Skip to main content

Advertisement

Log in

Does mechanical stimulation have any role in urinary bladder tissue engineering?

  • Topic Paper
  • Published:
World Journal of Urology Aims and scope Submit manuscript

Abstract

Introduction

Tissue engineering of the urinary bladder currently relies on biocompatible scaffolds that deliver biological and physical functionality with negligible risks of immunogenic or tumorigenic potential. Recent research suggests that autologous cells that are propagated in culture and seeded on scaffolds prior to implantation improve clinical outcomes. For example, normal urinary bladder development in utero requires regular filling and emptying, and current research suggests that bladders constructed in vitro may also benefit from regular mechanical stimulation. Such stimulation appears to induce favorable cellular changes, proliferation, and production of structurally suitable extracellular matrix (ECM) components essential for the normal function of hollow dynamic organs.

Materials and methods

To mimic in vivo urinary bladder dynamics, tissue bioreactors that imitate the filling and emptying of a normal bladder have been devised. A “urinary bladder tissue bioreactor” that is able to recapitulate these dynamics while providing a cellular environment that facilitates cell–cell and cell–matrix interactions normally seen in-vivo may be necessary to successfully engineer bladder tissue.

Conclusions

The validation of a urinary bladder tissue bioreactor that permits careful control of physiological conditions will generate a broad interest from researchers interested in urinary bladder physiology and tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Nicolaides KH, Rosen D, Rabinowitz R, Campbell S (1988) Urine production and bladder function in fetuses with open spina bifida. Fetal Ther 3:135–140

    Article  PubMed  CAS  Google Scholar 

  2. Coplen DE, Macarak EJ, Levin RM (1994) Developmental changes in normal fetal bovine whole bladder physiology. J Urol 151:1391–1395

    PubMed  CAS  Google Scholar 

  3. Baskin L, Howard PS, Macarak E (1993) Effect of mechanical forces on extracellular matrix synthesis by bovine urethral fibroblasts in vitro. J Urol 150:637–641

    PubMed  CAS  Google Scholar 

  4. Baskin L, Meaney D, Landsman A, Zderic SA, Macarak E (1994) Bovine bladder compliance increases with normal fetal development. J Urol 152:692–695 discussion 696–697

    PubMed  CAS  Google Scholar 

  5. Lawrenson R, Wyndaele JJ, Vlachonikolis I, Farmer C, Glickman S (2001) Renal failure in patients with neurogenic lower urinary tract dysfunction. Neuroepidemiology 20:138–143

    Article  PubMed  CAS  Google Scholar 

  6. Khoury JM, Timmons SL, Corbel L, Webster GD (1992) Complications of enterocystoplasty. Urology 40:9–14

    Article  PubMed  CAS  Google Scholar 

  7. McDougal WS (1992) Metabolic complications of urinary intestinal diversion. J Urol 147:1199–1208

    PubMed  CAS  Google Scholar 

  8. Duel BP, Gonzalez R, Barthold JS (1998) Alternative techniques for augmentation cystoplasty. J Urol 159:998–1005

    Article  PubMed  CAS  Google Scholar 

  9. Cartwright LM, Shou Z, Yeger H, Farhat WA (2006) Porcine bladder acellular matrix porosity: impact of hyaluronic acid and lyophilization. J Biomed Mater Res A 77(1):180–184

    PubMed  Google Scholar 

  10. Farhat W, Chen J, Erdeljan P, Shemtov O, Courtman D, Khoury A, Yeger H (2003) Porosity of porcine bladder acellular matrix: impact of ACM thickness. J Biomed Mater Res A 67:970–974

    Article  PubMed  CAS  Google Scholar 

  11. Atala A (2000) Tissue engineering for bladder substitution. World J Urol 18:364–370

    Article  PubMed  CAS  Google Scholar 

  12. Atala A (2000) New methods of bladder augmentation. BJU Int 85(Suppl 3):24–34 discussion 36

    PubMed  Google Scholar 

  13. Oberpenning F, Meng J, Yoo JJ, Atala A (1999) De novo reconstruction of a functional mammalian urinary bladder by tissue engineering. Nat Biotechnol 17:149–155

    Article  PubMed  CAS  Google Scholar 

  14. Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB (2006) Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367:1241–1246

    Article  PubMed  Google Scholar 

  15. Metwalli AR, Colvert JR 3rd, Kropp BP (2003) Tissue engineering in urology: where are we going? Curr Urol Rep 4:156–163

    Article  PubMed  Google Scholar 

  16. Cheng HL, Chen J, Babyn PS, Farhat WA (2005) Dynamic Gd-DTPA enhanced MRI as a surrogate marker of angiogenesis in tissue-engineered bladder constructs: a feasibility study in rabbits. J Magn Reson Imaging 21:415–423

    Article  PubMed  Google Scholar 

  17. Seliktar D, Black RA, Vito RP, Nerem RM (2000) Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro. Ann Biomed Eng 28:351–362

    Article  PubMed  CAS  Google Scholar 

  18. Brown AL, Brook-Allred TT, Waddell JE, White J, Werkmeister JA, Ramshaw JA, Bagli DJ, Woodhouse KA (2005) Bladder acellular matrix as a substrate for studying in vitro bladder smooth muscle–urothelial cell interactions. Biomaterials 26:529–543

    Article  PubMed  CAS  Google Scholar 

  19. Southgate J, Cross W, Eardley I, Thomas DF, Trejdosiewicz LK (2003) Bladder reconstruction—from cells to materials. Proc Inst Mech Eng [H] 217:311–316

    CAS  Google Scholar 

  20. Cross WR, Eardley I, Leese HJ, Southgate J (2005) A biomimetic tissue from cultured normal human urothelial cells: analysis of physiological function. Am J Physiol Renal Physiol 289:F459–F468

    Article  PubMed  CAS  Google Scholar 

  21. Kim BS, Nikolovski J, Bonadio J, Mooney DJ (1999) Cyclic mechanical strain regulates the development of engineered smooth muscle tissue. Nat Biotechnol 17:979–983

    Article  PubMed  CAS  Google Scholar 

  22. Lu SH, Sacks MS, Chung SY, Gloeckner DC, Pruchnic R, Huard J, de Groat WC, Chancellor MB (2005) Biaxial mechanical properties of muscle-derived cell seeded small intestinal submucosa for bladder wall reconstitution. Biomaterials 26:443–449

    Article  PubMed  CAS  Google Scholar 

  23. Eastwood M, McGrouther DA, Brown RA (1998) Fibroblast responses to mechanical forces. Proc Inst Mech Eng [H] 212:85–92

    CAS  Google Scholar 

  24. Eastwood M, Mudera VC, McGrouther DA, Brown RA (1998) Effect of precise mechanical loading on fibroblast populated collagen lattices: morphological changes. Cell Motil Cytoskeleton 40:13–21

    Article  PubMed  CAS  Google Scholar 

  25. Brown RA, Prajapati R, McGrouther DA, Yannas IV, Eastwood M (1998) Tensional homeostasis in dermal fibroblasts: mechanical responses to mechanical loading in three-dimensional substrates. J Cell Physiol 175:323–332

    Article  PubMed  CAS  Google Scholar 

  26. Mudera VC, Pleass R, Eastwood M, Tarnuzzer R, Schultz G, Khaw P, McGrouther DA, Brown RA (2000) Molecular responses of human dermal fibroblasts to dual cues: contact guidance and mechanical load. Cell Motil Cytoskeleton 45:1–9

    Article  PubMed  CAS  Google Scholar 

  27. Altman GH, Horan RL, Martin I, Farhadi J, Stark PR, Volloch V, Richmond JC, Vunjak-Novakovic G, Kaplan DL (2002) Cell differentiation by mechanical stress. Faseb J 16:270–272

    PubMed  CAS  Google Scholar 

  28. Altman GH, Lu HH, Horan RL, Calabro T, Ryder D, Kaplan DL, Stark P, Martin I, Richmond JC, Vunjak-Novakovic G (2002) Advanced bioreactor with controlled application of multi-dimensional strain for tissue engineering. J Biomech Eng 124:742–749

    Article  PubMed  Google Scholar 

  29. Haberstroh KM, Kaefer M, DePaola N, Frommer SA, Bizios R (2002) A novel in-vitro system for the simultaneous exposure of bladder smooth muscle cells to mechanical strain and sustained hydrostatic pressure. J Biomech Eng 124:208–213

    Article  PubMed  Google Scholar 

  30. Adam RM, Eaton SH, Estrada C, Nimgaonkar A, Shih SC, Smith LE, Kohane IS, Bagli D, Freeman MR (2004) Mechanical stretch is a highly selective regulator of gene expression in human bladder smooth muscle cells. Physiol Genomics 20:36–44

    Article  PubMed  CAS  Google Scholar 

  31. Park JM, Borer JG, Freeman MR, Peters CA (1998) Stretch activates heparin-binding EGF-like growth factor expression in bladder smooth muscle cells. Am J Physiol 275:C1247–C1254

    PubMed  CAS  Google Scholar 

  32. Baskin L, Howard PS, Macarak E (1993) Effect of physical forces on bladder smooth muscle and urothelium. J Urol 150:601–607

    PubMed  CAS  Google Scholar 

  33. Ratcliffe A, Niklason LE (2002) Bioreactors and bioprocessing for tissue engineering. Ann N Y Acad Sci 961:210–215

    PubMed  CAS  Google Scholar 

  34. Godbey WT, Atala A (2002) In vitro systems for tissue engineering. Ann N Y Acad Sci 961:10–26

    Article  PubMed  CAS  Google Scholar 

  35. Wallis MC, Yeger H et al (2006) Feasibility study of a novel urinary bladder bioreactor. Tissue Eng Part A 14(3):339–348

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank Dr. Jennifer Olson for editorial assistance.

Conflict of interest statement

There is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walid A. Farhat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farhat, W.A., Yeger, H. Does mechanical stimulation have any role in urinary bladder tissue engineering?. World J Urol 26, 301–305 (2008). https://doi.org/10.1007/s00345-008-0318-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00345-008-0318-4

Keywords

Navigation