Skip to main content

The Family Hydrogenophilaceae

  • Reference work entry
  • First Online:
The Prokaryotes

Abstract

Hydrogenophilaceae, a family within the order Hydrogenophilales, comprises the genera Thiobacillus, Hydrogenophilus, Petrobacter, Tepidiphilus, and Sulfuricella. Members of the family are all Gram negative, rod shaped, and non-sporulating; the reported biochemical characteristics of individual species are highly variable concerning various morphological and chemotaxonomic properties. Most members of the family are chemolithotrophic or mixotrophic using various inorganic electron donors such as reduced sulfuric compounds or hydrogen. Members of the family are either mesophilic or moderately thermophilic and have been isolated from various environments, e.g., freshwater, aerobic digesters on water treatment sludge, and hot springs. No strains have been reported as pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aroca G, Urrutia H, Nunez D, Oyarzun P, Araniciba A, Guerrero K (2007) Comparison of the removal of hydrogen sulfide in biotrickling filters inoculated with Thiobacillus thioparus and Acidithiobacillus thiooxidans. Electron J Biotechnol 10:514–520

    Article  Google Scholar 

  • Battaglia-Brunet F, El Achbouni H, Quemeneur M, Hallberg KB, Kelly DB, Joulian C (2011) Proposal that the arsenite-oxidizing organisms Thiomonas cuprina and „Thiomonas arsenivorans“ be reclassified as strains of Thiomonas delicata. Int J Syst Evol Microbiol 61:2816–2821

    Article  CAS  PubMed  Google Scholar 

  • Beller HR, Chain PSG, Letain TE, Chakicherla A, Larimer FW, Richardsson PM, Coleman MA, Wood AP, Kelly DP (2006a) The genome sequence of the obligately chemolithotrophic, facultative anaerobic bacterium Thiobacillus denitrificans. J Bacteriol 188:1473–1488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Beller HR, Letain TE, Chakicherla A, Kane SR, Legler TC, Coleman MA (2006b) Whole-genome transcriptional analysis of chemolithotrophic thiosulfate oxidation by Thiobacillus denitrificans under aerobic versus denitrifying conditions. J Bacteriol 188:7005–7015

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bejerinck MW (1904) Ueber die bakterien, welche sich im dunkeln mit kohlensäure als kohlenstoffquelle ernähern können. Centralbl Bakeeriol Parasitenkd Infektionskr Hyg. Abt. II, 11:592–599

    Google Scholar 

  • Boden R, Cleland D, Green PN, Katayama Y, Uchino Y, Murrell JC, Kelly DP (2012) Phylogenetic assessment of culture collection strains of Thiobacillus thioparus, and definitive 16S rRNA gene sequence for T. thioparus, T. denitrificans and Halothiobacillus neapolitanus. Arch Microbiol 194:187–195

    Article  CAS  PubMed  Google Scholar 

  • Brandl H (2008) Microbial leaching of metals. In: Rehm HJ, Reeds G (eds) Biotechnology: special processes, vol 10, 2nd edn. Wiley-VCH Verlag GmbH, Weinheim, pp 192–217

    Google Scholar 

  • Chen S, Qiu GZ, Qin WQ, Lan ZY (2008) Bioleaching of sphalerite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans cultured in 9 K medium modified with pyrrhotite. J Cent Sout Univ Technol 15:503–507

    Article  CAS  Google Scholar 

  • Drobner E, Huber H, Rachel R, Stetter KO (1992) Thiobacillus plumbophilus spec. nov., a novel galena and hydrogen oxidizer. Arch Microbiol 157:213–217

    Article  CAS  PubMed  Google Scholar 

  • Dul’tseva NM, Tourova TP, Spiridonova EM, Kolganova TV, Osipov GA, Gorlenko VM (2006) Thiobacillus sajanensis sp. nov., a new obligately autotrophic sulfur-oxidizing bacterium isolated from Khoito-Gol hydrogen-sulfide springs, Buryatia. Microbiology 75:582–592

    Article  Google Scholar 

  • Ehrlich HL, Brierley CL (1990) Microbial mineral recovery. McGraw-Hill, New York, p 454

    Google Scholar 

  • Garrity GM, Bell JA, Lilburn T (2005) Family I. Hydrogenophilaceae fam. nov. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey‘s manual of systematic bacteriology, 2nd edn, vol. 2 (The Proteobacteria), part C (The Alpha-, Beta-, Delta-, and Epsilonproteobacteria). Springer, New York, p 770

    Google Scholar 

  • Gevertz D, Telang AJ, Voordouw G, Jenneman GE (2000) Isolation and characterization of strains CVO and FWKOB, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine. Appl Environ Microbiol 66:2491–2501

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goto E, Kodama T, Minoda Y (1977) Isolation and culture conditions of thermophilic hydrogen bacteria. Agric Biol Chem 41:685–690

    Article  CAS  Google Scholar 

  • Goto E, Kodama T, Minoda Y (1978) Growth and taxonomy of thermophilic hydrogen bacteria. Agric Biol Chem 42:1305–1308

    Article  Google Scholar 

  • Hayashi NR, Ishida T, Yokota A, Kodama T, Igarashi Y (1999) Hydrogenophilus thermoluteolus gen. nov., sp. nov., a thermophilic, facultatively chemolithotrophic, hydrogen-oxidizing bacterium. Int J Syst Evol Microbiol 49:783–786

    Google Scholar 

  • Hayashi NR, Igarashi Y (2002) ATP binding and hydrolysis and autophosphorylation of CbbQ encoded by the gene located downstream of RubisCO genes. Biochem Biophys Res Commun 290:1434–1440

    Article  CAS  PubMed  Google Scholar 

  • Hirashi A, Imhoff JF (2005) Genus II. Acidiphilium Harrison 1981. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey‘s manual of systematic bacteriology, vol 2 part C, 2nd edn. Springer, New York, pp 54–62

    Chapter  Google Scholar 

  • Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. In: Norris JR, Ribbons DW (eds) Methods in microbiology 3b, pp 117–132. Academic Press Inc., New York

    Google Scholar 

  • Kanagawa T, Kelly DP (1986) Breakdown of dimethyl sulphide by mixed cultures and by Thiobacillus thioparus. FEMS Microbiol Lett 34:13–19

    Article  CAS  Google Scholar 

  • Kanagawa T, Mikami E (1989) Removal of methanethiol, dimethyl sulphide, dimethyl disulphide, and hydrogen sulphide from contaminated air by Thiobacillus thioparus TK-M. Appl Environ Microbiol 55:555–558

    CAS  PubMed Central  PubMed  Google Scholar 

  • Katayama Y, Kuraishi H (1978) Characteristics of Thiobacillus thioparus and its thiocyanate assimilation. Can J Microbiol 24:804–810

    Article  CAS  PubMed  Google Scholar 

  • Katayama Y, Uchino Y, Wood AP, Kelly DP (2006) Confirmation of Thiomonas delicata (formerly Thiobacillus delicatus) as a distinct species of the genus Thiomonas Moreira and Amils 1997 with comments on some species currently assigned to the genus. Int J Syst Evol Microbiol 56:2553–2557

    Article  CAS  PubMed  Google Scholar 

  • Kellerman C, Griebler C (2009) Thiobacillus thiophilus sp. nov., a chemolithotrophic, thiosulfate-oxidizing bacterium isolated from contaminated aquifer sediments. Int J Syst Evol Microbiol 59:583–588

    Article  Google Scholar 

  • Kellermann C, Selesi D, Lee N, Hügler M, Esperschütz J, Hartmann A, Griebler C (2012) Microbial CO2 fixation potential in a tar-oil-contaminated porous aquifer. FEMS Microbiol Ecol 81:172–187

    Article  CAS  PubMed  Google Scholar 

  • Kelly DP (1985) Metallgewinnung aus Erzen durch bakerielles Auslagen: gegenwartiger Stand und Zukunftige Aufgaben. In: Kuster E (ed) Mikrobiologie und Umweltschutz. Wissenschaftliche Buchgesellschaft, Darmstadt, pp 161–182

    Google Scholar 

  • Kelly DP, McDonald IR, Wood AP (2000) Proposal for the reclassification of Thiobacillus novellus as Starkeya novella gen. nov., comb. nov., in the α subclass of the Proteobacteria. Int J Syst Evol Microbiol 50:1797–1802

    Article  CAS  PubMed  Google Scholar 

  • Kelly DP, Wood AP, Stackebrandt E (2005) Genus II Thiobacillus Beijerinck 1904. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 2 part C, 2nd edn. Springer, New York, pp 764–769

    Chapter  Google Scholar 

  • Kelly DP, Uchino Y, Huber H, Amils R, Wood AP (2007) Reassessment of the phylogenetic relationship of Thiomonas cuprina. Int J Syst Evol Microbiol 56:2720–2724

    Article  Google Scholar 

  • Kelly DP, Wood AP (1998) Microbes in the sulfur cycle. In: Burlage RS, Atlas R, Stahl D, Geese G, Sayler G (eds) Techniques in microbial ecology. Oxford University Press, New York, pp 31–57

    Google Scholar 

  • Kelly DP, Wood AP (2000a) Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov., and Thermithiobacillus gen. nov. Int J Syst Evol Microbiol 50:511–516

    Article  PubMed  Google Scholar 

  • Kelly DP, Wood AP (2000b) Confirmation of Thiobacillus denitrificans as a species of the genus Thiobacillus, in the β-subclass of the Proteobacteria, with strain NCIMB 9548 as the type strain. Int J Syst Evol Microbiol 50:547–550

    Article  PubMed  Google Scholar 

  • Kelly DP (2010) Global consequences of the microbial production and consumption of inorganic and organic sulfur compounds. In: Timmins KN (ed) Microbiology of hydrocarbons, oils, lipids, chapter 53. Springer, Heidelberg, pp 3087–3095

    Chapter  Google Scholar 

  • Kim HS, Kim YJ, Chung JS, Xie Q (2002) Long-term operation of a biofilter for simultaneous removal of H2S and NH3. Air Waste Manage 52:1389–1398

    Article  CAS  Google Scholar 

  • Kleerebezem R, Mendez R (2002) Autotrophic denitrification for combined hydrogen sulfide removal from biogas and post-denitrification. Water Sci Technol 45:349–356

    CAS  PubMed  Google Scholar 

  • Kojima H, Fukui M (2010) Sulfuricella denitrificans gen. nov., sp. nov., a sulfur-oxidizing autotroph isolated from a freshwater lake. Int J Syst Evol Microbiol 60:2826–2866

    Article  Google Scholar 

  • Loo C-Y, Sudesh K (2007) Polyhydroxyalkanoates: bio-based microbial plastics and their properties. Malaysian Polymer Journal 2:31–57

    Google Scholar 

  • Magot M, Ollivier B, Patel BKC (2000) Microbiology of petroleum reservoirs. Antonie van Leeuwenhoek 77:103–116

    Article  CAS  PubMed  Google Scholar 

  • Manaia CM, Moore ERB (2002) Pseudomonas thermotolerans ap. nov., a thermotolerant species of the genus Pseudomonas sensu stricto. Int J Syst Evol Microbiol 52:2203–2209

    CAS  PubMed  Google Scholar 

  • Manaia CM, Nogales B, Nunes OC (2003) Tepidiphilus margaritifer gen. nov., sp. nov., isolated from a thermophilic aerobic digester. Int J Syst Evol Microbiol 53:1405–1410

    Article  CAS  PubMed  Google Scholar 

  • Matin A, Rittenberg SC (1971) Enzymes of carbohydrate metabolism in Thiobacillus species. J Bacteriol 107:179–186

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miykae D, Ichiki S, Tanabe M, Oda T, Kuroda H, Nishihara H, Sambongi Y (2007) Thiosulfate oxidation by a moderately thermophilic hydrogen-oxidizing bacterium, Hydrogenophilus thermoluteolus. Arch Microbiol 188:199–204

    Article  Google Scholar 

  • Nakamura S, Ichiki S, Takashima H, Uchiyama S, Hasegawa J, Kobayashi Y, Sambongi Y, Ohkubo T (2006) Structure of cytochrome c552 from a moderate thermophilic bacterium, Hydrogenophilus thermoluteolus: comparative study on the thermostability of cytochrome c. Biochemistry 45:6115–6123

    Article  CAS  PubMed  Google Scholar 

  • Nelson DC, Jannasch HW (1983) Chemoautotrophic growth of marine Beggiatoa in sulfide-gradient cultures. Arch Microbiol 136:262–269

    Article  CAS  Google Scholar 

  • Oyarzún P, Arancibia F, Canales C, Aroca GE (2003) Biofiltration of high concentration of hydrogen sulphide using Thiobacillus thioparus. Process Biochem 39:165–170

    Article  Google Scholar 

  • Ramirez M, Gomez JM, Aroca G, Cantero D (2009) Removal of hydrogen sulfide by immobilized Thiobacillus thioparus in a biotrickling filter packed with polyurethane foam. Bioresour Technol 100:4989–4995

    Article  CAS  PubMed  Google Scholar 

  • Rawlings DE (2002) Heavy metal mining using microbes. Ann Rev Micorbiol 56:65–91

    Article  CAS  Google Scholar 

  • Robertsson LA, Kuenen JG (2006) The genus Thiobacillus. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) The Prokaryotes. Springer, Berlin, pp 812–827

    Chapter  Google Scholar 

  • Salinas MB, Fardeau M-L, Cayol J-L, Casalot L, Patel BKC, Thomas P, Garcia J-L, Ollivier B (2004) Petrobacter succinatimandens gen. nov., sp. nov., a moderately thermophilic, nitrate-reducing bacterium isolated from an Australian oil well. Int J Syst Evol Microbiol 54:645–649

    Article  CAS  PubMed  Google Scholar 

  • Soreanu G, Al-Jamal M, Béland M (2005) Biogas treatment using an anaerobic biosystem. In: Proceedings of the 3rd Canadian organic residuals and biosolids management conference. Calgary, pp 502–513

    Google Scholar 

  • Starkey RL (1934) Cultivation of organisms concerned in the oxidation of thiosulfate. J Bacteriol 28:365–386

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stöhr R, Waberski A, Liesack W, Völker H, Wehmeyer U, Thomm M (2001) Hydrogenophilus hirshii sp. nov., a novel thermophilic hydrogen-oxidizing β-proteobacterium isolated from Yellowstone National Park. Int J Syst Evol Microbiol 51:481–488

    Article  PubMed  Google Scholar 

  • Sublette KL, Sylvester ND (1987) Oxidation of hydrogen sulfide by Thiobacillus denitrificans: desulfurization of natural gas. Biotechnol Bioeng 29:249–257

    Article  CAS  PubMed  Google Scholar 

  • Sublette KL, Kolhatkar R, Raterman K (1998) Technological aspects of the microbial treatment of sulfide-rich wastewaters: a case study. Biodegradation 9:259–271

    Article  CAS  PubMed  Google Scholar 

  • Syed M, Soreanu G, Falletta P, Béland M (2006) Removal of hydrogen sulfide from gas streams using biological processes – A review. Can Biosyst Eng 48:1–14

    Google Scholar 

  • Taga N, Tanaka K, Ishizaki A (1997) Effects of rheological conditions in the culture medium on the autotrophic production of poly-(D-3-hydroxybutyric acid) in air-lift fermenter. J Fac Agricult Kyushu Univ 40:197–207

    Google Scholar 

  • Tang Y-Q, Matsui T, Morimura S, Wu XL, Kida K (2008) Effect of temperature on microbial community of a glucose-degrading methanogenic consortium under hyperthermophilic chemostat cultivation. J Biosci Bioeng 106:180–187

    Article  CAS  PubMed  Google Scholar 

  • Vesteinsdottir H, Reynisdottir DB, Orlygsson J (2011) Hydrogenophilus islandicus sp. nov., a thermophilic hydrogen-oxidizing bacterium isolated from an Icelandic hot spring. Int J Syst Evol Microbiol 61:290–294

    Article  CAS  PubMed  Google Scholar 

  • Vishniac W, Santer M (1957) The thiobacilli. Bacteriol Rev 21:195–213

    CAS  PubMed Central  PubMed  Google Scholar 

  • Voodouw G, Armstrong SM, Reimer MF, Fouts B, Telang AJ, Shen Y, Gevertz D (1996) Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria. Appl Environ Microbiol 62:1623–1629

    Google Scholar 

  • Wang WD, Yan L, Cui ZJ, Gao YM, Wang YJ, Jing RY (2011) Characterization of a microbial consortium capable of degrading lignocellulose. Bioresource Tech 102:9321–9324

    Article  CAS  Google Scholar 

  • Widdel F, Bak F (1992) Gram-negative mesotrophic sulfate reducing bacteria. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds) The Prokaryotes. Springer, Verlag, New York

    Google Scholar 

  • Wood AP, Kelly DP (1988) Isolation and physiological characterization of Thiobacillus aquaesulis sp. nov., a novel facultative autotrophic moderate thermophile. Arch Microbiol 149:339–343

    Article  CAS  Google Scholar 

  • Yarza P, Ludwig W, Euzéby J, Amann R, Schleifer KH, Glöckner FO, Rosselló-Móra R (2010) Update of the All-Species Living-Tree Project based on 16S and 23S rRNA sequence analyses. System Appl Microbiol 33:291–299

    Article  CAS  Google Scholar 

  • Zhang L, De Schryver P, De Gusseme B, De Muynck W, Boon N, Verstraete W (2008) Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: A review. Water Res 42:1–12

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZY, Lei ZF, He XY, Zhang ZY, Yang YN (2009) Nitrate removal by Thiobacillus denitrificans immobilized on poly(vinyl alcohol) carriers. J. Hazard Mater 163:1090–1095

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann Orlygsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Orlygsson, J., Kristjansson, J.K. (2014). The Family Hydrogenophilaceae. In: Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F. (eds) The Prokaryotes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30197-1_244

Download citation

Publish with us

Policies and ethics