Skip to main content

The Position of the Clamped Nuclei Electronic Hamiltonian in Quantum Mechanics

  • Reference work entry
  • First Online:
Handbook of Computational Chemistry
  • 4600 Accesses

Abstract

Arguments are advanced to support the view that at present it is not possible to derive molecular structure from the full quantum mechanical Coulomb Hamiltonian associated with a given molecular formula that is customarily regarded as representing the molecule in terms of its constituent electrons and nuclei. However molecular structure may be identified provided that some additional chemically motivated assumptions that lead to the clamped nuclei Hamiltonian are added to the quantum mechanical account.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 749.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The work was completed in 1944 and was actually received by the journal in October 1948.

  2. 2.

    An elementary example is afforded by the momentum operator \(\hat{p} = -i\hslash d/dq\), which is Hermitian on an appropriately defined class of \({L}^{2}\) functions \(\phi (q)\); for these functions it is self-adjoint on \(-\infty \leq q \leq +\infty \) but this property is lost if either of the \(\infty \) limits is replaced by any finite value a – see, for example, Thirring (1981).

  3. 3.

    Some specifics of the implementation of permutational and rotational symmetry in quantum mechanics are discussed in section “The Symmetries of the Clamped Nuclei Electronic Hamiltonian.”

  4. 4.

    A similar requirement must be placed on the denominator in Eq. 12 of Kutzelnigg (2007) for the equation to provide a secure definition.

  5. 5.

    This means that the permutation and its inverse are always in the same class. A group with this property is said to be an ambivalent group.

  6. 6.

    By “constant” here is meant simply that the elements of the matrix are not themselves dependent on the variables.

  7. 7.

    It is sometimes convenient to think of the nuclear positions as defining a particular embedding for the basis vectors or coordinate frame.

  8. 8.

    Notice that in this approximation the mass of the nucleus is of no consequence, only the charge matters.

  9. 9.

    The operator in this form is clearly only possible for finite groups but similar operators are constructible for most infinite groups of interest.

  10. 10.

    The Coulomb Hamiltonian for the electrons and nuclei specified by the molecular formula.

References

  • Born, M., & Huang, K. (1955). Dynamical theory of crystal lattices. Oxford: Oxford University Press.

    Google Scholar 

  • Born, M., & Oppenheimer, J. R. (1927). Zur Quantentheorie der molekeln. Annalen der Physik, 84, 457.

    Article  CAS  Google Scholar 

  • Boys, S. F. (1950). Electronic wave functions. I. A general method of calculation for the stationary states of any molecular system. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 200, 542.

    Google Scholar 

  • Cassam-Chenai, P. (2006). On non-adiabatic potential energy surfaces. Chemical Physics Letters, 420, 354.

    Article  CAS  Google Scholar 

  • Collins, M. A., & Parsons, D. F. (1993). Implications of rotation-inversion-permutation invariance for analytic molecular potential energy surfaces. The Journal of Chemical Physics, 99, 6756.

    Article  CAS  Google Scholar 

  • Combes, J. M., & Seiler, R. (1980). Spectral properties of atomic and molecular systems. In R. G. Woolley (Ed.), Quantum dynamics of molecules. NATO ASI B57 (p. 435). New York: Plenum.

    Google Scholar 

  • Czub, J., & Wolniewicz, L. (1978). On the non-adiabatic potentials in diatomic molecules. Molecular Physics, 36, 1301.

    Article  CAS  Google Scholar 

  • Deshpande, V., & Mahanty, J. (1969). Born–Oppenheimer treatment of the hydrogen atom. American Journal of Physics, 37, 823.

    Article  CAS  Google Scholar 

  • Fock, V. (1930). Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems. Zeitschrift für Physik, 61, 126.

    Article  Google Scholar 

  • Frolov, A. M. (1999). Bound-state calculations of Coulomb three-body systems. Physical Review A, 59, 4270.

    Article  CAS  Google Scholar 

  • Hagedorn, G., & Joye, A. (2007). Mathematical analysis of Born–Oppenheimer approximations. In F. Gesztesy, P. Deift, C. Galvez, P. Perry, & W. Schlag. (Eds.), Spectral theory and mathematical physics: A festschrift in honor of Barry Simon’s 60th birthday (p. 203). London: Oxford University Press.

    Google Scholar 

  • Handy, N. C., & Lee, A. M. (1996). The adiabatic approximation. Chemical Physics Letters, 252, 425.

    Article  CAS  Google Scholar 

  • Hartree, D. R. (1927). The wave mechanics of an atom with a non-Coulomb central field. Part I. Theory and methods. Mathematical Proceedings of the Cambridge Philosophical Society, 24, 89.

    Google Scholar 

  • Hartree, D. R., & Hartree, W. (1936). Self-consistent field, with exchange, for beryllium. II. The (2s)(2p) \(^{3}\)P and \(^{1}\)P excited states. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 154, 588.

    Google Scholar 

  • Heitler, W., & London, F. (1927). Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik. Zeitschrift für Physik, 44, 455.

    Article  CAS  Google Scholar 

  • Herrin, J., & Howland, J. S. (1997). The Born–Oppenheimer approximation: Straight-up and with a twist. Reviews in Mathematical Physics, 9, 467.

    Article  Google Scholar 

  • Hinze, J., Alijah, A., & Wolniewicz, L. (1998). Understanding the adiabatic approximation; The accurate data of H\(_{2}\) transferred to H\(_{3}^{+}\). Polish Journal of Chemistry, 72, 1293.

    CAS  Google Scholar 

  • Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical Review, 136, 864.

    Article  Google Scholar 

  • Hunter, G. (1975). Conditional probability amplitudes in wave mechanics. International Journal of Quantum Chemistry, 9, 237.

    Article  CAS  Google Scholar 

  • Hunter, G. (1981). Nodeless wave functions and spiky potentials. International Journal of Quantum Chemistry, 19, 755.

    Article  CAS  Google Scholar 

  • Kato, T. (1951). On the existence of solutions of the helium wave equation. Transactions of the American Mathematical Society, 70, 212.

    Article  Google Scholar 

  • Klein, M., Martinez, A., Seiler, R., & Wang, X. P. (1992). On the Born-Oppenheimer expansion for polyatomic molecules. Communications in Mathematical Physics, 143, 607.

    Article  Google Scholar 

  • Kołos, W., & Wolniewicz, L. (1963). Nonadiabatic theory for diatomic molecules and its application to the hydrogen molecule. Reviews of Modern Physics, 35, 473.

    Article  Google Scholar 

  • Kutzelnigg, W. (2007). Which masses are vibrating or rotating in a molecule? Molecular Physics, 105, 2627.

    Article  CAS  Google Scholar 

  • Longuet-Higgins, H. C. (1963). The symmetry groups of non-rigid molecules. Molecular Physics, 6, 445.

    Article  CAS  Google Scholar 

  • McWeeny, R. (1950). Gaussian approximations to wave functions. Nature, 166, 21.

    Article  CAS  Google Scholar 

  • Mohallem, J. R., & Tostes, J. G. (2002). The adiabatic approximation to exotic leptonic molecules: Further analysis and a nonlinear equation for conditional amplitudes. Journal of Molecular Structure: Theochem, 580, 27.

    Article  CAS  Google Scholar 

  • Mulliken, R. S. (1931). Bonding power of electrons and theory of valence. Chemical Reviews, 9, 347.

    Article  CAS  Google Scholar 

  • Nakai, H., Hoshino, M., Miyamato, K., & Hyodo, S. (2005). Elimination of translational and rotational motions in nuclear orbital plus molecular orbital theory. The Journal of Chemical Physics, 122, 164101.

    Article  Google Scholar 

  • Pauling, L. (1939). The nature of the chemical bond. Ithaca: Cornell University Press.

    Google Scholar 

  • Roothaan, C. C. J. (1951). New developments in molecular orbital theory. Reviews of Modern Physics, 23, 69.

    Article  CAS  Google Scholar 

  • Slater, J. C. (1930). Note on Hartree’s method. Physical Review, 35, 210.

    Article  Google Scholar 

  • Sutcliffe, B. T. (2000). The decoupling of electronic and nuclear motions in the isolated molecule Schrödinger Hamiltonian. Advances in Chemical Physics, 114, 97.

    Google Scholar 

  • Sutcliffe, B. T. (2005). Comment on “Elimination of translational and rotational motions in nuclear orbital plus molecular orbital theory”. The Journal of Chemical Physics, 123, 237101.

    Article  Google Scholar 

  • Sutcliffe, B. T. (2007). The separation of electronic and nuclear motion in the diatomic molecule. Theoretical Chemistry Accounts, 118, 563.

    Article  CAS  Google Scholar 

  • Thirring, W. (1981). Quantum mechanics of atoms and molecules. A course in mathematical physics (Vol. 3, E. M. Harrell, Trans.). Berlin: Springer.

    Google Scholar 

  • Wilson, E. B. (1979). On the definition of molecular structure in quantum mechanics. International Journal of Quantum Chemistry, 13, 5.

    CAS  Google Scholar 

  • Woolley, R. G., & Sutcliffe, B. T. (1977). Molecular structure and the Born–Oppenheimer approximation. Chemical Physics Letters, 45, 393.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this entry

Cite this entry

Sutcliffe, B., Woolley, R.G. (2012). The Position of the Clamped Nuclei Electronic Hamiltonian in Quantum Mechanics. In: Leszczynski, J. (eds) Handbook of Computational Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0711-5_2

Download citation

Publish with us

Policies and ethics