull 97(1):81–104

    Article  Google Scholar 

  • Atala A et al (1992) Formation of urothelial structures in vivo from dissociated cells attached to biodegradable polymer scaffolds in vitro. J Urol 148(2 Pt 2):658–662

    Article  Google Scholar 

  • Atala A et al (1993) Implantation in vivo and retrieval of artificial structures consisting of rabbit and human urothelium and human bladder muscle. J Urol 150(2 Pt 2):608–612

    Article  Google Scholar 

  • Atala A, Guzman L, Retik AB (1999) A novel inert collagen matrix for hypospadias repair. J Urol 162(3 Pt 2):1148–1151

    Article  Google Scholar 

  • Atala A et al (2006a) Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367(9518):1241–1246

    Article  Google Scholar 

  • Atala A et al (2006b) Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367(9518):1241–1246

    Article  Google Scholar 

  • Partin AW, Kavoussi LR, Peters CA (2015) Campbell-Walsh urology. In: Atala A (ed) Principles of tissue engineering, vol 1, 11th edn. Elsevier Health Sciences

    Google Scholar 

  • Bacakova L et al (2019) Versatile application of Nanocellulose: from industry to skin tissue engineering and wound healing. Nanomaterials (Basel) 9(2):164

    Article  Google Scholar 

  • Badylak SF et al (1989) Small intestinal submucosa as a large diameter vascular graft in the dog. J Surg Res 47(1):74–80

    Article  Google Scholar 

  • Balsara ZR, Li X (2017) Sleeping beauty: awakening urothelium from its slumber. Am J Physiol Renal Physiol 312(4):F732–F743

    Article  Google Scholar 

  • Barbagli G et al (2018) Anterior Urethroplasty using a new tissue engineered Oral mucosa graft: surgical techniques and outcomes. J Urol 200(2):448–456

    Article  Google Scholar 

  • Bharadwaj S et al (2011) Characterization of urine-derived stem cells obtained from upper urinary tract for use in cell-based urological tissue engineering. Tissue Eng Part A

    Google Scholar 

  • Bharadwaj S et al (2013) Multi-potential differentiation of human urine-derived stem cells: potential for therapeutic applications in urology. Stem Cells

    Google Scholar 

  • Bodin A et al (2010) Tissue-engineered conduit using urine-derived stem cells seeded bacterial cellulose polymer in urinary reconstruction and diversion. Biomaterials 31(34):8889–8901

    Article  Google Scholar 

  • Bohne AW, Urwiller KJTJou (1957) Experience with urinary bladder regeneration. J Urol 77(5):725–732

    Article  Google Scholar 

  • Bouhout S et al (2010) In vitro reconstruction of an autologous, watertight, and resistant Vesical equivalent. Tissue Eng Part A 16(5):1539–1548

    Article  Google Scholar 

  • Brivanlou AH et al (2003) Stem cells. Setting standards for human embryonic stem cells. Science 300(5621):913–916

    Article  Google Scholar 

  • Brown RA et al (2005) Ultrarapid engineering of biomimetic materials and tissues: fabrication of Nano- and Microstructures by plastic compression. Adv Funct Mat 15(11):1762–1770

    Article  Google Scholar 

  • Burdick JA, Prestwich GD (2011) Hyaluronic acid hydrogels for biomedical applications. Adv Mater 23(12):H41–H56

    Article  Google Scholar 

  • Caione P et al (2012) Bladder augmentation using acellular collagen biomatrix: a pilot experience in exstrophic patients. Pediatr Surg Int 28(4):421–428

    Article  Google Scholar 

  • Caldamone AA et al (1998) Buccal mucosal grafts for urethral reconstruction. Urology 51(5, Supplement 1):15–19

    Article  Google Scholar 

  • Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98(5):1076–1084

    Article  Google Scholar 

  • Cattan V et al (2011) Mechanical stimuli-induced urothelial differentiation in a human tissue-engineered tubular genitourinary graft. Eur Urol 60(6):1291–1298

    Article  Google Scholar 

  • Chan BP, Leong KW (2008) Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 17(Suppl 4):467–479

    Article  Google Scholar 

  • Chen F, Yoo JJ, Atala AJU (1999a) Acellular collagen matrix as a possible “off the shelf” biomaterial for urethral repair. Urology 54(3):407–410

    Article  Google Scholar 

  • Chen F, Yoo JJ, Atala A (1999b) Acellular collagen matrix as a possible "off the shelf" biomaterial for urethral repair. Urology 54(3):407–410

    Article  Google Scholar 

  • Chen C et al (2018) Transplantation of amniotic scaffold-seeded mesenchymal stem cells and/or endothelial progenitor cells from bone marrow to efficiently repair 3-cm circumferential urethral defect in model dogs. Tissue Eng Part A 24(1–2):47–56

    Article  Google Scholar 

  • Chun SY et al (2007) Identification and characterization of bioactive factors in bladder submucosa matrix. Biomaterials 28(29):4251–4256

    Article  Google Scholar 

  • Chun SY et al (2015) Urethroplasty using autologous urethral tissue-embedded acellular porcine bladder submucosa matrix grafts for the management of long-segment urethral stricture in a rabbit model. J Korean Med Sci 30(3):301–307

    Article  Google Scholar 

  • Chunxiang F et al (2019) Electrospun nanofibers with core–shell structure for treatment of bladder regeneration. Tissue Eng Part A 25:1289–1299

    Article  Google Scholar 

  • Cilento BG et al (1994) Phenotypic and cytogenetic characterization of human bladder urothelia expanded in vitro. J Urol 152(2 Pt 2):665–670

    Article  Google Scholar 

  • Coutu DL et al (2014) Tissue engineering of rat bladder using marrow-derived mesenchymal stem cells and bladder acellular matrix. PLoS One 9(12):e111966

    Article  Google Scholar 

  • Crapo PM, Gilbert TW, Badylak SFJB (2011) An overview of tissue and whole organ decellularization processes. Biomaterials 32(12):3233–3243

    Article  Google Scholar 

  • Dahl SLM et al (2011a) Readily available tissue-engineered vascular grafts. Sci Transl Med 3(68):68ra9-68ra9

    Article  Google Scholar 

  • Dahl SL et al (2011b) Readily available tissue-engineered vascular grafts. Sci Transl Med 3(68):68ra9-68ra9

    Article  Google Scholar 

  • Davis NF et al (2018a) Tissue engineered extracellular matrices (ECMs) in urology: evolution and future directions. Surgeon 16(1):55–65

    Article  Google Scholar 

  • Davis NF et al (2018b) The role of stem cells for reconstructing the lower urinary tracts. Curr Stem Cell Res Ther 13(6):458–465

    Article  Google Scholar 

  • de Bournonville S et al (2018) 233 - a modular, standalone perfusion bioreactor for robust, monitored and controlled tissue engineering. Cytotherapy 20(5 Supplement):S81–S82

    Article  Google Scholar 

  • De Coppi P et al (2007a) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25(1):100–106

    Article  Google Scholar 

  • De Coppi P et al (2007b) Amniotic fluid and bone marrow derived mesenchymal stem cells can be converted to smooth muscle cells in the cryo-injured rat bladder and prevent compensatory hypertrophy of surviving smooth muscle cells. J Urol 177(1):369–376

    Article  Google Scholar 

  • De Filippo RE, Yoo JJ, Atala A (2002) Urethral replacement using cell seeded tubularized collagen matrices. J Urol 168(4 Pt 2):1789–1792; discussion 1792-3

    Article  Google Scholar 

  • De Filippo RE et al (2015) Penile urethra replacement with autologous cell-seeded tubularized collagen matrices. J Tissue Eng Regen Med 9(3):257–264

    Article  Google Scholar 

  • Deng K et al (2014) Mesenchymal stem cells and their secretome partially restore nerve and urethral function in a dual muscle and nerve injury stress urinary incontinence model. Am J Physiol Renal Physiol 308(2):F92–F100

    Article  Google Scholar 

  • Dhandayuthapani B et al (2011a, 2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci

    Google Scholar 

  • Dhandayuthapani B et al (2011b) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci

    Google Scholar 

  • Dorin RP et al (2008) Tubularized urethral replacement with unseeded matrices: what is the maximum distance for normal tissue regeneration? World J Urol 26(4):323–326

    Article  Google Scholar 

  • El-Kassaby AW et al (2003) Urethral stricture repair with an off-the-shelf collagen matrix. J Urol 169(1):170–173; discussion 173

    Article  Google Scholar 

  • El-Taji OM, Khattak AQ, Hussain SA (2015) Bladder reconstruction: the past, present and future. Oncol Lett 10(1):3–10

    Article  Google Scholar 

  • Farhat WA, Yeger HJWJoU (2008) Does mechanical stimulation have any role in urinary bladder tissue engineering? World J Urol 26(4):301–305

    Article  Google Scholar 

  • Feil G et al (2006) Investigations of Urothelial cells seeded on commercially available small intestine submucosa. Eur Urol 50(6):1330–1337

    Article  Google Scholar 

  • Feng C et al (2011) Reconstruction of three-dimensional neourethra using lingual keratinocytes and corporal smooth muscle cells seeded acellular corporal spongiosum. Tissue Eng Part A

    Google Scholar 

  • Fiala R et al (2007) Porcine small intestinal submucosa graft for repair of anterior urethral strictures. Eur Urol 51(6):1702–1708

    Article  Google Scholar 

  • Filippo RED, Yoo JJ, Atala A (2002) Urethral replacement using cell seeded tubularized collagen matrices. J Urol 168(4 Part 2):1789–1793

    Article  Google Scholar 

  • Fu Q et al (2007) Urethral replacement using epidermal cell-seeded tubular acellular bladder collagen matrix. BJU Int 99(5):1162–1165

    Article  Google Scholar 

  • Fu W-J et al (2011) A surface-modified biodegradable urethral scaffold seeded with urethral epithelial cells. Chin Med J 124(19):3087–3092

    Google Scholar 

  • Furthmayr H, Timpl R (1976) Immunochemistry of collagens and procollagens. In: Hall DA, Jackson DS (eds) International review of connective tissue research. Elsevier, pp 61–99

    Google Scholar 

  • Gabr H et al (2018) 234 - tissue engineering for bladder reconstruction: exploring bioscaffolds. Cytotherapy 20(5, Supplement):S82

    Google Scholar 

  • Gabrich PN et al (2007) Avaliação das medidas do comprimento peniano de crianças e adolescentes. J Pediatr 83:441–446

    Article  Google Scholar 

  • Griffith LG, Naughton G (2002) Tissue engineering--current challenges and expanding opportunities. Science 295(5557):1009–1014

    Article  Google Scholar 

  • Gu GL et al (2012) Tubularized urethral replacement using tissue-engineered peritoneum-like tissue in a rabbit model. Urol Int 89(3):358–364

    Article  Google Scholar 

  • Haberstroh KM et al (2002) A novel in-vitro system for the simultaneous exposure of bladder smooth muscle cells to mechanical strain and sustained hydrostatic pressure. J Biomech Eng 124(2):208–213

    Article  Google Scholar 

  • Hardy JG et al (2015) Electroactive tissue scaffolds with aligned pores as instructive platforms for biomimetic tissue engineering. Bioengineering 2(1):15–34

    Article  Google Scholar 

  • Hayn MH, Bellinger MF, Schneck FX (2009) Small intestine submucosa as a corporal body graft in the repair of severe Chordee. Urology 73(2):277–279

    Article  Google Scholar 

  • Horst M et al (2013a) Engineering functional bladder tissues. J Tissue Eng Regen Med 7(7):515–522

    Article  Google Scholar 

  • Horst M et al (2013b) Engineering functional bladder tissues. J Tissue Eng Regen Med 7(7):515–522

    Article  Google Scholar 

  • Horst M et al (2013c) A bilayered hybrid microfibrous PLGA–acellular matrix scaffold for hollow organ tissue engineering. Biomaterials 34(5):1537–1545

    Article  Google Scholar 

  • Horst M et al (2019) Tissue engineering in pediatric bladder reconstruction – the road to success. Front Pediatr 7:91

    Article  Google Scholar 

  • Huang J-W et al (2015) Urethral reconstruction with a 3D porous bacterial cellulose scaffold seeded with lingual keratinocytes in a rabbit model. Biomed Mater 10(5):055005

    Article  Google Scholar 

  • Hubbell JA (2003) Materials as morphogenetic guides in tissue engineering. Curr Opin Biotechnol 14(5):551–558

    Article  Google Scholar 

  • Husmann DA, Rathbun SR (2006) Long-term followup of visual internal urethrotomy for management of short (less than 1 cm) penile urethral strictures following hypospadias repair. J Urol 176(4, Supplement):1738–1741

    Article  Google Scholar 

  • Jia W et al (2015) Urethral tissue regeneration using collagen scaffold modified with collagen binding VEGF in a beagle model. Biomaterials 69:45–55

    Article  Google Scholar 

  • Kajbafzadeh A-M et al (2011) In-vivo autologous bladder muscular wall regeneration: application of tissue-engineered pericardium in a model of bladder as a bioreactor. J Pediatr Urol 7(3):317–323

    Article  Google Scholar 

  • Kajbafzadeh A-M et al (2017) Future prospects for human tissue engineered urethra transplantation: decellularization and recellularization-based urethra regeneration. Reprod Tissue Eng 45(7):1795–1806

    Google Scholar 

  • Keays MA, Dave S (2017) Current hypospadias management: diagnosis, surgical management, and long-term patient-centred outcomes. Can Urol Assoc J 11(1-2Suppl1):S48–S53

    Article  Google Scholar 

  • Kim Y-J, Matsunaga YT (2017) Thermo-responsive polymers and their application as smart biomaterials. J Mater Chem B 5(23):4307–4321

    Article  Google Scholar 

  • Kingham PJ et al (2014) Stimulating the neurotrophic and angiogenic properties of human adipose-derived stem cells enhances nerve repair. Stem Cells Dev 23(7):741–754

    Article  Google Scholar 

  • Kirkton RD et al (2019) Bioengineered human acellular vessels recellularize and evolve into living blood vessels after human implantation. Sci Transl Med 11(485):eaau6934

    Article  Google Scholar 

  • Koie T et al (2018) Robotic cross-folded U-configuration intracorporeal ileal neobladder for muscle-invasive bladder cancer: initial experience and functional outcomes. Int J Med Robot Comp Assisted Surg 14(6):e1955

    Article  Google Scholar 

  • Kowalski PS et al (2018) Smart biomaterials: recent advances and future directions. ACS Biomater Sci Eng 4(11):3809–3817

    Article  Google Scholar 

  • Kropp BP et al (1996) Regenerative urinary bladder augmentation using small intestinal submucosa: urodynamic and histopathologic assessment in long-term canine bladder augmentations. Investig Urol 155(6):2098–2104

    Google Scholar 

  • Lazzeri M et al (2016) Incidence, causes, and complications of urethral stricture disease. Eur Urol Suppl 15(1):2–6

    Article  Google Scholar 

  • Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37(1):106–126

    Article  Google Scholar 

  • Li C et al (2008) Urethral reconstruction using oral keratinocyte seeded bladder acellular matrix grafts. J Urol 180(4):1538–1542

    Article  Google Scholar 

  • Liu JS et al (2016) Bone marrow stem/progenitor cells attenuate the inflammatory milieu following substitution Urethroplasty. Sci Rep 6:35638

    Article  Google Scholar 

  • Lu S-H et al (2005) Biaxial mechanical properties of muscle-derived cell seeded small intestinal submucosa for bladder wall reconstitution. Biomaterials 26(4):443–449

    Article  Google Scholar 

  • Lv X et al (2016) Electrospun poly(l-lactide)/poly(ethylene glycol) scaffolds seeded with human amniotic mesenchymal stem cells for urethral epithelium repair. Int J Mol Sci 17(8):1262

    Article  Google Scholar 

  • Lv X et al (2018) A smart bilayered scaffold supporting keratinocytes and muscle cells in micro/nano-scale for urethral reconstruction. Theranostics 8(11):3153–3163

    Article  Google Scholar 

  • Magnan M et al (2009) Tissue engineering of a genitourinary tubular tissue graft resistant to suturing and high internal pressures. Tissue Eng Part A 15(1):197–202

    Article  Google Scholar 

  • Mangir N et al (2019a) Current state of urethral tissue engineering. Curr Opin Urol 29(4):385–393

    Article  Google Scholar 

  • Mangır N et al (2016) Production of ascorbic acid releasing biomaterials for pelvic floor repair. Acta Biomater 29:188–197

    Article  Google Scholar 

  • Mangır N et al (2017) Oestradiol-releasing biodegradable mesh stimulates collagen production and angiogenesis: an approach to improving biomaterial integration in pelvic floor repair. Eur Urol Focus 5(2):280–289

    Article  Google Scholar 

  • Mangir N et al (2019b) Current state of urethral tissue engineering. Curr Opin Urol 29(4):385–393

    Article  Google Scholar 

  • Markiewicz MR et al (2008) Morbidity associated with oral mucosa harvest for urological reconstruction: an overview. J Oral Maxillofac Surg 66(4):739–744

    Article  Google Scholar 

  • Martin I, Wendt D, Heberer M (2004) The role of bioreactors in tissue engineering. Trends Biotechnol 22(2):80–86

    Article  Google Scholar 

  • Mijailovich SM et al (2007) Effect of urethral compliance on the steady state p-Q relationships assessed with a mechanical analog of the male lower urinary tract. Neurourol Urodyn 26(2):234–246

    Article  Google Scholar 

  • Nagele U et al (2008) In vitro investigations of tissue-engineered multilayered Urothelium established from bladder washings. Eur Urol 54(6):1414–1422

    Article  Google Scholar 

  • Neuhof H (1917) Facial transplantation into visceral defects: an experimental and clinical study. Surg Gynecol Obstet 25:383–427

    Google Scholar 

  • Niklason L et al (1999) Functional arteries grown in vitro. Science 284(5413):489–493

    Article  Google Scholar 

  • Oberpenning F et al (1999a) De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat Biotechnol 17(2):149

    Article  Google Scholar 

  • Oberpenning F et al (1999b) De novo reconstitution of a functional mammalian urinary bladder by tissue engineering. Nat Biotechnol 17(2):149–155

    Article  Google Scholar 

  • Ohel G, Haddad S, Samueloff A (1995) Fetal urine production and micturition and fetal behavioral state. Am J Perinatol 12(2):91–92

    Article  Google Scholar 

  • Orabi H et al (2013a, 2013) Tissue engineering of urinary bladder and urethra: advances from bench to patients. Sci World J:154564–154564

    Google Scholar 

  • Orabi H et al (2013b) The use of small intestinal submucosa graft for hypospadias repair: pilot study. Arab J Urol 11(4):415–420

    Article  Google Scholar 

  • Osborn SL et al (2014) Induction of human embryonic and induced pluripotent stem cells into urothelium. Stem Cells Transl Med 3(5):610–619

    Article  Google Scholar 

  • Ouellet G et al (2011) Production of an optimized tissue-engineered pig connective tissue for the reconstruction of the urinary tract. Tissue Eng Part A 17(11–12):1625–1633

    Article  Google Scholar 

  • Palminteri E et al (2012) Long-term results of small intestinal submucosa graft in bulbar urethral reconstruction. Urology 79(3):695–701

    Article  Google Scholar 

  • Partin, A.W., et al., Campbell-Walsh urology, 11th Edition. Principles of tissue engineering, ed. A. Atala. Vol. 1. 2015: Elsevier Health Sciences. 482–498

    Google Scholar 

  • Pi Q et al (2018) Digitally tunable microfluidic bioprinting of multilayered Cannular tissues. Adv Mater 30(43):e1706913

    Article  Google Scholar 

  • Pinnagoda K et al (2016) Engineered acellular collagen scaffold for endogenous cell guidance, a novel approach in urethral regeneration. Acta Biomater 43:208–217

    Article  Google Scholar 

  • Poole Wilson DS, Barnard RJBjou (1971) Total cystectomy for bladder tumors. Br J Urol 43(1):16–23

    Article  Google Scholar 

  • Probst M et al (1997) Reproduction of functional smooth muscle tissue and partial bladder replacement. Br J Urol 79(4):505–515

    Article  Google Scholar 

  • Rajasekaran M, Stein P, Parsons CLJIjou (2006) Toxic factors in human urine that injure urothelium. Int J Urol 13(4):409–414

    Article  Google Scholar 

  • Ramuta TŽ, Kreft ME (2018) Human amniotic membrane and amniotic membrane–derived cells: how far are we from their use in regenerative and reconstructive urology? Cell Transplant 27(1):77–92

    Article  Google Scholar 

  • Rashidbenam Z et al (2019) Overview of urethral reconstruction by tissue engineering: current strategies, clinical status and future direction. Tissue Eng Regen Med

    Google Scholar 

  • Raya-Rivera A et al (2011) Tissue-engineered autologous urethras for patients who need reconstruction: an observational study. Lancet 377(9772):1175–1182

    Article  Google Scholar 

  • Roelofs LAJ, Oosterwijk E et al (2016) Bladder regeneration using a smart Acellular collagen scaffold with growth factors VEGF, FGF2 and HB-EGF. Tissue Eng Part A 22(1–2):83–92

    Article  Google Scholar 

  • Roth CC, Kropp BPJCUR (2009) Recent advances in urologic tissue engineering. Curr Urol Rep 10(2):119–125

    Article  Google Scholar 

  • Rousseau A et al (2015) Adipose-derived stromal cells for the reconstruction of a human vesical equivalent. J Tissue Eng Regen Med 9(11):E135–E143

    Article  Google Scholar 

  • Rouwkema J, Rivron NC, van Blitterswijk CA (2008) Vascularization in tissue engineering. Trends Biotechnol 26(8):434–441

    Article  Google Scholar 

  • Saif A et al (2019) Augmentation cystoplasty of diseased porcine bladders with bi-layer silk fibroin grafts. Tissue Eng Part A 25(11–12):855–866

    Google Scholar 

  • Salem SA et al (2013) Human adipose tissue derived stem cells as a source of smooth muscle cells in the regeneration of muscular layer of urinary bladder wall. Malay J Med Sci MJMS 20(4):80–87

    Google Scholar 

  • Sanchez RP et al (1958) Vesical regeneration in the human after total cystectomy and implantation of a plastic mould. Br J Urol 30(2):180–188

    Article  Google Scholar 

  • Schaefer M et al (2013) Bladder augmentation with small intestinal submucosa leads to unsatisfactory long-term results. J Pediatr Urol 9(6, Part A):878–883

    Article  Google Scholar 

  • Serrano-Aroca Á, Vera-Donoso CD, Moreno-Manzano V (2018a) Bioengineering approaches for bladder regeneration. Int J Mol Sci 19(6):1796

    Article  Google Scholar 

  • Serrano-Aroca A, Vera-Donoso CD, Moreno-Manzano V (2018b) Bioengineering approaches for bladder regeneration. Int J Mol Sci 19(6)

    Google Scholar 

  • Shaikh FM et al (2010) New pulsatile hydrostatic pressure bioreactor for vascular tissue-engineered constructs. Artif Organs 34(2):153–158

    Article  Google Scholar 

  • Shakhssalim N et al (2013) Bladder smooth muscle cells interaction and proliferation on PCL/PLLA electrospun Nanofibrous scaffold. Int J Artif Organs 36(2):113–120

    Article  Google Scholar 

  • Shiroyanagi Y et al (2003) Transplantable Urothelial cell sheets harvested noninvasively from temperature-responsive culture surfaces by reducing temperature. Tissue Eng 9(5):1005–1012

    Article  Google Scholar 

  • Shirozu H et al (1995) Penile tumescence in the human fetus at term — a preliminary report. Early Hum Dev 41(3):159–166

    Article  Google Scholar 

  • Shukla D et al (2008a) Bone marrow stem cells for urologic tissue engineering. World J Urol 26(4):341–349

    Article  Google Scholar 

  • Shukla D et al (2008b) Bone marrow stem cells for urologic tissue engineering. World J Urol 26(4):341

    Article  Google Scholar 

  • Sivaraman S et al (2019) Evaluation of poly (carbonate-urethane) urea (PCUU) scaffolds for urinary bladder tissue engineering. Ann Biomed Eng 47(3):891–901

    Article  Google Scholar 

  • Stangel-Wojcikiewicz K et al (2014) Autologous muscle-derived cells for the treatment of female stress urinary incontinence: a 2-year follow-up of a polish investigation. Neurourol Urodyn 33(3):324–330

    Article  Google Scholar 

  • Stock UA, Vacanti JP (2001) Cardiovascular physiology during fetal development and implications for tissue engineering. Tissue Eng 7(1):1–7

    Article  Google Scholar 

  • StÖlting MNL et al (2016) Magnetic stimulation supports muscle and nerve regeneration after trauma in mice. Muscle Nerve 53(4):598–607

    Article  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  Google Scholar 

  • Taylor DA et al (2018) Decellularized matrices in regenerative medicine. Acta Biomater 74:74–89

    Article  Google Scholar 

  • Theocharis AD et al (2016) Extracellular matrix structure. Adv Drug Deliv Rev 97:4–27

    Article  Google Scholar 

  • Wang Y et al (2008) In vivo degradation of three-dimensional silk fibroin scaffolds. Biomaterials 29(24):3415–3428

    Article  Google Scholar 

  • Wang Y et al (2019) Bioengineered bladder patches constructed from multilayered adipose-derived stem cell sheets for bladder regeneration. Acta Biomater 85:131–141

    Article  Google Scholar 

  • Wu S et al (2011) Human urine-derived stem cells seeded in a modified 3D porous small intestinal submucosa scaffold for urethral tissue engineering. Biomaterials 32(5):1317–1326

    Article  Google Scholar 

  • Wu Y et al (2016) Electroactive biodegradable polyurethane significantly enhanced Schwann cells myelin gene expression and neurotrophin secretion for peripheral nerve tissue engineering. Biomaterials 87:18–31

    Article  Google Scholar 

  • Xie M et al (2013) Evaluation of stretched electrospun silk fibroin matrices seeded with urothelial cells for urethra reconstruction. J Surg Res 184(2):774–781

    Article  Google Scholar 

  • Yalla SV, Burros HM (1974) Conduit and regional compliance of female canine urethra: observations during voiding and passive urethral infusion. Urology 4(2):155–161

    Article  Google Scholar 

  • Yao C et al (2013) Nanostructured polyurethane-poly-lactic-co-glycolic acid scaffolds increase bladder tissue regeneration: an in vivo study. Int J Nanomedicine 8:3285–3296

    Google Scholar 

  • Yoo JJ et al (1998) Bladder augmentation using allogenic bladder submucosa seeded with cells. Urology 51(2):221–225

    Article  Google Scholar 

  • Zhang YY, Frey P (2003) Growth of cultured human urothelial cells into stratified urothelial sheet suitable for autografts. Adv Exp Med Biol 539(Pt B):907–920

    Google Scholar 

  • Zhang Y et al (2000) Coculture of bladder urothelial and smooth muscle cells on small intestinal submucosa: potential applications for tissue engineering technology. J Urol 164(3 Part 2):928–935

    Article  Google Scholar 

  • Zhang Y et al (2005) Growth of bone marrow stromal cells on small intestinal submucosa: an alternative cell source for tissue engineered bladder. BJU Int 96(7):1120–1125

    Article  Google Scholar 

  • Zhang Y et al (2006a) Challenges in a larger bladder replacement with cell-seeded and unseeded small intestinal submucosa grafts in a subtotal cystectomy model. BJU Int 98(5):1100–1105

    Article  Google Scholar 

  • Zhang Y et al (2006b) Challenges in a larger bladder replacement with cell-seeded and unseeded small intestinal submucosa grafts in a subtotal cystectomy model. BJU Int 98(5):1100–1105

    Article  Google Scholar 

  • Zhang Y et al (2008) Urine derived cells are a potential source for urological tissue reconstruction. J Urol 180(5):2226–2233

    Article  Google Scholar 

  • Zhang M et al (2013) Differentiation of human adipose-derived stem cells co-cultured with Urothelium cell line toward a Urothelium-like phenotype in a nude murine model. Urology 81(2):465.e15–465.e22

    Article  Google Scholar 

  • Zhang L et al (2016) Development of a cell-seeded modified small intestinal submucosa for urethroplasty. Heliyon 2(3):e00087

    Article  Google Scholar 

  • Zhe W et al (2016) Smooth muscle precursor cells derived from human pluripotent stem cells for treatment of stress urinary incontinence. Stem Cells Dev 25(6):453–461

    Article  Google Scholar 

  • Zhou S et al (2017) Fabrication of tissue-engineered bionic urethra using cell sheet technology and labeling by ultrasmall Superparamagnetic Iron oxide for full-thickness urethral reconstruction. Theranostics 7(9):2509–2523

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James J. Yoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yi, X.L., Lim, D., Atala, A., Yoo, J.J. (2021). Engineering of the Bladder and Urethra. In: Eberli, D., Lee, S.J., Traweger, A. (eds) Organ Tissue Engineering. Reference Series in Biomedical Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-030-18512-1_1-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18512-1_1-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18512-1

  • Online ISBN: 978-3-030-18512-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics