Skip to main content

Epigenetics of Dietary Methyl-Group Donor Deficiency and Liver Cancer

  • Reference work entry
  • First Online:
Handbook of Nutrition, Diet, and Epigenetics
  • 164 Accesses

Abstract

Food, nutritional factors, and dietary habits play a fundamental role in the etiology of cancer and contribute greatly to the development of liver cancer. One of the best characterized nutritional models of liver carcinogenesis that resembles the development of liver cancer in humans is dietary methyl donor deficiency in rodents. This model has been extensively studied, and the results have identified clearly non-genotoxic epigenetic alterations, especially methylation of DNA and histone proteins, as the underlying mechanism of the liver cancer development. Importantly, this methyl-deficient model allows the identification of early epigenetic alterations that persist during liver cancer development and that may be used as diagnostic biomarkers. The correction of epigenetic alterations by dietary interventions is a promising avenue for cancer control and prevention strategies.

The views expressed in this manuscript do not necessarily represent those of the US Food and Drug Administration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 579.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5,10-MTHF:

5,10-Methylenetetrahydrofolate

15-MTHF:

5-Methyltetrahydrofolate

Bhmt:

Betaine-homocysteine S-methyltransferase

CBS:

Cystathionine β-synthase

CGL:

Cystathionine y-lyase

DNMTs:

DNA methyltransferases

GNMT:

Glycine N-methyltransferase

GSH:

Glutathione

H4K20:

Histone H3 lysine 9 (H3K9) and histone H4 lysine 20

HBV:

Hepatitis B

HCC:

Hepatocellular carcinoma

HCV:

Hepatitis C

HCY:

Homocysteine

MAT:

Methionine adenosyltransferase

Mat1a :

Methionine adenosyltransferase 1 alpha

MDD:

Methyl-group donor-deficient

MET:

L-Methionine

MS:

Methionine synthase

MT:

Methyltransferases

MTA:

Methylthioadenosine

MTHFR:

Methylenetetrahydrofolate reductase

NAFLD:

Nonalcoholic fatty liver disease

SAH:

S-Adenosylhomocysteine

SAHH:

SAH hydrolase

SAM:

S-Adenosylmethionine

TET:

Ten-eleven translocation methylcytosine dioxygenase enzymes

THF:

Tetrahydrofolate

αKB:

α-Ketobutyrate

References

  • Ames BN, Wakimoto P (2002) Are vitamin and mineral deficiencies a major cancer risk? Nat Rev Cancer 2:694–704

    Article  CAS  Google Scholar 

  • Arnold M, Leitzmann M, Freisling H et al (2016) Obesity and cancer: an update of the global impact. Cancer Epidemiol 41:8–15

    Article  Google Scholar 

  • Baylin SB, Jones PA (2011) A decade of exploring the cancer epigenome – biological and translational implications. Nat Rev Cancer 11:726–734

    Article  CAS  Google Scholar 

  • Best CH, Lucas CC, Ridout JH (1954) The lipotropic factors. Ann N Y Acad Sci 57:646–653

    Article  CAS  Google Scholar 

  • Bishop KS, Ferguson LR (2015) The interaction between epigenetics, nutrition and the development of cancer. Forum Nutr 7:922–947

    CAS  Google Scholar 

  • Blot WJ, Tarone RE (2015) Doll and Peto’s quantitative estimates of cancer risks: holding generally true for 35 years. J Natl Cancer Inst 107:djv044

    Article  Google Scholar 

  • Chiang PK (1998) Biological effects of inhibitors of S-Adenosylhomocysteine hydrolase. Pharmacol Ther 77:115–134

    Article  CAS  Google Scholar 

  • Coopeland DH, Salmon WD (1946) The occurrence of neoplasms in the liver, lungs, and other tissues of rats as a result of prolonged choline deficiency. Am J Pathol 22:1059–1079

    Google Scholar 

  • Corbin KD, Zeisel SH (2012) Choline metabolism provides novel insights into non-alcoholic fatty liver disease and its progression. Curr Opin Gastroenterol 28:159–165

    Article  CAS  Google Scholar 

  • Dobosy JR, Fu VX, Desotelle JA et al (2008) A methyl-deficient diet modifies histone methylation and alters Igf2 and H19 repression in the prostate. Prostate 68:1187–1195

    Article  CAS  Google Scholar 

  • Doll R, Peto R (1981) The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J Natl Cancer Inst 66:1191–1308

    Article  CAS  Google Scholar 

  • El-Serag HB (2011) Hepatocellular carcinoma. N Engl J Med 365:1118–1127

    Article  CAS  Google Scholar 

  • El-Serag HB (2012) Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 142:1264–1273

    Article  Google Scholar 

  • Finkelstein JD (2003) Methionine metabolism in liver diseases. Am J Clin Nutr 77:1094–1095

    Article  CAS  Google Scholar 

  • Guerrerio AL, Colvin RM, Schwartz AK et al (2012) Choline intake in a large cohort of patients with nonalcoholic fatty liver disease. Am J Clin Nutr 95:892–900

    Article  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  Google Scholar 

  • Hardy TM, Tollefsbol TO (2011) Epigenetic diet: impact on the epigenome and cancer. Epigenomics 3:503–518

    Article  CAS  Google Scholar 

  • Hoover KL, Lynch PH, Poirier LA (1984) Profound postinitiation enhancement by short-term severe methionine, choline, vitamin B12, and folate deficiency of hepatocarcinogenesis in F344 rats given a single low-dose diethylnitrosamine injection. J Natl Cancer Inst 73:1327–1336

    CAS  PubMed  Google Scholar 

  • International Agency for Research on Cancer (2010) Consumption of alcoholic beverages. IARC, Lyon, France

    Google Scholar 

  • International Agency for Research on Cancer (2016) IARC Monographs evaluate consumption of red meat and processed meat. IARC, Lyon, France

    Google Scholar 

  • James SJ, Yin L (1989) Diet-induced DNA damage and altered nucleotide metabolism in lymphocytes from methyl-donor-deficient rats. Carcinogenesis 10:1209–1214

    Article  CAS  Google Scholar 

  • James JS, Pogribny IP, Pogribna M et al (2003) Mechanisms of DNA damage, DNA hypomethylation, and tumor progression in the folate/methyl-deficient rat model of hepatocarcinogenesis. J Nutr 133:3740S–3747S

    Article  CAS  Google Scholar 

  • Kim K-C, Geng L, Huang S (2003) Inactivation of a histone methyltransferase by mutations in human cancers. Cancer Res 63:7619–7623

    CAS  PubMed  Google Scholar 

  • Kopelovich L, Crowell JA, Fay JR (2003) The epigenome as a target for cancer chemoprevention. J Natl Cancer Inst 95:1747–1757

    Article  CAS  Google Scholar 

  • Kovacheva VP, Mellott TJ, Davison JM et al (2007) Gestational choline deficiency causes global and Igf2 gene DNA hypermethylation by up-regulation of Dnmt1 expression. J Biol Chem 282:31777–31788

    Article  CAS  Google Scholar 

  • Krumdieck CL (1983) Role of folate deficiency in carcinogenesis. In: Butterworth CE, Hutchenson ML (eds) Nutritional factors in the induction and maintenance of malignancy. Academic, New York, pp 225–245

    Google Scholar 

  • Lee D-H, Jacobs DR Jr, Porta M (2009) Hypothesis: a unifying mechanism for nutrition and chemicals as lifelong modulators of DNA hypomethylation. Environ Health Perspect 117:1799–1802

    Article  CAS  Google Scholar 

  • Locasale JW (2013) Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat Rev Cancer 13:572–583

    Article  CAS  Google Scholar 

  • Lombardi B, Shinozuka H (1979) Enhancement of 2-acetylaminofluorene liver carcinogenesis in rats fed a choline-devoid diet. Int J Cancer 23:565–570

    Article  CAS  Google Scholar 

  • Lombardi B, Chandar N, Locker J (1991) Nutritional model of hepatocarcinogenesis. Rats fed choline-devoid diet. Dig Dis Sci 36:979–984

    Article  CAS  Google Scholar 

  • Lu SC (2009) Regulation of glutathione synthesis. Mol Asp Med 30:42–59

    Article  CAS  Google Scholar 

  • Lu SC, Mato JM (2012) S-adenosylmethionine in liver health, injury, and cancer. Physiol Rev 92:1515–1542

    Article  CAS  Google Scholar 

  • Martínez-Chantar ML, Corrales FJ, Martínez-Cruz LA et al (2002) Spontaneous oxidative stress and liver tumors in mice lacking methionine adenosyltransferase 1A. FASEB J 16:1292–1294

    Article  Google Scholar 

  • Martínez-Chantar ML, Vázquez-Chantada M, Ariz U et al (2008) Loss of the glycine N-methyltransferase gene leads to steatosis and hepatocellular carcinoma in mice. Hepatology 47:1191–1199

    Article  Google Scholar 

  • Mayne ST, Playdon MC, Rock CL (2016) Diet, nutrition, and cancer: past, present and future. Nat Rev Clin Oncol 13:504–515

    Article  Google Scholar 

  • Mikol YB, Hoover KL, Creasia D et al (1983) Hepatocarcinogenesis in rats fed methyl-deficient, amino acid-defined diets. Carcinogenesis 4:1619–1629

    Article  CAS  Google Scholar 

  • Motiwala T, Ghoshal K, Das A et al (2003) Suppression of the protein tyrosine phosphatase receptor type O gene (PTPRO) by methylation in hepatocellular carcinomas. Oncogene 22:6319–6331

    Article  CAS  Google Scholar 

  • Nakae D (1999) Endogenous liver carcinogenesis in the rat. Pathol Int 49:1028–1042

    Article  CAS  Google Scholar 

  • Newberne PM, Rogers AE (1986) Labile methyl groups and the promotion of cancer. Annu Rev Nutr 6:407–432

    Article  CAS  Google Scholar 

  • Njei B, Rotman Y, Ditah I et al (2015) Emerging trends in hepatocellular carcinoma incidence and mortality. Hepatology 61:191–199

    Article  Google Scholar 

  • Peleteiro B, Padrão P, Castro C et al (2016) Worldwide burden of gastric cancer in 2012 that could have been prevented by increasing fruit and vegetable intake and predictions for 2025. Br J Nutr 115:851–859

    Article  CAS  Google Scholar 

  • Pellanda H, Forges T, Bressenot A et al (2012) Fumonisin FB1 treatment acts synergistically with methyl donor deficiency during rat pregnancy to produce alterations of H3- and H4-histone methylation patterns in fetuses. Mol Nutr Food Res 56:976–985

    Article  CAS  Google Scholar 

  • Pocha C, Kolly P, Dufour J-F (2015) Nonalcoholic fatty liver disease-related hepatocellular carcinoma: a problem of growing magnitude. Semin Liver Dis 35:304–317

    Article  Google Scholar 

  • Pogribny IP, James SJ (2002) De novo methylation of the p16INK4A gene in early preneoplastic liver and tumors induced by folate/methyl deficiency in rats. Cancer Lett 187:69–75

    Article  CAS  Google Scholar 

  • Pogribny IP, Rusyn I (2014) Role of epigenetic aberrations in the development and progression of human hepatocellular carcinoma. Cancer Lett 342:223–230

    Article  CAS  Google Scholar 

  • Pogribny IP, Miller BJ, James SJ (1997) Alterations in hepatic p53 gene methylation patterns during tumor progression with folate/methyl deficiency in the rat. Cancer Lett 115:31–38

    Article  CAS  Google Scholar 

  • Pogribny IP, Pogribna M, Christman JK et al (2000) Single-site methylation within the p53 promoter region reduces gene expression in a reporter gene construct: possible in vivo relevance during tumorigenesis. Cancer Res 60:588–594

    CAS  PubMed  Google Scholar 

  • Pogribny IP, Ross SA, Tryndyak VP et al (2006a) Histone H3 lysine 9 and H4 lysine 20 trimethylation and the expression of Suv4-20h2 and Suv-39h1 histone methyltransferases in hepatocarcinogenesis induced by methyl deficiency in rats. Carcinogenesis 27:1180–1186

    Article  CAS  Google Scholar 

  • Pogribny IP, Ross SA, Wise C et al (2006b) Irreversible global DNA hypomethylation as a key step in hepatocarcinogenesis induced by dietary methyl deficiency. Mutat Res 593:80–87

    Article  CAS  Google Scholar 

  • Pogribny IP, Tryndyak VP, Bagnyukova TV et al (2009) Hepatic epigenetic phenotype predetermines individual susceptibility to hepatic steatosis in mice fed a lipogenic methyl-deficient diet. J Hepatol 51:176–186

    Article  CAS  Google Scholar 

  • Pogribny IP, James SJ, Beland FA (2012) Molecular alterations in hepatocarcinogenesis induced by dietary methyl deficiency. Mol Nutr Food Res 56:116–125

    Article  CAS  Google Scholar 

  • Poirier LA (1994) Methyl group deficiency in hepatocarcinogenesis. Drug Met Rev 26:185–199

    Article  CAS  Google Scholar 

  • Richards HH, Chiang PK, Cantoni GL (1978) Adenosylhomocysteine hydrolase. Crystallization of the purified enzyme and its properties. J Biol Chem 253:4476–4480

    CAS  PubMed  Google Scholar 

  • Rogers AE (1995) Methyl donors in the diet and responses to chemical. Am J Clin Nutr 61:659S–665S

    Article  CAS  Google Scholar 

  • Ross SA, Dwyer J, Umar A et al (2008) Introduction: diet, epigenetic events and cancer prevention. Nutr Rev 66:S1–S6

    Article  Google Scholar 

  • Schwingshackl L, Hoffmann G (2016) Does a Mediterranean-type diet reduce cancer risk? Curr Nutr Rep 5:9–17

    Article  CAS  Google Scholar 

  • Seyfried TN, Flores RE, Poff AM et al (2014) Cancer as a metabolic disease: implications for novel therapeutics. Carcinogenesis 35:515–527

    Article  CAS  Google Scholar 

  • Stefanska B, Huang J, Bhattacharyya B et al (2011) Definition of the landscape of promoter DNA hypomethylation in liver cancer. Cancer Res 71:5891–5903

    Article  CAS  Google Scholar 

  • Steinmetz KL, Pogribny IP, James SJ et al (1998) Hypomethylation of the rat glutathione S-transferase Ï€ (GSTP) promoter region isolated from methyl-deficient livers and GSTP-positive liver neoplasms. Carcinogenesis 19:1487–1494

    Article  CAS  Google Scholar 

  • Stipanuk MH (2004) Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr 24:539–577

    Article  CAS  Google Scholar 

  • Takumi S, Okamura K, Yanagisawa H et al (2015) The effect of a methyl-deficient diet on the global DNA methylation and the DNA methylation regulatory pathways. J Appl Toxicol 35:1550–1556

    Article  CAS  Google Scholar 

  • Teng Y-W, Mehedint MG, Garrow TA et al (2011) Deletion of betaine-homocysteine S-methyltransferase in mice perturbs choline and 1-carbon metabolism, resulting in fatty liver and hepatocellular carcinomas. J Biol Chem 286:36258–36267

    Article  CAS  Google Scholar 

  • Tryndyak VP, Han T, Muskhelishvili L et al (2011) Coupling global methylation and gene expression profiles reveal key pathophysiological events in liver injury induced by a methyl-deficient diet. Mol Nutr Food Res 55:411–418

    Article  CAS  Google Scholar 

  • Tryndyak V, de Conti A, Kobets T et al (2012) Interstrain differences in the severity of liver injury induced by a choline- and folate-deficient diet in mice are associated with dysregulation of genes involved in lipid metabolism. FASEB J 26:4592–4602

    Article  CAS  Google Scholar 

  • Tsujiuchi T, Shimizu K, Itsuzaki Y et al (2007) CpG site hypermethylation of E-cadherin and connexin26 genes in hepatocellular carcinomas induced by a choline-deficient L-amino acid-defined diet in rats. Mol Carc 46:269–274

    Article  CAS  Google Scholar 

  • World Cancer Research Fund/American Institute for Cancer Research (2007) Food, nutrition, physical activity, and the prevention of cancer: a global perspective. AICR, Washington, DC

    Google Scholar 

  • World Cancer Report 2014. (2014). International Agency for Research on Cancer. IARC, Lyon, France

    Google Scholar 

  • World Health Organ Tech Rep Ser (1964) Prevention of cancer. Report of a WHO expert committee. 276:1–53

    Google Scholar 

  • Younossi ZM, Otgonsuren M, Henry L et al (2015) Association of nonalcoholic fatty liver disease (NAFLD) with hepatocellular carcinoma (HCC) in the United States from 2004 to 2009. Hepatology 62:1723–1730

    Article  CAS  Google Scholar 

  • Yu D, Shu X-O, Xiang Y-B et al (2014) Higher dietary choline intake is associated with lower risk of nonalcoholic fatty liver in normal-weight Chinese women. J Nutr 144:2034–2040

    Article  CAS  Google Scholar 

  • Zeisel SH (2006) Choline: critical role during fetal development and dietary requirements in adults. Annu Rev Nutr 26:229–250

    Article  CAS  Google Scholar 

  • Zeisel SH, da Costa KA, Albright CD et al (1995) Choline and hepatocarcinogenesis in the rat. Adv Exp Med Biol 375:65–74

    Article  CAS  Google Scholar 

  • Zhou W, Alonso S, Takai D et al (2008) Requirement of RIZ1 for cancer prevention by methyl-balanced diet. PLoS One 3:e3390

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aline de Conti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

de Conti, A., Pogribny, I.P. (2019). Epigenetics of Dietary Methyl-Group Donor Deficiency and Liver Cancer. In: Patel, V., Preedy, V. (eds) Handbook of Nutrition, Diet, and Epigenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-55530-0_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55530-0_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55529-4

  • Online ISBN: 978-3-319-55530-0

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics