Skip to main content

Age-Specific T Cell Homeostasis

  • Living reference work entry
  • First Online:
Handbook of Immunosenescence

Abstract

Multiples defects affect adaptive immunity during aging: T cell production (both at thymic and peripheral sites), T cell activation (including TCR sensitivity, proliferation, and differentiation), T cell functions, and T cell survival. Most of these defects directly impact T cell homeostasis. Indeed T cell homeostasis refers to the maintenance of steady state in the body and the physiological processes through which they are regulated. This mechanism ensures a close equilibrium between T cell production and death, two aspects that are drastically affected during aging.

The aim of this chapter is to review the changes in T cell homeostasis developing during aging. We will first review the main homeostatic mechanisms that have been described so far in adult individuals. In a second part, we will document the age-related events that crucially impact T cell homeostasis and the resulting effects on peripheral T cell pools. Finally, the potential benefits of regenerative therapies aiming to restore T cell homeostasis will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

CMV:

Cytomegalovirus

HSC:

Hematopoietic stem cells

IL:

Interleukin

TCR:

T cell repertoire

TEC:

Thymic epithelial cell

Bibliography

  • Adorini L, Penna G, Giarratana N, Uskokovic M (2003) Tolerogenic dendritic cells induced by vitamin D receptor ligands enhance regulatory T cells inhibiting allograft rejection and autoimmune diseases. J Cell Biochem 88(2):227–233

    Article  PubMed  CAS  Google Scholar 

  • Akbar AN, Henson SM (2011) Are senescence and exhaustion intertwined or unrelated processes that compromise immunity? Nat Rev Immunol 11(4):289–295

    Article  PubMed  CAS  Google Scholar 

  • Anderson G, Jenkinson EJ (2001) Lymphostromal interactions in thymic development and function. Nat Rev Immunol 1(1):31–40

    Article  PubMed  CAS  Google Scholar 

  • Appay V, Dunbar PR, Callan M et al (2002) Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat Med 8(4):379–385

    Article  PubMed  CAS  Google Scholar 

  • Aspinall R (2006) T cell development, ageing and Interleukin-7. Mech Ageing Dev 127(6):572–578

    Article  PubMed  CAS  Google Scholar 

  • Aspinall R, Andrew D (2000) Thymic atrophy in the mouse is a soluble problem of the thymic environment. Vaccine 18(16):1629–1637

    Article  PubMed  CAS  Google Scholar 

  • Aw D, Palmer DB (2011) The origin and implication of thymic involution. Aging Dis 2(5):437–443

    PubMed  PubMed Central  Google Scholar 

  • Aw D, Silva AB, Maddick M, von Zglinicki T, Palmer DB (2008) Architectural changes in the thymus of aging mice. Aging Cell 7(2):158–167

    Article  PubMed  CAS  Google Scholar 

  • Babizhayev MA, Vishnyakova KS, Yegorov YE (2014) Oxidative damage impact on aging and age-related diseases: drug targeting of telomere attrition and dynamic telomerase activity flirting with imidazole-containing dipeptides. Recent Pat Drug Deliv Formul 8(3):163–192

    Article  PubMed  CAS  Google Scholar 

  • Becker TC, Wherry EJ, Boone D et al (2002) Interleukin 15 is required for proliferative renewal of virus-specific memory CD8 T cells. J Exp Med 195(12):1541–1548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Becker TC, Coley SM, Wherry EJ, Ahmed R (2005) Bone marrow is a preferred site for homeostatic proliferation of memory CD8 T cells. J Immunol (Baltimore, Md: 1950) 174(3):1269–1273

    Article  CAS  Google Scholar 

  • Beerman I, Maloney WJ, Weissmann IL, Rossi DJ (2010) Stem cells and the aging hematopoietic system. Curr Opin Immunol 22(4):500–506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berger R, Florent G (1981) Just M. Decrease of the lymphoproliferative response to varicella-zoster virus antigen in the aged. Infect Immun 32(1):24–27

    PubMed  PubMed Central  CAS  Google Scholar 

  • Berstein LM, Tsyrlina EV, Vasilyev DA, Poroshina TE, Kovalenko RG (2005) The phenomenon of the switching of estrogen effects and joker function of glucose: similarities and relation to age-associated pathology and approaches to correction. Ann NY Acad Sci 1057:235–246

    Article  PubMed  CAS  Google Scholar 

  • Bertho JM, Demarquay C, Moulian N, Van Der Meeren A, Berrih-Aknin S, Gourmelon P (1997) Phenotypic and immunohistological analyses of the human adult thymus: evidence for an active thymus during adult life. Cell Immunol 179(1):30–40

    Article  PubMed  CAS  Google Scholar 

  • Berzins SP, Boyd RL, Miller JF (1998) The role of the thymus and recent thymic migrants in the maintenance of the adult peripheral lymphocyte pool. J Exp Med 187(11):1839–1848

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beura LK, Hamilton SE, Bi K et al (2016) Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature 532(7600):512–516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Biagi E, Candela M, Fairweather-Tait S, Franceschi C, Brigidi P (2012) Aging of the human metaorganism: the microbial counterpart. Age (Dordr) 34(1):247–267

    Article  Google Scholar 

  • Blattman JN, Antia R, Sourdive DJD et al (2002) Estimating the precursor frequency of naive antigen-specific CD8 T cells. J Exp Med 195(5):657–664

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bonkowski MS, Rocha JS, Masternak MM, Al Regaiey KA, Bartke A (2006) Targeted disruption of growth hormone receptor interferes with the beneficial actions of calorie restriction. Proc Natl Acad Sci USA 103(20):7901–7905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bourgeois C, Kassiotis G, Stockinger B (2005) A major role for memory CD4 T cells in the control of lymphopenia-induced proliferation of naive CD4 T cells. J Immunol 174(9):5316–5323

    Article  PubMed  CAS  Google Scholar 

  • Bourgeois C, Hao Z, Rajewsky K, Potocnik AJ, Stockinger B (2008) Ablation of thymic export causes accelerated decay of naive CD4 T cells in the periphery because of activation by environmental antigen. Proc Natl Acad Sci USA 105(25):8691–8696

    Article  PubMed  PubMed Central  Google Scholar 

  • Brenchley JM, Price DA, Schacker TW et al (2006) Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med 12(12):1365–1371

    Article  PubMed  CAS  Google Scholar 

  • Buford TW, Willoughby DS (2008) Impact of DHEA(S) and cortisol on immune function in aging: a brief review. Appl Physiol Nutr Metab 33(3):429–433

    Article  PubMed  CAS  Google Scholar 

  • Butcher SK, Killampalli V, Lascelles D, Wang K, Alpar EK, Lord JM (2005) Raised cortisol:DHEAS ratios in the elderly after injury: potential impact upon neutrophil function and immunity. Aging Cell 4(6):319–324

    Article  PubMed  CAS  Google Scholar 

  • Chaix J, Nish SA, Lin W-HW et al (2014) Cutting edge: CXCR4 is critical for CD8+ memory T cell homeostatic self-renewal but not rechallenge self-renewal. J Immunol (Baltimore, Md: 1950) 193(3):1013–1016

    Article  CAS  Google Scholar 

  • Chinn IK, Blackburn CC, Manley NR, Sempowski GD (2012) Changes in primary lymphoid organs with aging. Semin Immunol 24(5):309–320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cicin-Sain L, Messaoudi I, Park B et al (2007) Dramatic increase in naive T cell turnover is linked to loss of naive T cells from old primates. Proc Natl Acad Sci USA 104:19960–19965

    Article  PubMed  PubMed Central  Google Scholar 

  • Cicin-Sain L, Smyk-Pearson S, Smyk-Paerson S et al (2010) Loss of naive T cells and repertoire constriction predict poor response to vaccination in old primates. J Immunol (Baltimore, Md: 1950) 184(12):6739–6745

    Article  CAS  Google Scholar 

  • Cosgrove D, Gray D, Ae D et al (1991) Mice lacking MHC class II molecules. Cell 66(5):1051–1066

    Article  PubMed  CAS  Google Scholar 

  • De Riva A, Bourgeois C, Kassiotis G, Stockinger B (2007) Noncognate interaction with MHC class II molecules is essential for maintenance of T cell metabolism to establish optimal memory CD4 T cell function. J Immunol 178(9):5488–5495

    Article  PubMed  Google Scholar 

  • den Braber I, Mugwagwa T, Vrisekoop N et al (2012) Maintenance of peripheral naive T cells is sustained by thymus output in mice but not humans. Immunity 36(2):288–297

    Article  CAS  Google Scholar 

  • Di Mascio M, Paik CH, Carrasquillo JA et al (2009) Noninvasive in vivo imaging of CD4 cells in simian-human immunodeficiency virus (SHIV)-infected nonhuman primates. Blood 114(2):328–337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Di Rosa F (2016) Maintenance of memory T cells in the bone marrow: survival or homeostatic proliferation? Nat Rev Immunol 16(4):271

    Article  PubMed  CAS  Google Scholar 

  • Dixit VD (2010) Thymic fatness and approaches to enhance thymopoietic fitness in aging. Curr Opin Immunol 22(4):521–528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dixit VD, Yang H, Sun Y et al (2007) Ghrelin promotes thymopoiesis during aging. J Clin Invest 117(10):2778

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dudakov JA, Hanash AM, Jenq RR et al (2012) Interleukin-22 drives endogenous thymic regeneration in mice. Science 336(6077):91–95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Effros RB (2004) Replicative senescence of CD8 T cells: effect on human ageing. Exp Gerontol 39(4):517–524

    Article  PubMed  CAS  Google Scholar 

  • Fabre-Mersseman V, Tubiana R, Papagno L et al (2014) Vitamin D supplementation is associated with reduced immune activation levels in HIV-1-infected patients on suppressive antiretroviral therapy. AIDS 28(18):2677–2682

    Article  PubMed  CAS  Google Scholar 

  • Fagnoni FF, Vescovini R, Passeri G et al (2000) Shortage of circulating naive CD8(+) T cells provides new insights on immunodeficiency in aging. Blood 95(9):2860–2868

    PubMed  CAS  Google Scholar 

  • Fink PJ (2013) The biology of recent thymic emigrants. Annu Rev Immunol 31:31–50

    Article  PubMed  CAS  Google Scholar 

  • Flach J, Bakker ST, Mohrin M et al (2014) Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells. Nature 512(7513):198–202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fletcher JM, Vukmanovic-Stejic M, Dunne PJ et al (2005) Cytomegalovirus-specific CD4+ T cells in healthy carriers are continuously driven to replicative exhaustion. J Immunol 175(12):8218–8225

    Article  PubMed  CAS  Google Scholar 

  • Foody JM, Shah R, Galusha D, Masoudi FA, Havranek EP, Krumholz HM (2006) Statins and mortality among elderly patients hospitalized with heart failure. Circulation 113(8):1086–1092

    Article  PubMed  CAS  Google Scholar 

  • Franceschi C, Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 69(Suppl 1):S4–S9

    Article  PubMed  Google Scholar 

  • Franceschi C, Capri M, Monti D et al (2007) Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev 128(1):92–105

    Article  PubMed  CAS  Google Scholar 

  • Freitas AA, Rocha BB (1993) Lymphocyte lifespans: homeostasis, selection and competition. Immunol Today 14(1):25–29

    Article  PubMed  CAS  Google Scholar 

  • French RA, Broussard SR, Meier WA et al (2002) Age-associated loss of bone marrow hematopoietic cells is reversed by GH and accompanies thymic reconstitution. Endocrinology 143(2):690–699

    Article  PubMed  CAS  Google Scholar 

  • Fry TJ, Mackall CL (2001) Interleukin-7: master regulator of peripheral T-cell homeostasis? Trends Immunol 22(10):564–571

    Article  PubMed  CAS  Google Scholar 

  • Fung-Leung W-P, Schilham MW, Rahemtulla A et al (1991) CD8 is needed for development of cytotoxic T but not helper T cells. Cell 65(3):443–449

    Article  PubMed  CAS  Google Scholar 

  • Gabor MJ, Scollay R, Godfrey DI (1997) Thymic T cell export is not influenced by the peripheral T cell pool. Eur J Immunol 27(11):2986–2993

    Article  PubMed  CAS  Google Scholar 

  • Ganusov VV, De Boer RJ (2007) Do most lymphocytes in humans really reside in the gut? Trends Immunol 28(12):514–518

    Article  PubMed  CAS  Google Scholar 

  • Ganusov VV, De Boer RJ (2008) Tissue distribution of lymphocytes and plasma cells and the role of the gut: response to Pabst et al. Trends Immunol 29:209–210

    Article  CAS  Google Scholar 

  • Garrod KR, Moreau HD, Garcia Z et al (2012) Dissecting T cell contraction in vivo using a genetically encoded reporter of apoptosis. Cell Rep 2(5):1438–1447

    Article  PubMed  CAS  Google Scholar 

  • Gattinoni L, Lugli E, Ji Y et al (2011) A human memory T cell subset with stem cell-like properties. Nat Med 17(10):1290–1297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ge Q, Hu H, Eisen HN, Chen J (2002) Different contributions of thymopoiesis and homeostasis-driven proliferation to the reconstitution of naive and memory T cell compartments. Proc Natl Acad Sci USA 99(5):2989–2994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Geiger H, de Haan G, Florian MC (2013) The ageing haematopoietic stem cell compartment. Nat Rev Immunol 13(5):376–389

    Article  PubMed  CAS  Google Scholar 

  • Goronzy JJ, Weyand CM (2013) Understanding immunosenescence to improve responses to vaccines. Nat Immunol 14(5):428–436

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gray DH, Seach N, Ueno T et al (2006) Developmental kinetics, turnover, and stimulatory capacity of thymic epithelial cells. Blood 108(12):3777–3785

    Article  PubMed  CAS  Google Scholar 

  • Gruver AL, Hudson LL, Sempowski GD (2007) Immunosenescence of ageing. J Pathol 211(2):144–156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gui J, Zhu X, Dohkan J, Cheng L, Barnes PF, Su DM (2007) The aged thymus shows normal recruitment of lymphohematopoietic progenitors but has defects in thymic epithelial cells. Int Immunol 19(10):1201–1211

    Article  PubMed  CAS  Google Scholar 

  • Guimond M, Fry TJ, Mackall CL (2005) Cytokine signals in T-cell homeostasis. J Immunother 28(4):289–294

    Article  PubMed  CAS  Google Scholar 

  • Guimond M, Veenstra RG, Grindler DJ et al (2009) Interleukin 7 signaling in dendritic cells regulates the homeostatic proliferation and niche size of CD4+ T cells. Nat Immunol 10(2):149–157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hadrup SR, Strindhall J, Kollgaard T et al (2006) Longitudinal studies of clonally expanded CD8 T cells reveal a repertoire shrinkage predicting mortality and an increased number of dysfunctional cytomegalovirus-specific T cells in the very elderly. J Immunol 176(4):2645–2653

    Article  PubMed  CAS  Google Scholar 

  • Haines CJ, Giffon TD, Lu L-S et al (2009) Human CD4+ T cell recent thymic emigrants are identified by protein tyrosine kinase 7 and have reduced immune function. J Exp Med 206(2):275–285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harley CB, Liu W, Blasco M et al (2010) A natural product telomerase activator as part of a health maintenance program. Rejuvenation Res 14(1):45–56

    Article  PubMed  Google Scholar 

  • Hassan J, Reen DJ (2001) Human recent thymic emigrants – identification, expansion, and survival characteristics. J Immunol (Baltimore, Md: 1950) 167(4):1970–1976

    Article  CAS  Google Scholar 

  • Hong C, Luckey MA, Park JH (2012) Intrathymic IL-7: the where, when, and why of IL-7 signaling during T cell development. Semin Immunol 24(3):151–158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Houston EG, Higdon LE, Fink PJ (2011) Recent thymic emigrants are preferentially incorporated only into the depleted T-cell pool. Proc Natl Acad Sci USA 108(13):5366–5371

    Article  PubMed  PubMed Central  Google Scholar 

  • Jameson SC (2002) Maintaining the norm: T-cell homeostasis. Nat Rev Immunol 2(8):547–556

    Article  PubMed  CAS  Google Scholar 

  • Jameson SC (2005) T cell homeostasis: keeping useful T cells alive and live T cells useful. Semin Immunol 17(3):231–237

    Article  PubMed  CAS  Google Scholar 

  • Jurk D, Wilson C, Passos JF et al (2014) Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat Commun 2:4172

    Article  PubMed  CAS  Google Scholar 

  • Khan N, Hislop A, Gudgeon N et al (2004) Herpesvirus-specific CD8 T cell immunity in old age: cytomegalovirus impairs the response to a coresident EBV infection. J Immunol 173(12):7481–7489

    Article  PubMed  CAS  Google Scholar 

  • Kim HK, Waickman AT, Castro E et al (2016) Distinct IL-7 signaling in recent thymic emigrants versus mature naïve T cells controls T-cell homeostasis. Eur J Immunol 46:1669

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kitamura D, Roes J, Kühn R, Rajewsky K (1991) A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature 350(6317):423–426

    Article  PubMed  CAS  Google Scholar 

  • Klonowski KD, Williams KJ, Marzo AL, Blair DA, Lingenheld EG, Lefrancois L (2004) Dynamics of blood-borne CD8 memory T cell migration in vivo. Immunity 20(5):551–562

    Article  PubMed  CAS  Google Scholar 

  • Kohler S, Thiel A (2009) Life after the thymus: CD31+ and CD31- human naive CD4+ T-cell subsets. Blood 113(4):769–774

    Article  PubMed  CAS  Google Scholar 

  • Kovacs EJ (2005) Aging, traumatic injury, and estrogen treatment. Exp Gerontol 40(7):549–555

    Article  PubMed  CAS  Google Scholar 

  • Ku CC, Kappler J, Marrack P (2001) The growth of the very large CD8+ T cell clones in older mice is controlled by cytokines. J Immunol 166(4):2186–2193

    Article  PubMed  CAS  Google Scholar 

  • LeMaoult J, Messaoudi I, Manavalan JS et al (2000) Age-related dysregulation in CD8 T cell homeostasis: kinetics of a diversity loss. J Immunol (Baltimore, Md: 1950) 165(5):2367–2373

    Article  CAS  Google Scholar 

  • Lesourd BM (1997) Nutrition and immunity in the elderly: modification of immune responses with nutritional treatments. Am J Clin Nutr 66(2):478S–484S

    Article  PubMed  CAS  Google Scholar 

  • Levin MJ, Schmader KE, Pang L et al (2016) Cellular and humoral responses to a second dose of herpes zoster vaccine administered 10 years after the first dose among older adults. J Infect Dis 213(1):14–22

    Article  PubMed  CAS  Google Scholar 

  • Linton PJ, Dorshkind K (2004) Age-related changes in lymphocyte development and function. Nat Immunol 5(2):133–139

    Article  PubMed  CAS  Google Scholar 

  • Lucas M, Vargas-Cuero AL, Lauer GM et al (2004) Pervasive influence of hepatitis C virus on the phenotype of antiviral CD8+ T cells. J Immunol 172(3):1744–1753

    Article  PubMed  CAS  Google Scholar 

  • Lynch HE, Goldberg GL, Chidgey A, Van den Brink MR, Boyd R, Sempowski GD (2009) Thymic involution and immune reconstitution. Trends Immunol 30(7):366–373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maczek C, Berger TG, Schuler-Thurner B et al (2005) Differences in phenotype and function between spontaneously occurring melan-A-, tyrosinase- and influenza matrix peptide-specific CTL in HLA-A*0201 melanoma patients. Int J Cancer 115(3):450–455

    Article  PubMed  CAS  Google Scholar 

  • Malissen M, Gillet A, Ardouin L et al (1995) Altered T cell development in mice with a targeted mutation of the CD3-epsilon gene. EMBO J 14(19):4641–4653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Markert ML, Boeck A, Hale LP et al (1999) Transplantation of thymus tissue in complete DiGeorge syndrome. N Engl J Med 341(16):1180–1189

    Article  PubMed  CAS  Google Scholar 

  • Martinet KZ, Bloquet S, Bourgeois C (2014) Ageing combines CD4 T cell lymphopenia in secondary lymphoid organs and T cell accumulation in gut associated lymphoid tissue. Immun Ageing 11:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mazo IB, Honczarenko M, Leung H et al (2005) Bone marrow is a major reservoir and site of recruitment for central memory CD8+ T cells. Immunity 22(2):259–270

    Article  PubMed  CAS  Google Scholar 

  • Mazzucchelli R, Durum SK (2007) Interleukin-7 receptor expression: intelligent design. Nat Rev Immunol 7(2):144–154

    Article  PubMed  CAS  Google Scholar 

  • McKerrell T, Park N, Moreno T et al (2015) Leukemia-associated somatic mutations drive distinct patterns of age-related clonal hemopoiesis. Cell Rep 10(8):1239–1245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Messaoudi I, Lemaoult J, Guevara-Patino JA, Metzner BM, Nikolich-Zugich J (2004) Age-related CD8 T cell clonal expansions constrict CD8 T cell repertoire and have the potential to impair immune defense. J Exp Med 200(10):1347–1358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Messaoudi I, Warner J, Nikolich-Zugich J (2006) Age-related CD8+ T cell clonal expansions express elevated levels of CD122 and CD127 and display defects in perceiving homeostatic signals. J Immunol 177(5):2784–2792

    Article  PubMed  CAS  Google Scholar 

  • Min B, Foucras G, Meier-Schellersheim M, Paul WE (2004) Spontaneous proliferation, a response of naive CD4 T cells determined by the diversity of the memory cell repertoire. Proc Natl Acad Sci USA 101(11):3874–3879

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Min D, Panoskaltsis-Mortari A, Kuro OM, Hollander GA, Blazar BR, Weinberg KI (2007) Sustained thymopoiesis and improvement in functional immunity induced by exogenous KGF administration in murine models of aging. Blood 109(6):2529–2537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mitchell WA, Lang PO, Aspinall R (2010) Tracing thymic output in older individuals. Clin Exp Immunol 161(3):497–503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Montecino-Rodriquez E, Min H, Dorshkind K (2005) Reevaluating current models of thymic involution. Semin Immunol 17(5):356–361

    Article  PubMed  CAS  Google Scholar 

  • Mueller SN, Gebhardt T, Carbone FR, Heath WR (2013) Memory T cell subsets, migration patterns, and tissue residence. Annu Rev Immunol 31:137–161

    Article  PubMed  CAS  Google Scholar 

  • Murali-Krishna K, Ahmed R (2000) Cutting edge: naive T cells masquerading as memory cells. J Immunol (Baltimore, Md: 1950) 165(4):1733–1737

    Article  CAS  Google Scholar 

  • Nikolich-Zugich J (2008) Ageing and life-long maintenance of T-cell subsets in the face of latent persistent infections. Nat Rev Immunol 8(7):512–522

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oehen S, Brduscha-Riem K (1999) Naive cytotoxic T lymphocytes spontaneously acquire effector function in lymphocytopenic recipients: a pitfall for T cell memory studies? Eur J Immunol 29(2):608–614

    Article  PubMed  CAS  Google Scholar 

  • Ogra PL (2010) Ageing and its possible impact on mucosal immune responses. Ageing Res Rev 9(2):101–106

    Article  PubMed  CAS  Google Scholar 

  • Olsson J, Wikby A, Johansson B, Lofgren S, Nilsson BO, Ferguson FG (2000) Age-related change in peripheral blood T-lymphocyte subpopulations and cytomegalovirus infection in the very old: the Swedish longitudinal OCTO immune study. Mech Ageing Dev 121(1–3):187–201

    PubMed  CAS  Google Scholar 

  • Opiela SJ, Koru-Sengul T, Adkins B (2009) Murine neonatal recent thymic emigrants are phenotypically and functionally distinct from adult recent thymic emigrants. Blood 113(22):5635–5643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O'Toole PW, Jeffery IB (2015) Gut microbiota and aging. Science 350(6265):1214–1215

    Article  PubMed  CAS  Google Scholar 

  • Oxman MN, Levin MJ, Johnson GR et al (2005) A vaccine to prevent herpes zoster and postherpetic neuralgia in older adults. N Engl J Med 352(22):2271–2284

    Article  PubMed  CAS  Google Scholar 

  • Palmer MJ, Mahajan VS, Chen J, Irvine DJ, Lauffenburger DA (2011) Signaling thresholds govern heterogeneity in IL-7-receptor-mediated responses of naïve CD8(+) T cells. Immunol Cell Biol 89(5):581–594

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Passtoors WM, van den Akker EB, Deelen J et al (2015) IL7R gene expression network associates with human healthy ageing. Immun Ageing 12:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pawelec G, Akbar A, Caruso C, Effros R, Grubeck-Loebenstein B, Wikby A (2004) Is immunosenescence infectious? Trends Immunol 25(8):406–410

    Article  PubMed  CAS  Google Scholar 

  • Posnett DN, Sinha R, Kabak S, Russo C (1994) Clonal populations of T cells in normal elderly humans: the T cell equivalent to “benign monoclonal gammapathy”. J Exp Med 179(2):609–618

    Article  PubMed  CAS  Google Scholar 

  • Preza GC, Yang OO, Elliott J, Anton PA, Ochoa MT (2015) T lymphocyte density and distribution in human colorectal mucosa, and inefficiency of current cell isolation protocols. PLoS One 10(4):e0122723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pulko V, Davies JS, Martinez C et al (2016) Human memory T cells with a naive phenotype accumulate with aging and respond to persistent viruses. Nat Immunol 17:966

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qi Q, Zhang DW, Weyand CM, Goronzy J Jr (2014a) Mechanisms shaping the naïve T cell repertoire in the elderly – Thymic involution or peripheral homeostatic proliferation? Exp Gerontol 54:71–74

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qi Q, Liu Y, Cheng Y et al (2014b) Diversity and clonal selection in the human T-cell repertoire. Proc Natl Acad Sci USA 111(36):13139–13144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rahemtulla A, Fung-Leung WP, Schilham MW et al (1991) Normal development and function of CD8+ cells but markedly decreased helper cell activity in mice lacking CD4. Nature 353(6340):180–184

    Article  PubMed  CAS  Google Scholar 

  • Ravussin E, Redman LM, Rochon J et al (2015) A 2-year randomized controlled trial of human caloric restriction: feasibility and effects on predictors of health span and longevity. J Gerontol A Biol Sci Med Sci 70(9):1097–1104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rea IM, Alexander HD, Crockard AD, Morris TC (1996) CD4 lymphopenia in very elderly people. Lancet 347(8997):328–329

    PubMed  CAS  Google Scholar 

  • Reynolds J, Coles M, Lythe G, Molina-París C (2013) Mathematical model of naive T cell division and survival IL-7 thresholds. Front Immunol 4:434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rochman Y, Spolski R, Leonard WJ (2009) New insights into the regulation of T cells by gamma(c) family cytokines. Nat Rev Immunol 9(7):480–490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saffrey MJ (2014) Aging of the mammalian gastrointestinal tract: a complex organ system. Age (Dordr) 36(3):9603

    Article  Google Scholar 

  • Sallusto F, Lenig D, Förster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401(6754):708–712

    Article  PubMed  CAS  Google Scholar 

  • Sauce D, Rufer N, Mercier P et al (2003) Retrovirus-mediated gene transfer in polyclonal T cells results in lower apoptosis and enhanced ex vivo cell expansion of CMV-reactive CD8 T cells as compared with EBV-reactive CD8 T cells. Blood 102(4):1241–1248

    Article  PubMed  CAS  Google Scholar 

  • Sauce D, Larsen M, Fastenackels S et al (2009) Evidence of premature immune aging in patients thymectomized during early childhood. J Clin Invest 119:3070–3078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sauce D, Larsen M, Fastenackels S et al (2012) Lymphopenia-driven homeostatic regulation of naive T cells in elderly and thymectomized young adults. J Immunol (Baltimore, Md: 1950) 189(12):5541–5548

    Article  CAS  Google Scholar 

  • Scheinfeld N (2005) Infections in the elderly. Dermatol Online J 11(3):8

    PubMed  Google Scholar 

  • Schenkel JM, Masopust D (2014) Tissue-resident memory T cells. Immunity 41(6):886–897

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schluns KS, Kieper WC, Jameson SC, Lefrancois L (2000) Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat Immunol 1(5):426–432

    Article  PubMed  CAS  Google Scholar 

  • Schmucker DL, Thoreux K, Owen RL (2001) Aging impairs intestinal immunity. Mech Ageing Dev 122(13):1397–1411

    Article  PubMed  CAS  Google Scholar 

  • Sempowski G, Thomasch J, Gooding M et al (2001) Effect of thymectomy on human peripheral blood T cell pools in myasthenia gravis. J Immunol (Baltimore, Md: 1950) 166(4):2808–2817

    Article  CAS  Google Scholar 

  • Seruga B, Zhang H, Bernstein LJ, Tannock IF (2008) Cytokines and their relationship to the symptoms and outcome of cancer. Nat Rev Cancer 8(11):887–899

    Article  PubMed  CAS  Google Scholar 

  • Sperka T, Wang J, Rudolph KL (2012) DNA damage checkpoints in stem cells, ageing and cancer. Nat Rev Mol Cell Biol 13(9):579–590

    Article  PubMed  CAS  Google Scholar 

  • Steinert EM, Schenkel JM, Fraser KA et al (2015) Quantifying memory CD8 T cells reveals regionalization of Immunosurveillance. Cell 161(4):737–749

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Steinmann GG (1986) Changes in the human thymus during aging. Curr Top Pathol 75:43–88

    Article  PubMed  CAS  Google Scholar 

  • Stockinger B, Kassiotis G, Bourgeois C (2004) Homeostasis and T cell regulation. Curr Opin Immunol 16(6):775–779

    Article  PubMed  CAS  Google Scholar 

  • Surh CD, Sprent J (2008) Homeostasis of naive and memory T cells. Immunity 29(6):848–862

    Article  PubMed  CAS  Google Scholar 

  • Sutherland JS, Goldberg GL, Hammett MV et al (2005) Activation of thymic regeneration in mice and humans following androgen blockade. J Immunol 175(4):2741–2753

    Article  PubMed  CAS  Google Scholar 

  • Takeda S, Rodewald H-R, Arakawa H, Bluethmann H, Shimizu T (1996) MHC class II molecules are not required for survival of newly generated CD4+ T cells, but affect their long-term life span. Immunity 5(3):217–228

    Article  PubMed  CAS  Google Scholar 

  • Tanchot C, Rocha B (1995) The peripheral T cell repertoire: independent homeostatic regulation of virgin and activated CD8+ T cell pools. Eur J Immunol 25(8):2127–2136

    Article  PubMed  CAS  Google Scholar 

  • Tanchot C, Rocha B (1998) The organization of mature T-cell pools. Immunol Today 19(12):575–579

    Article  PubMed  CAS  Google Scholar 

  • Tanchot C, Rosado MM, Agenes F, Freitas AA, Rocha B (1997a) Lymphocyte homeostasis. Semin Immunol 9(6):331–337

    Article  PubMed  CAS  Google Scholar 

  • Tanchot C, Lemonnier FA, Perarnau B, Freitas AA, Rocha B (1997b) Differential requirements for survival and proliferation of CD8 naive or memory T cells. Science 276(5321):2057–2062

    Article  PubMed  CAS  Google Scholar 

  • Tanchot C, Le Campion A, Martin B, Léaument S, Dautigny N, Lucas B (2002) Conversion of naive T cells to a memory-like phenotype in lymphopenic hosts is not related to a homeostatic mechanism that fills the peripheral naive T cell pool. J Immunol (Baltimore, Md: 1950) 168(10):5042–5046

    Article  CAS  Google Scholar 

  • Tough DF, Sprent J (1994) Turnover of naive- and memory-phenotype T cells. J Exp Med 179(4):1127–1135

    Article  PubMed  CAS  Google Scholar 

  • Tsukahara A, Seki S, Iiai T et al (1997) Mouse liver T cells: their change with aging and in comparison with peripheral T cells. Hepatology (Baltimore, Md) 26(2):301–309

    Article  CAS  Google Scholar 

  • Vadasz Z, Haj T, Kessel A, Toubi E (2013) Age-related autoimmunity. BMC Med 11:94

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vallejo AN (2007) Immune remodeling: lessons from repertoire alterations during chronological aging and in immune-mediated disease. Trends Mol Med 13(3):94–102

    Article  PubMed  CAS  Google Scholar 

  • van den Broek T, Delemarre EM, Janssen WJM et al (2016) Neonatal thymectomy reveals differentiation and plasticity within human naive T cells. J Clin Invest 126(3):1126–1136

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Zant G, Liang Y (2012) Concise review: hematopoietic stem cell aging, life span, and transplantation. Stem Cells Transl Med 1(9):651–657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Veiga-Fernandes H, Walter U, Bourgeois C, McLean A, Rocha B (2000) Response of naive and memory CD8+ T cells to antigen stimulation in vivo. Nat Immunol 1(1):47–53

    Article  PubMed  CAS  Google Scholar 

  • Weekes MP, Carmichael AJ, Wills MR, Mynard K, Sissons JG (1999) Human CD28-CD8+ T cells contain greatly expanded functional virus-specific memory CTL clones. J Immunol 162(12):7569–7577

    PubMed  CAS  Google Scholar 

  • Wertheimer AM, Bennett MS, Park B et al (2014) Aging and cytomegalovirus infection differentially and jointly affect distinct circulating T cell subsets in humans. J Immunol (Baltimore, Md: 1950) 192(5):2143–2155

    Article  CAS  Google Scholar 

  • Wikby A, Johansson B, Olsson J, Lofgren S, Nilsson BO, Ferguson F (2002) Expansions of peripheral blood CD8 T-lymphocyte subpopulations and an association with cytomegalovirus seropositivity in the elderly: the Swedish NONA immune study. Exp Gerontol 37(2–3):445–453

    Article  PubMed  CAS  Google Scholar 

  • Yahata T, Takanashi T, Muguruma Y et al (2011) Accumulation of oxidative DNA damage restricts the self-renewal capacity of human hematopoietic stem cells. Blood 118(11):2941–2950

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Youm YH, Dixit VD (2009) Inhibition of thymic adipogenesis by caloric restriction is coupled with reduction in age-related thymic involution. J Immunol 183(5):3040–3052

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Gui J, Dohkan J, Cheng L, Barnes PF, Su DM (2007) Lymphohematopoietic progenitors do not have a synchronized defect with age-related thymic involution. Aging Cell 6(5):663–672

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delphine Sauce .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bourgeois, C., Sauce, D. (2018). Age-Specific T Cell Homeostasis. In: Fulop, T., Franceschi, C., Hirokawa, K., Pawelec, G. (eds) Handbook of Immunosenescence. Springer, Cham. https://doi.org/10.1007/978-3-319-64597-1_81-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64597-1_81-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64597-1

  • Online ISBN: 978-3-319-64597-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics