Skip to main content

Squamate Reptile Genomics and Evolution

  • Living reference work entry
  • First Online:
Toxinology

Abstract

Squamates exhibit some of the most extreme and fascinating biological adaptations among vertebrates, including the production of a wide diversity of venom toxins. The rapid accumulation of genomic information from squamate reptiles is generating important new context and insights into the biology, the regulation and diversity of venom toxins, and the evolutionary processes that have generated this diversity. It is an exciting time as we discover what the unique aspects of the squamate genome can tell us about the molecular basis of such interesting and diverse phenotypes and explain how the extreme adaptations of squamate biology arose. This chapter reviews what is known about major patterns and evolutionary trends in squamate genomes and discusses how some of these features may relate to the evolution and development of unique features of squamate biology and physiology on the whole, including the evolution and regulation of venom toxins. It also discusses current challenges and obstacles in understanding squamate genome size, diversity, and evolution, and specific issues related to assembling and studying regions of squamate genomes that contain the genes and regulatory regions for venom toxins. Evidence is presented for a relatively constant genome size across squamates even though there have been major shifts in genomic structure and evolutionary processes. Some genomic structural features seem relatively unique to squamates and may have played roles in the evolution of venom toxins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alfoldi J, Di Palma F, Grabherr M, et al. The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature. 2011;477:587–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bradnam KR, Fass JN, Alexandrov A, Baranay P, Bechner M, Birol I, Boisvert S, Chaptman JA, et al. Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species. GigaScience. 2013;2:10.

    Article  PubMed Central  PubMed  Google Scholar 

  • Calvete JJ. Antivenomics and venom phenotyping: a marriage of convenience to address the performance and range of clinical use of antivenoms. Toxicon. 2010;56:1284–91.

    Article  CAS  PubMed  Google Scholar 

  • Casewell NR, Wuster W, Wagstaff SC, Renjifo C, Richardson MK, Vonk FJ, Harrison RA. The origin and evolution of metalloproteinases in the venom of snakes. Toxicon. 2012;60:119.

    Article  CAS  Google Scholar 

  • Castoe TA, Jiang ZJ, Gu W, Wang ZO, Pollock DD. Adaptive evolution and functional redesign of core metabolic proteins in snakes. PLoS One. 2008;3:e2201.

    Article  PubMed Central  PubMed  Google Scholar 

  • Castoe TA, de Koning APJ, Kim H-M, Gu W, Noonan BP, Naylor G, Jiang ZJ, Parkinson CL, Pollock DD. Evidence for an ancient adaptive episode of convergent molecular evolution. Proc Natl Acad Sci. 2009a;106:8986–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Castoe TA, Gu W, De Koning APJ, Daza JM, Jiang ZJ, Parkinson CL, Pollock DD. Dynamic nucleotide mutation gradients and control region usage in squamate reptile mitochondrial genomes. Cytogenet Genome Res. 2009b;127:112–27.

    Article  CAS  PubMed  Google Scholar 

  • Castoe T, de Koning A, Hall K, et al. Sequencing the genome of the Burmese python (Python molurus bivittatus) as a model for studying extreme adaptations in snakes. Genome Biol. 2011a;12:1–8.

    Article  Google Scholar 

  • Castoe TA, Bronikowski AM, Brodie ED, Edwards SV, Pfrender ME, Shapiro MD, Pollock DD, Warren WC. A proposal to sequence the genome of a garter snake (Thamnophis sirtalis). Stand Genomic Sci. 2011b;4:257–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Castoe TA, Fox SE, De Koning APJ, Poole AW, Daza JM, Smith EN, Mockler TC, Secor SM, Pollock DD. A multi-organ transcriptome resource for the Burmese python (Python molurus bivittatus). BMC Res Notes. 2011c;4.

    Google Scholar 

  • Castoe TA, Hall KT, Mboulas MLG, et al. Discovery of highly divergent repeat landscapes in snake genomes using high-throughput sequencing. Genome Biol Evol. 2011d;3:641–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Castoe TA, de Koning AP, Hall KT, et al. The Burmese python genome reveals the molecular basis for extreme adaptation in snakes. Proc Natl Acad Sci U S A. 2013;110:20645–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Crawford NG, Faircloth BC, McCormack JE, Brumfield RT, Winker K, Glenn TC. More than 1000 ultraconserved elements provide evidence that turtles are the sister group of archosaurs. Biol Lett. 2012;8:783–6.

    Article  PubMed Central  PubMed  Google Scholar 

  • Di-Poi N, Montoya-Burgos JI, Miller H, Pourquie O, Milinkovitch MC, Duboule D. Changes in Hox genes’ structure and function during the evolution of the squamate body plan. Nature. 2010;464:99–103.

    Article  CAS  PubMed  Google Scholar 

  • Ezaz T, Quinn A, Miura I, Sarre S, Georges A, Marshall Graves J. The dragon lizard Pogona vitticeps has ZZ/ZW micro-sex chromosomes. Chromosome Res. 2005;13:763–76.

    Article  CAS  PubMed  Google Scholar 

  • Ezaz T, Warre SD, O’Meally D, Marshall Graves JA, Georges A. Sex chromosome evolution in lizards: independent origins and rapid transitions. Cytogenet Genome Res. 2009;127:249–60.

    Article  CAS  PubMed  Google Scholar 

  • Fry BG, Vidal N, Norman JA, et al. Early evolution of the venom system in lizards and snakes. Nature. 2006;439:584–8.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert C, Pace JK, Waters PD. Target site analysis of RTE1_LA and its AfroSINE partner in the elephant genome. Gene. 2008;425:1–8.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert C, Schaack S, Pace Ii JK, Brindley PJ, Feschotte C. A role for host-parasite interactions in the horizontal transfer of transposons across phyla. Nature. 2010;464:1347–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gilbert C, Hernandez SS, Flores-Benabib J, Smith EN, Feschotte C. Rampant horizontal transfer of SPIN transposons in squamate reptiles. Mol Biol Evol. 2012;29:503–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gregory TR. Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol Rev. 2001;76:65–101.

    Article  CAS  PubMed  Google Scholar 

  • Gregory TR. Genome size evolution in animals. In: Gregory TR, editor. The evolution of the genome. Boston: Elsevier Academic Press; 2005. p. 4–71.

    Google Scholar 

  • Gregory TR. Animal genome size database. 2013. http://www.genomesize.com

  • Hedges SB, Dudley J, Kumar S. TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics. 2006;22:2971–2.

    Article  CAS  PubMed  Google Scholar 

  • Hedley DW, Friedlander ML, Taylor IW. Application of DNA flow cytometry to paraffin-embedded archival material for the study of aneuploidy and its clinical significance. Cytometry. 1985;6:327–33.

    Article  CAS  PubMed  Google Scholar 

  • Hillier LW, Miller W, Birney E, et al. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature. 2004;432:695–716.

    Article  CAS  Google Scholar 

  • Ikeda N, Chijiwa T, Matsubara K, Oda-Ueda N, Hattori S, Matsuda Y, Ohno M. Unique structural characteristics and evolution of a cluster of venom phospholipase A(2) isozyme genes of Protobothrops flavoviridis snake. Gene. 2010;461:15–25.

    Article  CAS  PubMed  Google Scholar 

  • Janes DE, Organ CL, Edward SV. Variability in sex-determining mechanisms influences genome complexity in Reptilia. Cytogenet Genome Res. 2009;127:242–8.

    Article  CAS  PubMed  Google Scholar 

  • Janes DE, Chapus C, Gondo Y, Clayton DF, Sinha S, Blatti CA, Organ CL, Fujita MK, Balakrishnan CN, Edward SV. Reptiles and mammals have differentially retained long conserved noncoding sequences from the Amniote ancester. Genome Biol Evol. 2010a;3:102–13.

    Article  PubMed Central  PubMed  Google Scholar 

  • Janes DE, Organ CL, Fujita MK, Shedlock AM, Edwards SV. Genome evolution in Reptilia, the sister group of mammals. Annu Rev Genomics Hum Genet. 2010b;11(11):239–64.

    Article  CAS  PubMed  Google Scholar 

  • Jiang ZJ, Castoe TA, Austin CC, Burbrink FT, Herron MD, McGuire JA, Parkinson CL, Pollock DD. Comparative mitochondrial genomics of snakes: extraordinary substitution rate dynamics and functionality of the duplicate control region. BMC Evol Biol. 2007;7:123.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kordis D. Transposable elements in reptilian and avian (sauropsida) genomes. Cytogenet Genome Res. 2009;127:94–111.

    Article  CAS  PubMed  Google Scholar 

  • Kordis D, Gubensek F. Bov-B long interspersed repeated DNA (LINE) sequences are present in Vipera ammodytes phospholipase A(2) genes and in genomes of Viperidae snakes. Eur J Biochem. 1997;246:772–9.

    Article  CAS  PubMed  Google Scholar 

  • Kordis D, Gubensek F. Unusual horizontal transfer of a long interspersed nuclear element between distant vertebrate classes. Proc Natl Acad Sci U S A. 1998;95:10704–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • KordiÅ¡ D, GubenÅ¡ek F. Molecular evolution of Bov-B LINEs in vertebrates. Gene. 1999;238:171–8.

    Article  PubMed  Google Scholar 

  • Kumazawa Y, Ota H, Nishida M, Ozawa T. Gene rearrangements in snake mitochondrial genomes: highly concerted evolution of control-region-like sequences duplicated and inserted into a tRNA gene cluster. Mol Biol Evol. 1996;13:1242–54.

    Article  CAS  PubMed  Google Scholar 

  • Leutwiler LS, Hough-Evans BR, Meyerowitz EM. The DNA of Arabidopsis thaliana. Mol Gen Genet MGG. 1984;194:15–23.

    Article  CAS  Google Scholar 

  • Matsubara K, Tarui H, Toriba M, Yamada K, Nishida-Umehara C, Agata K, Matsuda Y. Evidence for different origin of sex chromosomes in snakes, birds, and mammals and step-wise differentiation of snake sex chromosomes. Proc Natl Acad Sci. 2006;103:18190–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McCormack JE, Faircloth BC, Crawford NG, Gowaty PA, Brumfield RT, Glenn TC. Ultraconserved elements are novel phylogenomic markers that resolve placental mammal phylogeny when combined with species-tree analysis. Genome Res. 2012;22:746–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Novick PA, Basta H, Floumanhaft M, McClure MA, Boissinot S. The evolutionary dynamics of autonomous non-LTR retrotransposons in the lizard Anolis carolinensis shows more similarity to fish than mammals. Mol Biol Evol. 2009;26:1811–22.

    Article  CAS  PubMed  Google Scholar 

  • Oliver MJ, Petrov D, Ackerly D, Falkowski P, Schofield OM. The mode and tempo of genome size evolution in eukaryotes. Genome Res. 2007;17:594–601.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Olmo E. Rate of chromosome changes and speciation in reptiles. Genetica. 2005;125:185–203.

    Article  PubMed  Google Scholar 

  • Olmo E, Signorino GG. Chromorep: a reptile chromosomes database. http://chromoprep.univpm.it/ (2013).

  • Organ CL, Moreno RG, Edwards SV. Three tiers of genome evolution in reptiles. Integr Comp Biol. 2008;48:494–504.

    Article  PubMed  Google Scholar 

  • Pace JK, Gilbert C, Clark MS, Feschotte C. Repeated horizontal transfer of a DNA transposon in mammals and other tetrapods. Proc Natl Acad Sci. 2008;105:17023–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Piskurek O, Okada N. Poxviruses as possible vectors for horizontal transfer of retroposons from reptiles to mammals. Proc Natl Acad Sci U S A. 2007;104:12046–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Piskurek O, Nishihara H, Okada N. The evolution of two partner LINE/SINE families and a full-length chromodomain-containing Ty3/Gypsy LTR element in the first reptilian genome of Anolis carolinensis. Gene. 2009;441:111–8.

    Article  CAS  PubMed  Google Scholar 

  • Rodionov AV. Micro versus macro: a review of structure and functions of avian micro- and macrochromosomes. Russ J Genet. 1996;32:597–608.

    CAS  Google Scholar 

  • Rodionov AV, Myakoshina YA, Chelysheva LA, Solovei IV, Gaginskaya ER. Chiasmata on lampbrush chromosomes of Gallus gallus domesticus: a cytogenetic study of recombination frequency and linkage group lengths. Russ J Genet. 1992;28:53–63.

    Google Scholar 

  • Shedlock AM, Botka CW, Zhao SY, Shetty J, Zhang TT, Liu JS, Deschavanne PJ, Edward SV. Phylogenomics of nonavian reptiles and the structure of the ancestral amniote genorne. Proc Natl Acad Sci U S A. 2007;104:2767–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Siigur E, Aaspõllu A, Siigur J. Sequence diversity of Vipera lebetina snake venom gland serine proteinase homologs – result of alternative-splicing or genome alteration. Gene. 2001;263:199–203.

    Article  CAS  PubMed  Google Scholar 

  • Smith J, Bruley CK, Paton IR, et al. Differences in gene density on chicken macrochromosomes and microchromosomes. Anim Genet. 2000;31:96–103.

    Article  CAS  PubMed  Google Scholar 

  • Srikulnath K, Nishida C, Matsubara K, Uno Y, Thongpan A, Suputtitada S, Apisitwanich S, Matsuda Y. Karyotypic evolution in squamate reptiles: comparative gene mapping revealed highly conserved linkage homology between the butterfly lizard (Leiolepis reevesii rubritaeniata, Agamidae, Lacertilia) and the Japanese four-striped rat snake (Elaphe quadrivirgata, Colubridae, Serpentes). Chromosome Res. 2009;17:975–86.

    Article  CAS  PubMed  Google Scholar 

  • Vonk FJ, Casewell NR, Henkel CV, et al. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system. Proc Natl Acad Sci U S A. 2013;110:20651–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walsh AM, Kortschak RD, Gardner MG, Bertozzi T, Adelson DL. Widespread horizontal transfer of retrotransposons. Proc Natl Acad Sci. 2013;110:1012–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd A. Castoe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Shaney, K.J. et al. (2014). Squamate Reptile Genomics and Evolution. In: Gopalakrishnakone, P., Calvete, J. (eds) Toxinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6649-5_34-2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6649-5_34-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6649-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics