Skip to main content

Biogenesis of Medium-Chain-Length Polyhydroxyalkanoates

  • Living reference work entry
  • First Online:
Biogenesis of Fatty Acids, Lipids and Membranes

Abstract

Medium-chain-length polyhydroxyalkanoates (mcl-PHA) are biotechnologically useful natural products found in many bacteria. This biopolymer functions as a carbon and energy storage reservoir in cells but has physical and mechanical properties that make it a promising bioplastic with applications ranging from adhesives to medical implants. Therefore, there is much interest in understanding the biology of mcl-PHA synthesis and metabolism. Increased knowledge of PHA biology serves as a foundation for the bioengineering of PHA and its eventual use as a biologically derived product. This chapter covers the state of knowledge on mcl-PHA, including its synthesis and its central role in cellular metabolism. Moreover, this chapter discusses methods for bioengineering mcl-PHA production in bacteria as well as synthetic biology methods for its study and production in the natural mcl-PHA producer, Pseudomonas putida.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alper H, Stephanopoulos G (2007) Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab Eng 9:258–267. doi:10.1016/j.ymben.2006.12.002

    Article  CAS  PubMed  Google Scholar 

  • Antonio RV, Steinbüchel A, Rehm BH (2000) Analysis of in vivo substrate specificity of the PHA synthase from Ralstonia eutropha: formation of novel copolyesters in recombinant Escherichia coli. FEMS Microbiol Lett 182:111–117

    Article  CAS  PubMed  Google Scholar 

  • Aparicio T, Jensen SI, Nielsen AT et al (2016) The Ssr protein (T1E_1405) from Pseudomonas putida DOT-T1E enables oligonucleotide-based recombineering in platform strain P. putida EM42. Biotechnol J 11(10):1309–1319. doi:10.1002/biot.201600317

    Article  CAS  PubMed  Google Scholar 

  • Arias S, Bassas-Galia M, Molinari G, Timmis KN (2013) Tight coupling of polymerization and depolymerization of polyhydroxyalkanoates ensures efficient management of carbon resources in Pseudomonas putida. Microb Biotechnol 6:551–563. doi:10.1111/1751-7915.12040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ayub ND, Tribelli PM, López NI (2009) Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14-3 during low temperature adaptation. Extrem Life Extreme Cond 13:59–66. doi:10.1007/s00792-008-0197-z

    Article  CAS  Google Scholar 

  • Beeby M, Cho M, Stubbe J, Jensen GJ (2012) Growth and localization of polyhydroxybutyrate granules in Ralstonia eutropha. J Bacteriol 194:1092–1099. doi:10.1128/JB.06125-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandl H, Knee EJ, Fuller RC et al (1989) Ability of the phototrophic bacterium Rhodospirillum rubrum to produce various poly (beta-hydroxyalkanoates): potential sources for biodegradable polyesters. Int J Biol Macromol 11:49–55

    Article  CAS  PubMed  Google Scholar 

  • Bresan S, Sznajder A, Hauf W et al (2016) Polyhydroxyalkanoate (PHA) granules have no phospholipids. Sci Rep 6:26612. doi:10.1038/srep26612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budde CF, Mahan AE, Lu J et al (2010) Roles of multiple acetoacetyl coenzyme A reductases in polyhydroxybutyrate Biosynthesis in Ralstonia eutropha H16. J Bacteriol 192:5319–5328. doi:10.1128/JB.00207-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carr PA, Wang HH, Sterling B et al (2012) Enhanced multiplex genome engineering through co-operative oligonucleotide co-selection. Nucleic Acids Res 40:e132. doi:10.1093/nar/gks455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G-Q, Hajnal I (2015) The “PHAome.”. Trends Biotechnol 33:559–564. doi:10.1016/j.tibtech.2015.07.006

    Article  CAS  PubMed  Google Scholar 

  • Chen G-Q, Hajnal I, Wu H et al (2015) Engineering biosynthesis mechanisms for diversifying polyhydroxyalkanoates. Trends Biotechnol 33:565–574. doi:10.1016/j.tibtech.2015.07.007

    Article  CAS  PubMed  Google Scholar 

  • Choi K-H, Schweizer HP (2006) mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa. Nat Protoc 1:153–161. doi:10.1038/nprot.2006.24

    Article  CAS  PubMed  Google Scholar 

  • de Eugenio LI, Escapa IF, Morales V et al (2010a) The turnover of medium-chain-length polyhydroxyalkanoates in Pseudomonas putida KT2442 and the fundamental role of PhaZ depolymerase for the metabolic balance. Environ Microbiol 12:207–221. doi:10.1111/j.1462-2920.2009.02061.x

    Article  PubMed  CAS  Google Scholar 

  • de Eugenio LI, Galán B, Escapa IF et al (2010b) The PhaD regulator controls the simultaneous expression of the pha genes involved in polyhydroxyalkanoate metabolism and turnover in Pseudomonas putida KT2442. Environ Microbiol 12:1591–1603. doi:10.1111/j.1462-2920.2010.02199.x

    Article  PubMed  CAS  Google Scholar 

  • de las Heras A, Carreño CA, de Lorenzo V (2008) Stable implantation of orthogonal sensor circuits in Gram-negative bacteria for environmental release. Environ Microbiol 10:3305–3316. doi:10.1111/j.1462-2920.2008.01722.x

    Article  PubMed  CAS  Google Scholar 

  • de Lorenzo V, Timmis KN (1994) Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5- and Tn10-derived minitransposons. Methods Enzymol 235:386–405

    Article  CAS  PubMed  Google Scholar 

  • Dennis D, Liebig C, Holley T et al (2003) Preliminary analysis of polyhydroxyalkanoate inclusions using atomic force microscopy. FEMS Microbiol Lett 226:113–119

    Article  CAS  PubMed  Google Scholar 

  • Dennis D, Sein V, Martinez E, Augustine B (2008) PhaP is involved in the formation of a network on the surface of polyhydroxyalkanoate inclusions in Cupriavidus necator H16. J Bacteriol 190:555–563. doi:10.1128/JB.01668-07

    Article  CAS  PubMed  Google Scholar 

  • Dinjaski N, Prieto MA (2013) Swapping of phasin modules to optimize the in vivo immobilization of proteins to medium-chain-length polyhydroxyalkanoate granules in Pseudomonas putida. Biomacromolecules 14:3285–3293. doi:10.1021/bm4008937

    Article  CAS  PubMed  Google Scholar 

  • Doi Y, Kitamura S, Abe H (1995) Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 28:4822–4828. doi:10.1021/ma00118a007

    Article  CAS  Google Scholar 

  • Eggers J, Steinbüchel A (2014) Impact of Ralstonia eutropha’s poly(3-Hydroxybutyrate) (PHB) depolymerases and phasins on PHB storage in recombinant Escherichia coli. Appl Environ Microbiol 80:7702–7709. doi:10.1128/AEM.02666-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Escapa IF, Morales V, Martino VP et al (2011) Disruption of β-oxidation pathway in Pseudomonas putida KT2442 to produce new functionalized PHAs with thioester groups. Appl Microbiol Biotechnol 89:1583–1598. doi:10.1007/s00253-011-3099-4

    Article  CAS  PubMed  Google Scholar 

  • Escapa IF, García JL, Bühler B et al (2012) The polyhydroxyalkanoate metabolism controls carbon and energy spillage in Pseudomonas putida. Environ Microbiol 14:1049–1063. doi:10.1111/j.1462-2920.2011.02684.x

    Article  CAS  PubMed  Google Scholar 

  • Escapa IF, del Cerro C, García JL, Prieto MA (2013) The role of GlpR repressor in Pseudomonas putida KT2440 growth and PHA production from glycerol. Environ Microbiol 15:93–110. doi:10.1111/j.1462-2920.2012.02790.x

    Article  CAS  PubMed  Google Scholar 

  • Fonseca P, de la Peña F, Prieto MA (2014) A role for the regulator PsrA in the polyhydroxyalkanoate metabolism of Pseudomonas putida KT2440. Int J Biol Macromol 71:14–20. doi:10.1016/j.ijbiomac.2014.04.014

    Article  CAS  PubMed  Google Scholar 

  • Fukui T, Doi Y (1997) Cloning and analysis of the poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) biosynthesis genes of Aeromonas caviae. J Bacteriol 179:4821–4830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuller RC, O’Donnell JP, Saulnier J et al (1992) The supramolecular architecture of the polyhydroxyalkanoate inclusions in Pseudomonas oleovorans. FEMS Microbiol Rev 103:279–288. doi:10.1111/j.1574-6968.1992.tb05849.x

    Article  CAS  Google Scholar 

  • Galán B, Dinjaski N, Maestro B et al (2011) Nucleoid-associated PhaF phasin drives intracellular location and segregation of polyhydroxyalkanoate granules in Pseudomonas putida KT2442. Mol Microbiol 79:402–418. doi:10.1111/j.1365-2958.2010.07450.x

    Article  PubMed  CAS  Google Scholar 

  • Gorenflo V, Schmack G, Vogel R, Steinbüchel A (2001) Development of a process for the biotechnological large-scale production of 4-hydroxyvalerate-containing polyesters and characterization of their physical and mechanical properties. Biomacromolecules 2:45–57

    Article  CAS  PubMed  Google Scholar 

  • Griebel R, Smith Z, Merrick JM (1968) Metabolism of poly-beta-hydroxybutyrate. I. Purification, composition, and properties of native poly-beta-hydroxybutyrate granules from Bacillus megaterium. Biochemistry (Mosc) 7:3676–3681

    Article  CAS  Google Scholar 

  • Guzik MW, Kenny ST, Duane GF et al (2014) Conversion of post consumer polyethylene to the biodegradable polymer polyhydroxyalkanoate. Appl Microbiol Biotechnol 98:4223–4232. doi:10.1007/s00253-013-5489-2

    Article  CAS  PubMed  Google Scholar 

  • Han J, Hou J, Liu H et al (2010) Wide distribution among halophilic archaea of a novel polyhydroxyalkanoate synthase subtype with homology to bacterial type III synthases. Appl Environ Microbiol 76:7811–7819. doi:10.1128/AEM.01117-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hori K, Kaneko M, Tanji Y et al (2002) Construction of self-disruptive Bacillus megaterium in response to substrate exhaustion for polyhydroxybutyrate production. Appl Microbiol Biotechnol 59:211–216. doi:10.1007/s00253-002-0986-8

    Article  CAS  PubMed  Google Scholar 

  • Hosokawa K, Park N-H, Inaoka T et al (2002) Streptomycin-resistant (rpsL) or rifampicin-resistant (rpoB) mutation in Pseudomonas putida KH146-2 confers enhanced tolerance to organic chemicals. Environ Microbiol 4:703–712

    Article  CAS  PubMed  Google Scholar 

  • Huijberts GN, Eggink G, de Waard P et al (1992) Pseudomonas putida KT2442 cultivated on glucose accumulates poly(3-hydroxyalkanoates) consisting of saturated and unsaturated monomers. Appl Environ Microbiol 58:536–544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huisman GW, de Leeuw O, Eggink G, Witholt B (1989) Synthesis of poly-3-hydroxyalkanoates is a common feature of fluorescent pseudomonads. Appl Environ Microbiol 55:1949–1954

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huisman GW, Wonink E, de Koning G et al (1992) Synthesis of poly(3-hydroxyalkanoates) by mutant and recombinant Pseudomonas. Appl Microbiol Biotechnol 38:1–5. doi:10.1007/BF00169409

    Article  CAS  Google Scholar 

  • Ibarra RU, Edwards JS, Palsson BO (2002) Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420:186–189. doi:10.1038/nature01149

    Article  CAS  PubMed  Google Scholar 

  • Jambunathan P, Zhang K (2016) Engineered biosynthesis of biodegradable polymers. J Ind Microbiol Biotechnol 43:1037–1058. doi:10.1007/s10295-016-1785-z

    Article  CAS  PubMed  Google Scholar 

  • Jendrossek D (2009) Polyhydroxyalkanoate granules are complex subcellular organelles (carbonosomes). J Bacteriol 191:3195–3202. doi:10.1128/JB.01723-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jendrossek D, Pfeiffer D (2014) New insights in the formation of polyhydroxyalkanoate granules (carbonosomes) and novel functions of poly(3-hydroxybutyrate). Environ Microbiol 16:2357–2373. doi:10.1111/1462-2920.12356

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Sun Z, Marchessault RH et al (2012) Biosynthesis and properties of medium-chain-length polyhydroxyalkanoates with enriched content of the dominant monomer. Biomacromolecules 13:2926–2932. doi:10.1021/bm3009507

    Article  CAS  PubMed  Google Scholar 

  • Jiang X-R, Wang H, Shen R, Chen G-Q (2015) Engineering the bacterial shapes for enhanced inclusion bodies accumulation. Metab Eng 29:227–237. doi:10.1016/j.ymben.2015.03.017

    Article  CAS  PubMed  Google Scholar 

  • Jin H, Nikolau BJ (2012) Role of genetic redundancy in polyhydroxyalkanoate (PHA) polymerases in PHA biosynthesis in Rhodospirillum rubrum. J Bacteriol 194:5522–5529. doi:10.1128/JB.01111-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadoya R, Matsumoto K, Ooi T, Taguchi S (2015) MtgA deletion-triggered cell enlargement of Escherichia coli for enhanced intracellular polyester accumulation. PLoS One 10(6):e0125163. doi:10.1371/journal.pone.0125163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kenny ST, Runic JN, Kaminsky W et al (2008) Up-cycling of PET (polyethylene terephthalate) to the biodegradable plastic PHA (polyhydroxyalkanoate). Environ Sci Technol 42:7696–7701

    Article  CAS  PubMed  Google Scholar 

  • Kenny ST, Runic JN, Kaminsky W et al (2012) Development of a bioprocess to convert PET derived terephthalic acid and biodiesel derived glycerol to medium chain length polyhydroxyalkanoate. Appl Microbiol Biotechnol 95:623–633. doi:10.1007/s00253-012-4058-4

    Article  CAS  PubMed  Google Scholar 

  • Kim YB, Lenz RW (2001) Polyesters from microorganisms. Adv Biochem Eng Biotechnol 71:51–79

    CAS  PubMed  Google Scholar 

  • Klinke S, Ren Q, Witholt B, Kessler B (1999) Production of medium-chain-length poly(3-hydroxyalkanoates) from gluconate by recombinant Escherichia coli. Appl Environ Microbiol 65:540–548

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klinke S, de Roo G, Witholt B, Kessler B (2000) Role of phaD in accumulation of medium-chain-length poly(3-Hydroxyalkanoates) in Pseudomonas oleovorans. Appl Environ Microbiol 66:3705–3710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuchta K, Chi L, Fuchs H et al (2007) Studies on the influence of phasins on accumulation and degradation of PHB and nanostructure of PHB granules in ralstonia eutropha H16. Biomacromolecules 8:657–662. doi:10.1021/bm060912e

    Article  CAS  PubMed  Google Scholar 

  • La Rosa R, de la Peña F, Prieto MA, Rojo F (2014) The Crc protein inhibits the production of polyhydroxyalkanoates in Pseudomonas putida under balanced carbon/nitrogen growth conditions. Environ Microbiol 16:278–290. doi:10.1111/1462-2920.12303

    Article  CAS  PubMed  Google Scholar 

  • Lageveen RG, Huisman GW, Preusting H et al (1988) Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Appl Environ Microbiol 54:2924–2932

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lambertsen L, Sternberg C, Molin S (2004) Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins. Environ Microbiol 6:726–732. doi:10.1111/j.1462-2920.2004.00605.x

    Article  CAS  PubMed  Google Scholar 

  • Langenbach S, Rehm BH, Steinbüchel A (1997) Functional expression of the PHA synthase gene phaC1 from Pseudomonas aeruginosa in Escherichia coli results in poly(3-hydroxyalkanoate) synthesis. FEMS Microbiol Lett 150:303–309

    Article  CAS  PubMed  Google Scholar 

  • Leprince A, de Lorenzo V, Völler P et al (2012) Random and cyclical deletion of large DNA segments in the genome of Pseudomonas putida. Environ Microbiol 14:1444–1453. doi:10.1111/j.1462-2920.2012.02730.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liebergesell M, Steinbüchel A (1992) Cloning and nucleotide sequences of genes relevant for biosynthesis of poly(3-hydroxybutyric acid) in Chromatium vinosum strain D. Eur J Biochem FEBS 209:135–150

    Article  CAS  Google Scholar 

  • Liebergesell M, Rahalkar S, Steinbüchel A (2000) Analysis of the Thiocapsa pfennigii polyhydroxyalkanoate synthase: subcloning, molecular characterization and generation of hybrid synthases with the corresponding Chromatium vinosum enzyme. Appl Microbiol Biotechnol 54:186–194

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Luo G, Zhou XR, Chen G-Q (2011) Biosynthesis of poly(3-hydroxydecanoate) and 3-hydroxydodecanoate dominating polyhydroxyalkanoates by β-oxidation pathway inhibited Pseudomonas putida. Metab Eng 13:11–17. doi:10.1016/j.ymben.2010.10.004

    Article  CAS  PubMed  Google Scholar 

  • Loeschcke A, Thies S (2015) Pseudomonas putida—a versatile host for the production of natural products. Appl Microbiol Biotechnol 99:6197–6214. doi:10.1007/s00253-015-6745-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, Tappel RC, Nomura CT (2009) Mini-review: biosynthesis of poly(hydroxyalkanoates). Polym Rev 49:226–248. doi:10.1080/15583720903048243

    Article  CAS  Google Scholar 

  • Luo X, Yang Y, Ling W et al (2016) Pseudomonas putida KT2440 markerless gene deletion using a combination of λ Red recombineering and Cre/loxP site-specific recombination. FEMS Microbiol Lett. doi:10.1093/femsle/fnw014

    Google Scholar 

  • Lv L, Ren Y-L, Chen J-C et al (2015) Application of CRISPRi for prokaryotic metabolic engineering involving multiple genes, a case study: Controllable P(3HB-co-4HB) biosynthesis. Metab Eng 29:160–168. doi:10.1016/j.ymben.2015.03.013

    Article  CAS  PubMed  Google Scholar 

  • Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maestro B, Galán B, Alfonso C et al (2013) A new family of intrinsically disordered proteins: structural characterization of the major phasin PhaF from Pseudomonas putida KT2440. PLoS One 8:e56904. doi:10.1371/journal.pone.0056904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez V, García P, García JL, Prieto MA (2011) Controlled autolysis facilitates the polyhydroxyalkanoate recovery in Pseudomonas putida KT2440. Microb Biotechnol 4:533–547. doi:10.1111/j.1751-7915.2011.00257.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martínez V, Jurkevitch E, García JL, Prieto MA (2013) Reward for Bdellovibrio bacteriovorus for preying on a polyhydroxyalkanoate producer. Environ Microbiol 15:1204–1215. doi:10.1111/1462-2920.12047

    Article  PubMed  CAS  Google Scholar 

  • Martínez V, Herencias C, Jurkevitch E, Prieto MA (2016) Engineering a predatory bacterium as a proficient killer agent for intracellular bio-products recovery: the case of the polyhydroxyalkanoates. Sci Rep 6:24381. doi:10.1038/srep24381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martínez-García E, de Lorenzo V (2011) Engineering multiple genomic deletions in Gram-negative bacteria: analysis of the multi-resistant antibiotic profile of Pseudomonas putida KT2440. Environ Microbiol 13:2702–2716. doi:10.1111/j.1462-2920.2011.02538.x

    Article  PubMed  CAS  Google Scholar 

  • Martínez-García E, Aparicio T, de Lorenzo V, Nikel PI (2014a) New transposon tools tailored for metabolic engineering of Gram-negative microbial cell factories. Front Bioeng Biotechnol. doi:10.3389/fbioe.2014.00046

    PubMed  PubMed Central  Google Scholar 

  • Martínez-García E, Nikel PI, Aparicio T, de Lorenzo V (2014b) Pseudomonas 2.0: genetic upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression. Microb Cell Factories 13:159. doi:10.1186/s12934–014–0159-3

    Article  CAS  Google Scholar 

  • Matsusaki H, Manji S, Taguchi K et al (1998) Cloning and molecular analysis of the poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate-co-3-hydroxyalkanoate) biosynthesis genes in Pseudomonas sp. strain 61-3. J Bacteriol 180:6459–6467

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer F, Hoppert M (1997) Determination of the thickness of the boundary layer surrounding bacterial PHA inclusion bodies, and implications for models describing the molecular architecture of this layer. J Basic Microbiol 37:45–52. doi:10.1002/jobm.3620370108

    Article  Google Scholar 

  • McCool GJ, Cannon MC (2001) PhaC and PhaR are required for polyhydroxyalkanoic acid synthase activity in Bacillus megaterium. J Bacteriol 183:4235–4243. doi:10.1128/JB.183.14.4235-4243.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moldes C, García P, García JL, Prieto MA (2004) In vivo immobilization of fusion proteins on bioplastics by the novel tag BioF. Appl Environ Microbiol 70:3205–3212. doi:10.1128/AEM.70.6.3205-3212.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muhr A, Rechberger EM, Salerno A et al (2013) Novel description of mcl-PHA biosynthesis by Pseudomonas chlororaphis from animal-derived waste. J Biotechnol 165:45–51. doi:10.1016/j.jbiotec.2013.02.003

    Article  CAS  PubMed  Google Scholar 

  • Neumann L, Spinozzi F, Sinibaldi R et al (2008) Binding of the major phasin, PhaP1, from Ralstonia eutropha H16 to poly(3-hydroxybutyrate) granules. J Bacteriol 190:2911–2919. doi:10.1128/JB.01486-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikel PI, Martínez-García E, de Lorenzo V (2014) Biotechnological domestication of pseudomonads using synthetic biology. Nat Rev Microbiol 12:368–379. doi:10.1038/nrmicro3253

    Article  CAS  PubMed  Google Scholar 

  • Nikodinovic-Runic J, Guzik M, Kenny ST et al (2013) Carbon-rich wastes as feedstocks for biodegradable polymer (polyhydroxyalkanoate) production using bacteria. Adv Appl Microbiol 84:139–200. doi:10.1016/B978-0-12-407673-0.00004-7

    Article  CAS  PubMed  Google Scholar 

  • Nogales J, Palsson BØ, Thiele I (2008) A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory. BMC Syst Biol 2:79. doi:10.1186/1752-0509-2-79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nomura CT, Taguchi S (2007) PHA synthase engineering toward superbiocatalysts for custom-made biopolymers. Appl Microbiol Biotechnol 73:969–979. doi:10.1007/s00253-006-0566-4

    Article  CAS  PubMed  Google Scholar 

  • Nyerges Á, Csörgő B, Nagy I et al (2016) A highly precise and portable genome engineering method allows comparison of mutational effects across bacterial species. Proc Natl Acad Sci U S A 113:2502–2507. doi:10.1073/pnas.1520040113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obruca S, Sedlacek P, Mravec F et al (2016) Evaluation of 3-hydroxybutyrate as an enzyme-protective agent against heating and oxidative damage and its potential role in stress response of poly(3-hydroxybutyrate) accumulating cells. Appl Microbiol Biotechnol 100:1365–1376. doi:10.1007/s00253-015-7162-4

    Article  CAS  PubMed  Google Scholar 

  • Olivera ER, Carnicero D, Jodra R et al (2001) Genetically engineered Pseudomonas: a factory of new bioplastics with broad applications. Environ Microbiol 3:612–618

    Article  CAS  PubMed  Google Scholar 

  • Park SJ, Lee SY (2004) Biosynthesis of poly(3-hydroxybutyrate- co-3-hydroxyalkanoates) by metabolically engineered Escherichia coli strains. Appl Biochem Biotechnol 113–116:335–346

    Article  PubMed  Google Scholar 

  • Peplinski K, Ehrenreich A, Döring C et al (2010) Genome-wide transcriptome analyses of the “Knallgas” bacterium Ralstonia eutropha H16 with regard to polyhydroxyalkanoate metabolism. Microbiol Read Engl 156:2136–2152. doi:10.1099/mic.0.038380-0

    Article  CAS  Google Scholar 

  • Pfeiffer D, Jendrossek D (2011) Interaction between poly(3-hydroxybutyrate) granule-associated proteins as revealed by two-hybrid analysis and identification of a new phasin in Ralstonia eutropha H16. Microbiol Read Engl 157:2795–2807. doi:10.1099/mic.0.051508-0

    Article  CAS  Google Scholar 

  • Pfeiffer D, Jendrossek D (2012) Localization of poly(3-hydroxybutyrate) (PHB) granule-associated proteins during PHB granule formation and identification of two new phasins, PhaP6 and PhaP7, in Ralstonia eutropha H16. J Bacteriol 194:5909–5921. doi:10.1128/JB.00779-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeiffer D, Wahl A, Jendrossek D (2011) Identification of a multifunctional protein, PhaM, that determines number, surface to volume ratio, subcellular localization and distribution to daughter cells of poly(3-hydroxybutyrate), PHB, granules in Ralstonia eutropha H16. Mol Microbiol 82:936–951. doi:10.1111/j.1365-2958.2011.07869.x

    Article  CAS  PubMed  Google Scholar 

  • Phithakrotchanakoon C, Champreda V, Aiba S et al (2013) Engineered Escherichia coli for short-chain-length medium-chain-length polyhydroxyalkanoate copolymer biosynthesis from glycerol and dodecanoate. Biosci Biotechnol Biochem 77:1262–1268. doi:10.1271/bbb.130073

    Article  CAS  PubMed  Google Scholar 

  • Poblete-Castro I, Binger D, Rodrigues A et al (2013) In-silico-driven metabolic engineering of Pseudomonas putida for enhanced production of poly-hydroxyalkanoates. Metab Eng 15:113–123. doi:10.1016/j.ymben.2012.10.004

    Article  CAS  PubMed  Google Scholar 

  • Poblete-Castro I, Rodriguez AL, Lam CMC, Kessler W (2014) Improved production of medium-chain-length polyhydroxyalkanoates in glucose-based fed-batch cultivations of metabolically engineered Pseudomonas putida strains. J Microbiol Biotechnol 24:59–69

    Article  CAS  PubMed  Google Scholar 

  • Pötter M, Müller H, Reinecke F et al (2004) The complex structure of polyhydroxybutyrate (PHB) granules: four orthologous and paralogous phasins occur in Ralstonia eutropha. Microbiol Read Engl 150:2301–2311. doi:10.1099/mic.0.26970-0

    Article  CAS  Google Scholar 

  • Prieto MA, Bühler B, Jung K et al (1999) PhaF, a polyhydroxyalkanoate-granule-associated protein of Pseudomonas oleovorans GPo1 involved in the regulatory expression system for pha genes. J Bacteriol 181:858–868

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prieto A, Escapa IF, Martínez V et al (2016) A holistic view of polyhydroxyalkanoate metabolism in Pseudomonas putida: polyhydroxyalkanoate metabolism in Pseudomonas putida. Environ Microbiol 18:341–357. doi:10.1111/1462-2920.12760

    Article  CAS  PubMed  Google Scholar 

  • Puchałka J, Oberhardt MA, Godinho M et al (2008) Genome-scale reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology. PLoS Comput Biol 4(10):e1000210. doi:10.1371/journal.pcbi.1000210

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qi Q, Rehm BH, Steinbüchel A (1997) Synthesis of poly(3-hydroxyalkanoates) in Escherichia coli expressing the PHA synthase gene phaC2 from Pseudomonas aeruginosa: comparison of PhaC1 and PhaC2. FEMS Microbiol Lett 157:155–162. doi:10.1111/j.1574-6968.1997.tb12767.x

    Article  CAS  PubMed  Google Scholar 

  • Qi Q, Steinbüchel A, Rehm BH (2000) In vitro synthesis of poly(3-hydroxydecanoate): purification and enzymatic characterization of type II polyhydroxyalkanoate synthases PhaC1 and PhaC2 from Pseudomonas aeruginosa. Appl Microbiol Biotechnol 54:37–43

    Article  CAS  PubMed  Google Scholar 

  • Rehm BH, Krüger N, Steinbüchel A (1998) A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis. The PHAG gene from Pseudomonas putida KT2440 encodes a 3-hydroxyacyl-acyl carrier protein-coenzyme a transferase. J Biol Chem 273:24044–24051

    Article  CAS  PubMed  Google Scholar 

  • Reinecke F, Steinbüchel A (2009) Ralstonia eutropha strain H16 as model organism for PHA metabolism and for biotechnological production of technically interesting biopolymers. J Mol Microbiol Biotechnol 16:91–108. doi:10.1159/000142897

    Article  CAS  PubMed  Google Scholar 

  • Ren Q, Sierro N, Kellerhals M et al (2000) Properties of engineered poly-3-hydroxyalkanoates produced in recombinant Escherichia coli strains. Appl Environ Microbiol 66:1311–1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren Q, de Roo G, Ruth K et al (2009a) Simultaneous accumulation and degradation of polyhydroxyalkanoates: futile cycle or clever regulation? Biomacromolecules 10:916–922. doi:10.1021/bm801431c

    Article  CAS  PubMed  Google Scholar 

  • Ren Q, de Roo G, Witholt B et al (2009b) Overexpression and characterization of medium-chain-length polyhydroxyalkanoate granule bound polymerases from Pseudomonas putida GPo1. Microb Cell Factories 8:60. doi:10.1186/1475-2859-8-60

    Article  CAS  Google Scholar 

  • Ruiz JA, López NI, Méndez BS (2004) rpoS gene expression in carbon-starved cultures of the Polyhydroxyalkanoate-accumulating species Pseudomonas oleovorans. Curr Microbiol 48:396–400. doi:10.1007/s00284-003-4183-5

    Article  CAS  PubMed  Google Scholar 

  • Ruth K, de Roo G, Egli T, Ren Q (2008) Identification of two acyl-CoA synthetases from Pseudomonas putida GPo1: one is located at the surface of polyhydroxyalkanoates granules. Biomacromolecules 9:1652–1659. doi:10.1021/bm8001655

    Article  CAS  PubMed  Google Scholar 

  • Saito Y, Nakamura S, Hiramitsu M, Doi Y (1996) Microbial synthesis and properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Polym Int 39:169–174. doi:10.1002/(SICI)1097-0126(199603)39:3<169::AID-PI453>3.0.CO;2-Z

    Article  CAS  Google Scholar 

  • Sandoval A, Arias-Barrau E, Arcos M et al (2007) Genetic and ultrastructural analysis of different mutants of Pseudomonas putida affected in the poly-3-hydroxy-n-alkanoate gene cluster. Environ Microbiol 9:737–751. doi:10.1111/j.1462-2920.2006.01196.x

    Article  CAS  PubMed  Google Scholar 

  • Schlegel HG, Gottschalk G (1962) Poly-β-hydroxybuttersäure, ihre verbreitung, funktion und biosynthese. Angew Chem 74:342–347. doi:10.1002/ange.19620741003

    Article  Google Scholar 

  • Schubert P, Steinbüchel A, Schlegel HG (1988) Cloning of the Alcaligenes eutrophus genes for synthesis of poly-beta-hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J Bacteriol 170:5837–5847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schweizer HP (1992) Allelic exchange in Pseudomonas aeruginosa using novel ColE1-type vectors and a family of cassettes containing a portable oriT and the counter-selectable Bacillus subtilis sacB marker. Mol Microbiol 6:1195–1204

    Article  CAS  PubMed  Google Scholar 

  • Shamala TR, Chandrashekar A, Vijayendra SVN, Kshama L (2003) Identification of polyhydroxyalkanoate (PHA)-producing Bacillus spp. using the polymerase chain reaction (PCR). J Appl Microbiol 94:369–374

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Patel SK, Kalia VC (2009) Bacillus subtilis as potential producer for polyhydroxyalkanoates. Microb Cell Factories 8:38. doi:10.1186/1475-2859-8-38

    Article  CAS  Google Scholar 

  • Slater SC, Voige WH, Dennis DE (1988) Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-beta-hydroxybutyrate biosynthetic pathway. J Bacteriol 170:4431–4436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sohn SB, Kim TY, Park JM, Lee SY (2010) In silico genome-scale metabolic analysis of Pseudomonas putida KT2440 for polyhydroxyalkanoate synthesis, degradation of aromatics and anaerobic survival. Biotechnol J 5:739–750. doi:10.1002/biot.201000124

    Article  CAS  PubMed  Google Scholar 

  • Steinbuchel A, Aerts K, Babel W et al (1995) Considerations on the structure and biochemistry of bacterial polyhydroxyalkanoic acid inclusions. Can J Microbiol 41(Suppl 1):94–105

    Article  PubMed  Google Scholar 

  • Stuart ES, Foster LJ, Lenz RW, Fuller RC (1996) Intracellular depolymerase functionality and location in Pseudomonas oleovorans inclusions containing polyhydroxyoctanoate. Int J Biol Macromol 19:171–176

    Article  CAS  PubMed  Google Scholar 

  • Stuart ES, Tehrani A, Valentin HE et al (1998) Protein organization on the PHA inclusion cytoplasmic boundary. J Biotechnol 64:137–144

    Article  CAS  PubMed  Google Scholar 

  • Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555. doi:10.1016/S0079-6700(00)00035-6

    Article  CAS  Google Scholar 

  • Sun Z, Ramsay JA, Guay M, Ramsay B (2007) Increasing the yield of MCL-PHA from nonanoic acid by co-feeding glucose during the PHA accumulation stage in two-stage fed-batch fermentations of Pseudomonas putida KT2440. J Biotechnol 132:280–282. doi:10.1016/j.jbiotec.2007.02.023

    Article  CAS  PubMed  Google Scholar 

  • Taguchi S, Doi Y (2004) Evolution of polyhydroxyalkanoate (PHA) production system by “enzyme evolution”: successful case studies of directed evolution. Macromol Biosci 4:146–156. doi:10.1002/mabi.200300111

    Article  PubMed  CAS  Google Scholar 

  • Taguchi K, Taguchi S, Sudesh K, et al. (2005) Metabolic pathways and engineering of polyhydroxyalkanoate biosynthesis. In: Biopolymers online. Wiley-VCH Verlag GmbH & Co. KGaA,

    Google Scholar 

  • Taguchi S, Yamada M, K’ichiro M et al (2008) A microbial factory for lactate-based polyesters using a lactate-polymerizing enzyme. Proc Natl Acad Sci U S A 105:17323–17327. doi:10.1073/pnas.0805653105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tajima K, Han X, Hashimoto Y et al (2016) In vitro synthesis of polyhydroxyalkanoates using thermostable acetyl-CoA synthetase, CoA transferase, and PHA synthase from thermotorelant bacteria. J Biosci Bioeng. doi:10.1016/j.jbiosc.2016.06.001

    Google Scholar 

  • Takase K, K’ichiro M, Taguchi S, Doi Y (2004) Alteration of substrate chain-length specificity of type II synthase for polyhydroxyalkanoate biosynthesis by in vitro evolution: in vivo and in vitro enzyme assays. Biomacromolecules 5:480–485. doi:10.1021/bm034323+

    Article  CAS  PubMed  Google Scholar 

  • Tappel RC, Pan W, Bergey NS et al (2014) Engineering Escherichia coli for improved production of short-chain-length-co-medium-chain-length poly[(R)-3-hydroxyalkanoate] (SCL-co-MCL PHA) copolymers from renewable nonfatty acid feedstocks. ACS Sustain Chem Eng 2:1879–1887. doi:10.1021/sc500217p

    Article  CAS  Google Scholar 

  • Timm A, Steinbüchel A (1990) Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads. Appl Environ Microbiol 56:3360–3367

    CAS  PubMed  PubMed Central  Google Scholar 

  • Timm A, Steinbüchel A (1992) Cloning and molecular analysis of the poly(3-hydroxyalkanoic acid) gene locus of Pseudomonas aeruginosa PAO1. Eur J Biochem FEBS 209:15–30

    Article  CAS  Google Scholar 

  • Timmis KN (2002) Pseudomonas putida: a cosmopolitan opportunist par excellence. Environ Microbiol 4:779–781. doi:10.1046/j.1462-2920.2002.00365.x

    Article  PubMed  Google Scholar 

  • Tortajada M, da Silva LF, Prieto MA (2013) Second-generation functionalized medium-chain-length polyhydroxyalkanoates: the gateway to high-value bioplastic applications. Int Microbiol Off J Span Soc Microbiol 16:1–15. doi:10.2436/20.1501.01.175

    CAS  Google Scholar 

  • Wang H, Zhou X, Liu Q, Chen G-Q (2011) Biosynthesis of polyhydroxyalkanoate homopolymers by Pseudomonas putida. Appl Microbiol Biotechnol 89:1497–1507. doi:10.1007/s00253-010-2964-x

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Tappel RC, Zhu C, Nomura CT (2012) Development of a new strategy for production of medium-chain-length polyhydroxyalkanoates by recombinant Escherichia coli via inexpensive non-fatty acid feedstocks. Appl Environ Microbiol 78:519–527. doi:10.1128/AEM.07020-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Q, Zhuang Q, Liang Q, Qi Q (2013) Polyhydroxyalkanoic acids from structurally-unrelated carbon sources in Escherichia coli. Appl Microbiol Biotechnol 97:3301–3307. doi:10.1007/s00253-013-4809-x

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhang C, Gong T et al (2015) An upp-based markerless gene replacement method for genome reduction and metabolic pathway engineering in Pseudomonas mendocina NK-01 and Pseudomonas putida KT2440. J Microbiol Methods 113:27–33. doi:10.1016/j.mimet.2015.03.022

    Article  CAS  PubMed  Google Scholar 

  • Ward PG, Goff M, Donner M et al (2006) A two step chemo-biotechnological conversion of polystyrene to a biodegradable thermoplastic. Environ Sci Technol 40:2433–2437

    Article  CAS  PubMed  Google Scholar 

  • Yang TH, Kim TW, Kang HO et al (2010) Biosynthesis of polylactic acid and its copolymers using evolved propionate CoA transferase and PHA synthase. Biotechnol Bioeng 105:150–160. doi:10.1002/bit.22547

    Article  CAS  PubMed  Google Scholar 

  • Yuan W, Jia Y, Tian J et al (2001) Class I and III polyhydroxyalkanoate synthases from Ralstonia eutropha and Allochromatium vinosum: characterization and substrate specificity studies. Arch Biochem Biophys 394:87–98. doi:10.1006/abbi.2001.2522

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Kamachi M, Takagi Y et al (2001) Comparative study of the relationship between monomer structure and reactivity for two polyhydroxyalkanoate synthases. Appl Microbiol Biotechnol 56:131–136

    Article  CAS  PubMed  Google Scholar 

  • Zinn M, Durner R, Zinn H et al (2011) Growth and accumulation dynamics of poly(3-hydroxyalkanoate) (PHA) in Pseudomonas putida GPo1 cultivated in continuous culture under transient feed conditions. Biotechnol J 6:1240–1252. doi:10.1002/biot.201100219

    Article  CAS  PubMed  Google Scholar 

  • Zobel S, Benedetti I, Eisenbach L et al (2015) Tn7-based device for calibrated heterologous gene expression in Pseudomonas putida. ACS Synth Biol 4:1341–1351. doi:10.1021/acssynbio.5b00058

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research on polymer biotechnology in the laboratory of M. Auxiliadora Prieto is supported by funding from the European Union’s Horizon 2020 research and innovation program under grant agreements number 633962 and 679050. We also acknowledge support from the Community of Madrid (P2013/MIT2807) and the Spanish Ministry of Economy (BIO201344878R, BIO2014-61515-EXP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Auxiliadora Prieto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Kniewel, R., Revelles Lopez, O., Prieto, M. (2017). Biogenesis of Medium-Chain-Length Polyhydroxyalkanoates. In: Geiger, O. (eds) Biogenesis of Fatty Acids, Lipids and Membranes. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-43676-0_29-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-43676-0_29-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-43676-0

  • Online ISBN: 978-3-319-43676-0

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics