Skip to main content

Necrobiology of Liver Cancer: Apoptosis and Related Forms of Cell Death

  • Reference work entry
  • First Online:
Tumors and Tumor-Like Lesions of the Hepatobiliary Tract
  • 144 Accesses

Abstract

Proliferative growth of cancers, including hepatocellular carcinoma (HCC) and other liver cancers, is counteracted by cell loss induced by various mechanisms of cell death. An intricate process to control cell mass in normal and neoplastic tissues is apoptosis, a complex form of tightly controlled cell death, and its numerous variants. Loss of tumor substance can also occur through necrosis which, in contrast to previous views, is a complex and controlled process rather than a passive phenomenon. In HCC, apoptosis is present as spherical eosinophilic bodies devoid of nuclei, the so-called apoptotic bodies, associated with drop-out of involved cells. The apoptotic response in HCC can be quantitatively assessed by immunohistochemical and molecular methods. Apoptosis in HCC not only involves the cancer cells, but also several classes of stromal cells, including cancer-associated fibroblasts and myofibroblasts, and stromal leukocytes. Death of these cells markedly affects the structure and function of the tumoral microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn JH, Yu HK, Lee HJ, Hong SW, Kim SJ, Kim JS (2014) Suppression of colorectal cancer liver metastasis by apolipoprotein(a) kringle V in a nude mouse model through the induction of apoptosis in tumor-associated endothelial cells. PLoS One 9:e93794

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Allen JE, Saroya BS, Kunkel M, Dicker DT, Das A, Peters KL, Joudeh J, Zhu J, El-Deiry WS (2014) Apoptotic circulating tumor cells (CTCs) in the peripheral blood of metastatic colorectal cancer patients are associated with liver metastasis but not CTCs. Oncotarget 5:1753–1760

    Article  PubMed  Google Scholar 

  • Ando K, Kernan JL, Liu PH, Sanda T, Logette E, Tschopp J, Look AT, Wang J, Bouchier-Hayes L et al (2012) PIDD death-domain phosphorylation by ATM controls prodeath versus prosurvival PIDDosome signaling. Mol Cell 47:681–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrés-Pons A, Gil A, Oliver MD, Sotelo NS, Pulido R (2012) Cytoplasmic p27Kip1 counteracts the pro-apoptotic function of the open conformation of PTEN by retention and destabilization of PTEN outside of the nucleus. Cell Signal 24:577–587

    Article  PubMed  CAS  Google Scholar 

  • Augello C, Caruso L, Maggioni M, Donadon M, Montorsi M, Santambrogio R, Torzilli G et al (2009) Inhibitors of apoptosis proteins (IAPs) expression and their prognostic significance in hepatocellular carcinoma. BMC Cancer 9:125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baddour N, Farrag E, Zeid A, Bedewy E, Taher Y (2013) Decreased apoptosis in advanced-stage/high-grade hepatocellular carcinoma complicating chronic hepatitis C is mediated through the downregulation of p21 ras. Chin J Cancer Res 25:281–288

    PubMed  PubMed Central  Google Scholar 

  • Balci-Peynircoiglu B, Waite AL, Hu C, Richards N, Staubach-Grosse A, Yilmaz E, Gumucio DL (2008) Pyrin, product of the MEFV locus, interacts with the proapoptotic protein. Siva J Cell Physiol 216:595–602

    Article  CAS  Google Scholar 

  • Banerjee S, de Freitas A, Friggeri A, Zmijewski JW, Liu G, Abraham E (2011) Intracellular HMGB1 negatively regulates efferocytosis. J Immunol 187:4686–4694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao ST, Gui SQ, Lin MS (2006) Relationship between expression of Smac and survivin and apoptosis of primary hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 5:580–583

    CAS  PubMed  Google Scholar 

  • Biermann M, Maueröder C, Brauner JM, Chaurio R, Janko C, Herrmann M, Muñoz LE (2013) Surface code – biophysical signals for apoptotic cell clearance. Phys Biol 10:065007

    Article  PubMed  CAS  Google Scholar 

  • Boland K, Flanagan L, Prehn JHM (2013) Paracrine control of tissue regeneration and cell proliferation by caspase-3. Cell Death Dis 4:e725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouchier-Hayes L, Green DR (2012) Caspase-2: the orphan caspase. Cell Death Differ 19:51–57

    Article  CAS  PubMed  Google Scholar 

  • Bouchier-Hayes L, Conroy H, Egan H, Adrain C, Creagh EM, MacFarlane M, Martin SJ (2001) CARDINAL, a novel caspase recruitment domain protein, is an inhibitor of multiple NF-kappa B activation pathways. J Biol Chem 276:44069–44077

    Article  CAS  PubMed  Google Scholar 

  • Bouchon A, Dietrich J, Colonna M (2000) Cutting edge: inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. J Immunol 164:4991–4995

    Article  CAS  PubMed  Google Scholar 

  • Brault C, Levy PL, Bartosch B (2013) Hepatitis C virus-induced mitochondrial dysfunctions. Viruses 5:954–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cadamuro M, Nardo G, Indraccolo S, Dall’olmo L, Sambado L, Moserle L, Franceschet I, Colledan M, Massani M et al (2013) Platelet-derived growth factor-D and Rho GTPases regulate recruitment of cancer-associated fibroblasts in cholangiocarcinoma. Hepatology 58:1042–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai M, Chen Q, Chen C, Liu X, Hou J, Zeng C, Shu Q, Fang X (2013) Activation of triggering receptor expressed on myeloid cells-1 protects monocyte from apoptosis through regulation of myeloid cell leukemia-1. Anesthesiology 118:1140–1149

    Article  CAS  PubMed  Google Scholar 

  • Capece D, Fischietti M, Verzella D, Gaggiano A, Cicciarelli G, Tessitore A, Zazzeroni F, Alesse E (2013) The inflammatory microenvironment in hepatocellular carcinoma: a pivotal role for tumor-associated macrophages. Biomed Res Int 2013:187204

    Article  PubMed  CAS  Google Scholar 

  • Cecconi F (1999) Apaf1 and the apoptotic machinery. Cell Death Differ 6:1087–1098

    Article  CAS  PubMed  Google Scholar 

  • Celli A, Que FG (1998) Dysregulation of apoptosis in the cholangiopathies and cholangiocarcinoma. Semin Liver Dis 18:177–185

    Article  CAS  PubMed  Google Scholar 

  • Chan BC, Ching AK, To KF, Leung JC, Chen S, Li Q, Lai PB, Tang NL, Shaw PC et al (2008) BRE is an antiapoptotic protein in vivo and overexpressed in human hepatocellular carcinoma. Oncogene 27:1208–1217

    Article  CAS  PubMed  Google Scholar 

  • Chang Y, Wang SX, Wang YB, Zhou J, Li WH, Wang N, Fang DF, Li HY, Li AL et al (2013) ECHS1 interacts with STAT3 and negatively regulates STAT3 signaling. FEBS Lett 587:607–613

    Article  CAS  PubMed  Google Scholar 

  • Charlotte F, L’Herminé A, Martin N, Geleyn Y, Nollet M, Gaulard P, Zafrani ES (1994) Immunohistochemical detection of bcl-2 protein in normal and pathological human liver. Am J Pathol 144:460–465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chau GY, Lee AF, Tsay SH, Ke YR, Kao HL, Wong FH, Tsou AP, Chau YP (2007) Clinicopathological significance of surviving expression in patients with hepatocellular carcinoma. Histopathology 51:204–218

    Article  PubMed  Google Scholar 

  • Chekeni FB, Elliott MR, Sandilos JK, Walk SF, Kinchen JM, Lazarowski ER, Armstrong AJ et al (2010) Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature 467:863–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen GG, Lai PB, Chan PK, Chak EC, Yip JH, Ho RL, Leung BC, Lau WY (2001) Decreased expression of Bid in human hepatocellular carcinoma is related to hepatitis B virus X protein. Eur J Cancer 37:1695–1702

    Article  CAS  PubMed  Google Scholar 

  • Chen XP, He SQ, Wang HP, Zhao YZ, Zhang WG (2003) Expression of TNF-related apoptosis-inducing ligand receptors and antitumor effects of TNF-related apoptosis-inducing ligand in human hepatocellular carcinoma. World J Gastroenterol 9:2433–2440

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cho S, Lee JH, Cho SB, Yoon KW, Park SY, Lee WS, Park CH, Joo YE, Kim HS et al (2010) Epigenetic methylation and expression of caspase 8 and survivin in hepatocellular carcinoma. Pathol Int 60:203–211

    Article  CAS  PubMed  Google Scholar 

  • Councilman WT (1890) Report on etiology and prevention of yellow fever. Public Health Bull 2:151–159

    Google Scholar 

  • Czabotar PE, Colman PM, Huang DC (2009) Bax activation by Bim? Cell Death Differ 16:1187–1191

    Article  CAS  PubMed  Google Scholar 

  • Deng L, Chen N, Li Y, Zheng H, Lei Q (2010) CXCR6/CXCL16 functions a s a regulator in metastasis and progression of cancer. Biochim Biophys Acta 1806:42–49

    CAS  PubMed  Google Scholar 

  • Dickens LS, Powley IR, Hughes MA, MacFarlane M (2012) The ‘complexities’ of life and death: death receptor signalling platforms. Exp Cell Res 318:1269–1277

    Article  CAS  PubMed  Google Scholar 

  • Diez-Roux G, Argilla M, Makarenkova H, Ko K, Lang RA (1999) Macrophages kill capillary cells in G1 phase of the cell cycle during programmed vascular regression. Development 126:2141–2147

    CAS  PubMed  Google Scholar 

  • Duan M, Wang ZC, Wang XY, Shi JY, Yang LX, Ding ZB, Gao Q, Zhou J, Fan J (2015) TREM-1, an inflammatory modulator, is expressed in hepatocellular carcinoma cells and significantly promotes tumor progression. Ann Surg Oncol 22:3121–3129

    Google Scholar 

  • Duprez L, Wirawan E, Vanden Berghe T, Vandenabeele P (2009) Major cell death pathways at a glance. Microbes Infect 11:1050–1062

    Article  CAS  PubMed  Google Scholar 

  • El-Emshaty HM, Saad EA, Toson EA, Abdel Malak CA, Gadelhak NA (2014) Apoptosis and cell proliferation: correlation with BCL-2 and P53 oncoprotein expression in human hepatocellular carcinoma. Hepatogastroenterology 61:1393–1401

    Google Scholar 

  • Elgohary N, Pellegrino R, Neumann O, Elzawahry HM, Saber MM, Zeeneldin AA, Geffers R, Ehemann V et al (2015) Protumorigenic role of Timeless in hepatocellular carcinoma. Int J Oncol 46:597–606

    CAS  PubMed  Google Scholar 

  • Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, Park D et al (2009) Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461:282–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabregat I (2009) Dysregulation of apoptosis in hepatocellular carcinoma cells. World J Gastroenterol 15:513–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fadeel B, Orrenius S, Pervaiz S (2004) Buried alive: a novel approach to cancer treatment. FASEB J 18:1–4

    Article  CAS  PubMed  Google Scholar 

  • Fairbrother WJ, Gordon NC, Humke EW, O’Rourke KM, Starovasnik MA, Yin JP et al (2001) The PYRIN domain: a member of the death domain-fold superfamily. Protein Sci 10:1911–1918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feoktistova M, Geserick P, Kellert B, Dimitrova DP, Langlais C, Hupe M, Cain K, MacFarlane M et al (2011) cIAPs block ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol Cell 43:449–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feoktistova M, Geserick P, Panayotova-Dimitrova D, Leverkus M (2012) Pick your poison: the ripoptosome, a cell death platform regulating apoptosis and necroptosis. Cell Cycle 11:460–467

    Article  CAS  PubMed  Google Scholar 

  • Fields AC, Cotsonis G, Sexton D, Santoianni R, Cohen C (2004) Survivin expression in hepatocellular carcinoma: correlation with proliferation, prognostic parameters, and outcome. Mod Pathol 17:1378–1385

    Article  CAS  PubMed  Google Scholar 

  • Fietta P (2006) Many ways to die: passive and active cell death styles. Riv Biol 99:69–83

    PubMed  Google Scholar 

  • Fingas CD, Bronk SF, Werneburg NW, Mott JL, Guicciardi ME, Cazanave SC, Mertens JC et al (2011) Myofibroblast-derived PDGF-BB promotes Hedgehog survival signaling in cholangiocarcinoma cells. Hepatology 54:2076–2088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fingas CD, Altinbas A, Schlattjan M, Beilfuss A, Sowa JP, Sydor S, Bechmann LP et al (2013) Expression of apoptosis- and vitamin D pathway-related genes in hepatocellular carcinoma. Digestion 87:176–181

    Article  CAS  PubMed  Google Scholar 

  • Fink SL, Cookson BT (2005) Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 73:1907–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flanagan L, Sebastia J, Tuffy LP, Spring A, Lichawska A, Devocelle M, Prehn JH et al (2010) XIAP impairs Smac release from the mitochondria during apoptosis. Cell Death Dis 1:e49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frasch SC, Fernandez-Boyanapalli RF, Berry KZ, Leslie CC, Bonvehtre JV, Murphy RC et al (2011) Signaling via macrophage G2A enhances efferocytosis of dying neutrophils by augmentation of Rac activity. J Biol Chem 286:12108–12122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu DZ, Cheng Y, He H, Liu HY, Liu YF (2014) The fate of Krüppel-like factor 9-positive hepatic carcinoma cells may be determined by the programmed cell death protein 5. Int J Oncol 44:153–160

    CAS  PubMed  Google Scholar 

  • Fujikawa K, Shiraki K, Sugimoto K, Ito T, Yamanaka T, Takase K, Nakao T (2000) Reduced expression of ICE/caspase1 and CPP32/caspase3 in human hepatocellular carcinoma. Anticancer Res 20:1927–1932

    CAS  PubMed  Google Scholar 

  • Fukuzawa K, Takahashi K, Furuta K, Tagaya T, Ishikawa T, Wada K, Omoto Y, Koji T et al (2001) Expression of Fas/Fas ligand (FasL) and its involvement in infiltrating lymphocytes in hepatocellular carcinoma (HCC). J Gastroenterol 36:681–688

    Article  CAS  PubMed  Google Scholar 

  • Fullard JF, Kale A, Baker NE (2009) Clearance of apoptotic corpses. Apoptosis 14:1029–1037

    Article  PubMed  Google Scholar 

  • Galdiero MR, Garlanda C, Jaillon S, Marone G, Mantovani A (2013) Tumor associated macrophages and neutrophils in tumor progression. J Cell Physiol 228:1404–1412

    Article  CAS  PubMed  Google Scholar 

  • Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM et al (2012) Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19:107–120

    Article  CAS  PubMed  Google Scholar 

  • Gao P, Wang R, Shen JJ, Lin F, Wang X, Dong K, Zhang HZ (2008) Hypoxia-inducible enhancer/alpha-fetoprotein promoter-driven RNA interference targeting STK15 suppresses proliferation and induces apoptosis in human hepatocellular carcinoma cells. Cancer Sci 99:2209–2217

    Article  CAS  PubMed  Google Scholar 

  • Gao, Liu 2014. http://www.ncbi.nlm.nih.gov/pubmed/25312821

  • Gay NJ, Gangloff M, O’Neill LA (2011) What the Myddosome structure tells us about the initiation of innate immunity. Trends Immunol 32:104–109

    Article  CAS  PubMed  Google Scholar 

  • Geng L, Chaudhuri A, Talmon G, Wisecarver JL, Are C, Brattain M, Wang J (2014) MicroRNA-192 suppresses liver metastasis of colon cancer. Oncogene 33:5332–5340

    Article  CAS  PubMed  Google Scholar 

  • George J, Motshwene PG, Wang H, Kubarenko AV, Rautanen A, Mills TC, Hill AV et al (2011) Two human MYD88 variants, S34Y and R98C., interfere with MyD88-IRAK4-myddosome assembly. J Biol Chem 286:1341–1353

    Article  CAS  PubMed  Google Scholar 

  • Gibot S (2006) Soluble triggering receptor expressed on myeloid cells and the diagnosis of pneumonia and severe sepsis. Semin Respir Crit Care Med 27:29–33

    Article  PubMed  Google Scholar 

  • Gressner AM (1998) The cell biology of liver fibrogenesis – an imbalance of proliferation, growth arrest and apoptosis of myofibroblasts. Cell Tissue Res 292:447–452

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Nan K, Hu T, Meng J, Hui W, Zhang X, Qin H, Sui C (2010) Prognostic significance of co-expression of nm23 and p57 protein in hepatocellular carcinoma. Hepatol Res 40:1107–1116

    Article  CAS  PubMed  Google Scholar 

  • Guzik K, Potempa J (2008) Friendly fire against neutrophils: proteolytic enzymes confuse the recognition of apoptotic cells by macrophages. Biochimie 90:405–415

    Article  CAS  PubMed  Google Scholar 

  • Guzik K, Brzowska M, Smagur J, Krupa O, Sieprawska M, Travis J, Potempa J (2007) A new insight into phagocytosis of apoptotic cells: proteolytic enzymes divert the recognition and clearance of polymorphonuclear leukocytes by macrophages. Cell Death Differ 14:171–182

    Article  CAS  PubMed  Google Scholar 

  • Hamazaki K, Gochi A, Matsubara N, Mori M, Orita K (1995) Expression of fas antigen and Bcl-2 protein in hepatocellular carcinoma. Acta Med Okayama 49:227–230

    CAS  PubMed  Google Scholar 

  • Hammam O, Mahmoud O, Zahran M, Aly S, Hosny K, Helmy A, Anas A (2012) The role of fas/fas ligand system in the pathogenesis of liver cirrhosis and hepatocellular carcinoma. Hepat Monit 12:e6132

    Google Scholar 

  • Hang HL, Xia Q (2014) Role of BMSCs in liver regeneration and metastasis after hepatectomy. World J Gastroenterol 20:126–132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harnois DM, Que FG, Celli A, LaRusso NF, Gores GJ (1997) Bcl-2 is overexpressed and alters the threshold for apoptosis in a cholangiocarcinoma cell line. Hepatology 26:884–890

    Article  CAS  PubMed  Google Scholar 

  • Hayes AJ, Huang WQ, Mallah J, Yang D, Lippman ME, Li LY (1999) Angiopoietin-1 and its receptor Tie-2 participate in the regulation of capillary-like tubule formation and survival of endothelial cells. Microvasc Res 58:224–237

    Article  CAS  PubMed  Google Scholar 

  • Herzer K, Grosse-Wilde A, Krammer PH, Galle PR, Kanzler S (2008) Transforming growth factor-beta-mediated tumor necrosis factor-related apoptosis-inducing ligand expression and apoptosis in hepatoma cells requires functional cooperation between Smad proteins and activator protein-1. Mol Cancer Res 6:1169–1177

    Article  CAS  PubMed  Google Scholar 

  • Higaki K, Yano H, Kojiro M (1996) Fas antigen expression and its relationship with apoptosis in human hepatocellular carcinoma and noncancerous tissues. Am J Pathol 149:429–437

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hino N, Higashi T, Nouso K, Nakatsukasa H, Tsuji T (1996) Apoptosis and proliferation of human hepatocellular carcinoma. Liver 16:123–129

    Article  CAS  PubMed  Google Scholar 

  • Ho CC, Liao WY, Wang CY, Lu YH, Huang HY, Chen HY, Chan WK, Chen HW, Yang PC (2008) TREM-1 expression in tumor-associated macrophages and clinical outcome in lung cancer. Am J Respir Crit Care Med 177:763–770

    Article  CAS  PubMed  Google Scholar 

  • Hochreiter-Hufford A, Ravichandran KS (2013) Clearing the dead: apoptotic cell sensing, recognition, engulfment, and digestion. Cold Spring Harb Perspect Biol 5:a008748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Höpker K, Hagmann H, Khurshid S, Chen S, Schermer B, Benzing T, Reinhardt HC (2012) Putting the brakes on p53-driven apoptosis. Cell Cycle 11:4122–4128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu et al. 2011. http://www.ncbi.nlm.nih.gov/pubmed/20971978

  • Ikeguchi M, Ueda T, Sakatani T, Hirooka Y, Kaibara N (2002) Expression of survivin messenger RNA correlates with poor prognosis in patients with hepatocellular carcinoma. Diagn Mol Pathol 11:33–40

    Article  PubMed  Google Scholar 

  • Ikeguchi M, Oi K, Hirooka Y, Kaibara N (2004) CD8+ lymphocytes infiltration and apoptosis in hepatocellular carcinoma. Eur J Surg Oncol 30:53–57

    Article  CAS  PubMed  Google Scholar 

  • Imre G, Larisch S, Rajalingam K (2011) Ripoptosome: a novel IAP-regulated cell death-signalling platform. J Mol Cell Biol 3:324–326

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Takeda T, Umeshita K, Sakon M, Wakasa K, Matsuura N, Monden M (1998) Fas antigen expression in hepatocellular carcinoma tissues. Oncol Rep 5:41–44

    CAS  PubMed  Google Scholar 

  • Ito Y, Monden M, Takeda T, Eguchi H, Umeshita K, Nagano H, Nakamori S, Dono K et al (2000a) The status of Fas and Fas ligand expression can predict recurrence of hepatocellular carcinoma. Br J Cancer 82:1211–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito Y, Takeda T, Sasaki Y, Sakon M, Yamada T, Ishiguro S, Imaoka S, Tsujimoto M et al (2000b) Expression of Fas and Fas ligand reflects the biological characteristics but not the status of apoptosis of intrahepatic cholangiocellular carcinoma. Int J Mol Med 6:581–586

    CAS  PubMed  Google Scholar 

  • Ito Y, Takeda T, Sasaki Y, Sakon M, Monden M, Yamada T, Ishiguro S, Imaoka S et al (2000c) Bcl-2 expression in cholangiocellular carcinoma is inversely correlated with biologically aggressive phenotypes. Oncology 59:63–67

    Article  CAS  PubMed  Google Scholar 

  • Jang TH, Park HH (2013) PIDD mediates and stabilizes the interaction between RAIDD and caspase-2 for the PIDDosome assembly. BMB Rep 46:471–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang TH, Seo EK, Park HH (2013) Analysis of mutation effect on PIDDosome core complex. Appl Biochem Biotechnol 170:210–218

    Article  CAS  PubMed  Google Scholar 

  • Janssens S, Tinel A (2012) The PIDDosome. DNA-damage-induced apoptosis and beyond. Cell Death Differ 19:13–20

    Article  CAS  PubMed  Google Scholar 

  • Javle MM, Tan D, Yu J, LeVea CM, Li F, Kuvshinoff BW, Gibbs JF (2004) Nuclear survivin expression predicts poor outcome in cholangiocarcinoma. Hepatogastroenterology 51:1653–1657

    PubMed  Google Scholar 

  • Jhala NC, Vickers SM, Argani P, McDonald JM (2005) Regulators of apoptosis in cholangiocarcinoma. Arch Pathol Lab Med 129:481–486

    CAS  PubMed  Google Scholar 

  • Jimenez B, Volpert OV, Crawford SE, Febbraio M, Silverstein RL, Bouck N (2000) Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med 6:41–48

    Article  CAS  PubMed  Google Scholar 

  • Kannangai R, Wang J, Liu QZ, Sahin F, Torbenson M (2005) Survivin overexpression in hepatocellular carcinoma is associated with p53 dysregulation. Int J Gastrointest Cancer 35:53–60

    Article  CAS  PubMed  Google Scholar 

  • Karagiannis GS, Poutahidis T, Erdman SE, Kirsch R, Riddell RH, Diamandis EP (2012) Cancer-associated fibroblasts drive the progression of metastasis through both paracrine and mechanical pressure on cancer tissue. Mol Cancer Res 10:1403–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karamitopoulou E, Cioccari L, Jakob S, Vallan C, Schaffner T, Zimmermann A, Brunner T (2007) Active caspase 3 and DNA fragmentation as markers for apoptotic cell death in primary and metastatic liver tumours. Pathology 39:558–564

    Article  CAS  PubMed  Google Scholar 

  • Kebers F, Lewalle JM, Desreux J, Munaut C, Devy L, Foidart JM, Noel A (1998) Induction of endothelial cell apoptosis by solid tumor cells. Exp Cell Res 240:197–205

    Article  CAS  PubMed  Google Scholar 

  • Kee JY, Ito A, Hojo S, Hashimoto I, Igarashi Y, Tsukada K, Irimura T, Shibahara N, Nakayama T, Yoshie O, Sakurai H et al (2013) Chemokine CXCL16 suppresses liver metastasis of colorectal cancer via augmentation of tumor-infiltrating natural killer T cells in a murine model. Oncol Rep 29:975–982

    CAS  PubMed  Google Scholar 

  • Kee JY, Ito A, Hojo S, Hashimoto I, Igarashi Y, Tsuneyama K, Tsukada K, Irimura T, Shibahara N, Takasaki I, Inujima A et al (2014) CXCL16 suppresses liver metastasis of colorectal cancer by promoting TNF-α-induced apoptosis by tumor-associated macrophages. BMC Cancer 14:949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kersse K, Verspurten J, Vanden Berghe T, Vandenabeele P (2011) The death-fold superfamily of homotypic interaction motifs. Trends Biochem Sci 36:541–552

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Ricci MS, El-Deiry WS (2008) Mcl-1. a gateway to TRAIL sensitization. Cancer Res 68:2062–2064

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Bae DJ, Hong M, Park SY, Kim IS (2010) The conserved histidine in epidermal growth factor-like domains of stabilin-2 modulates pH-dependent recognition of phosphatidylserine in apoptotic cells. Int J Biochem Cell Biol 42:1154–1163

    Article  CAS  PubMed  Google Scholar 

  • Kim EY, Ryu JH, Kim AK (2013) CAPE promotes TRAIL-induced apoptosis through the upregulation of TRAIL receptors via activation of p38 and suppression of JNK in SK-Hep1 hepatocellular carcinoma cells. Int J Oncol 43:1291–1300

    CAS  PubMed  Google Scholar 

  • Kiss RS, Ma Z, Nakada-Tsukui K, Brugnera E, Vassilou G, McBride HM, Ravichandran KS, Marcel YL (2006) The lipoprotein receptor-related protein-1 (LRP) adapter protein GULP mediates trafficking of the LRP ligand prosaposin, leading to sphingolipid and free cholesterol accumulation in late endosomes and impaired efflux. J Biol Chem 281:12081–12092

    Article  CAS  PubMed  Google Scholar 

  • Koizumi K, Hojo S, Akashi T, Yasumoto K, Saiki I (2007) Chemokine receptors in cancer metastasis and cancer cell-derived chemokines in host immune response. Cancer Sci 98:1652–1658

    Article  CAS  PubMed  Google Scholar 

  • Kong D, Zhao L, Du Y, He P, Zou Y, Yang L, Sun L, Wang H, Xu D, Meng X, Sun X (2014) Overexpression of GRIM-19, a mitochondrial respiratory chain complex I protein, suppresses hepatocellular carcinoma growth. Int J Clin Exp Pathol 7:7497–7507

    PubMed  PubMed Central  Google Scholar 

  • Koschny R, Brost S, Hinz U, Sykora J, Batke EM, Singer S, Breuhahn K, Stremmel W et al (2013) Cytosolic and nuclear caspase-8 opposite impact on survival after liver resection for hepatocellular carcinoma. BMC Cancer 13:532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kountouras J, Zavos C, Chatzopoulos D (2003) Apoptosis in hepatocellular carcinoma. Hepatogastroenterology 50:242–249

    CAS  PubMed  Google Scholar 

  • Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV et al (2009) Classification of cell death: recommendations of the Nomenclature Committee on cell Death 2009. Cell Death Differ 16:3–11

    Article  CAS  PubMed  Google Scholar 

  • Kuang DM, Peng C, Zhao Q, Wu Y, Chen MS, Zheng L (2010) Activated monocytes in peritumoral stroma of hepatocellular carcinoma promote expansion of memory T helper 17 cells. Hepatology 51:154–164

    Article  CAS  PubMed  Google Scholar 

  • Kuang DM, Zhao Q, Wu Y, Peng C, Wang J, Xu Z, Yin XY, Zheng L (2011) Peritumoral neutrophils link inflammatory response to disease progression by fostering angiogenesis in hepatocellular carcinoma. J Hepatol 54:948–955

    Article  CAS  PubMed  Google Scholar 

  • Kubo K, Matsuzaki Y, Okazaki M, Kato A, Kobayashi N, Okita K (1998) The Fas system is not significantly involved in apoptosis in human hepatocellular carcinoma. Liver 18:117–123

    Article  CAS  PubMed  Google Scholar 

  • Kykalos S, Dimitroulis D, Ntikoudi E, Karayiannakis A (2013) The clinical significance of apoptosis and M30 expression in colonic cancer progression. J Recept Signal Transduct Res 33:255–259

    Article  CAS  PubMed  Google Scholar 

  • Kzhyshkowska J (2010) Multifunctional receptor stabilin-1 in homeostasis and disease. Sci World J 10:2039–2053

    Article  CAS  Google Scholar 

  • Langley RE, Bump EA, Quartuccio SG, Medeiros D, Braunhut SJ (1997) Radiation-induced apoptosis in microvascular endothelial cells. Br J Cancer 75:666–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larochelle S, Langlois C, Thibault I, Lopez-Vallé CA, Roy M, Moulin V (2004) Sensitivity of myofibroblasts to H2O2-mediated apoptosis and their antioxidant cell network. J Cell Physiol 200:263–271

    Article  CAS  PubMed  Google Scholar 

  • Lavrik IN, Krammer PH (2012) Regulation of CD95/Fas signaling at the DISC. Cell Death Differ 19:36–41

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Shin MS, Lee HS, Bae JH, Lee HK, Kim HS, Kim SY, Jang JJ, Joo M et al (2001) Expression of Fas and Fas-related molecules in human hepatocellular carcinoma. Hum Pathol 32:250–256

    Article  CAS  PubMed  Google Scholar 

  • Lee WC, Yu MC, Chen MF (2004) Prognostic impact of Fas ligand on hepatocellular carcinoma after hepatectomy. World J Surg 28:792–796

    Article  PubMed  Google Scholar 

  • Lee SJ, So IS, Park SY, Kim IS (2008) Thymosin beta4 is involved in stabilin-2-mediated apoptotic cell engulfment. FEBS Lett 582:2161–2166

    Article  CAS  PubMed  Google Scholar 

  • Lee WS, Park YL, Kim N, Oh HH, Son DJ, Kim MY, Oak CY, Chung CY, Park HC, Kim JS, Myung DS, Cho SB et al (2014) Myeloid cell leukemia-1 is associated with tumor progression by inhibiting apoptosis and enhancing angiogenesis in colorectal cancer. Am J Cancer Res 5:101–113

    PubMed  PubMed Central  Google Scholar 

  • Leers MP, Björklund V, Björklund B, Jörnvall H, Nap M (2002) An immunohistochemical study of the clearance of apoptotic cellular fragments. Cell Mol Life Sci 59:1358–1365

    Article  CAS  PubMed  Google Scholar 

  • Lemke G (2013) Biology of the TAM receptors. Cold Spring Harb Perspect Biol 5:a009076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li ZY, Zou SQ (2001) Fas counterattack in cholangiocarcinoma: a mechanism for immune evasion in human hilar cholangiocarcinomas. World J Gastroenterol 7:860–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Oteiza A, Sorensen KK, McCourt P, Olsen R, Smedsrod B, Svistounov D (2011) Role of liver sinusoidal endothelial cells and stabilins in elimination of oxidized density lipoproteins. Am J Physiol Gastrointest Liver Physiol 300:G71–G81

    Article  CAS  PubMed  Google Scholar 

  • Li G, Chang H, Zhai YP, Xu W (2013) Targeted silencing of inhibitors of apoptosis proteins with siRNAs: a potential anti-cancer strategy for hepatocellular carcinoma. Asian Pac J Cancer Prev 14:4943–4952

    Article  PubMed  Google Scholar 

  • Li D, Liu Y, Peng JJ, Tan Y, Zou Q, Song XF, Du M, Yang ZH, Tan Y, Zhou JJ, Xu T, Fu ZQ, Feng JQ et al (2015a) MicroRNA1 promotes apoptosis of hepatocarcinoma cells by targeting apoptosis inhibitor-5 (API-5). FEBS Lett 589:68–76

    Article  CAS  PubMed  Google Scholar 

  • Li XF, Chen DP, Ouyang FZ, Chen MM, Wu Y, Kuang DM, Zheng L (2015b) Increased autophagy sustains the survival and pro-tumourigenic effects of neutrophils in human hepatocellular carcinoma. J Hepatol 62:131–139

    Article  CAS  PubMed  Google Scholar 

  • Liao R, Sun TW, Yi Y, Wu H, Li YW, Wang JX, Zhou J, Shi YH, Cheng YF, Qiu SJ, Fan J (2012) Expression of TREM-1 in hepatic stellate cells and prognostic value in hepatitis B-related hepatocellular carcinoma. Cancer Sci 103:984–992

    Article  CAS  PubMed  Google Scholar 

  • Lin SC, Lo YC, Wu H (2010) Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature 465:885–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin et al. 2014. http://www.ncbi.nlm.nih.gov/pubmed/25425543

  • Liu W, Lin YT, Yan XL, Ding YL, Wu YL, Chen WN, Lin X (2014a) Hepatitis B virus core protein inhibits Fas-mediated apoptosis of hepatoma cells via regulation of mFas/FasL and sFas expression. FASEB J pii:fj. 14–263822

    Google Scholar 

  • Liu N, Jiao T, Huang Y, Liu W, Li Z, Ye X (2014b) HBV regulates apoptosis and tumorigenesis through miR15a-Smad7-TGF-β pathway. J Virol pii:JVI.02784–14

    Google Scholar 

  • Mace PD, Riedl SJ (2010) Molecular cell death platforms and assemblies. Curr Opin Cell Biol 22:828–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacFarlane M (2003) TRAIL-induced signalling and apoptosis. Toxicol Lett 139:89–97

    Article  CAS  PubMed  Google Scholar 

  • Maemura K, Yoshikawa H, Yokoyama K, Ueno T, Kurose H, Uchiyama K, Otsuki Y (2013) Delta-like 3 is silenced by methylation and induces apoptosis in human hepatocellular carcinoma. Int J Oncol 42:817–822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mann B, Gratchev A, Böhm C, Hanski ML, Foss HD, Demel G, Trojanek B, Schmidt-Wolf I, Stein H, Riecken EO et al (1999) FasL is more frequently expressed in liver metastases of colorectal cancer than in matched primary carcinomas. Br J Cancer 79:1262–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manzl C, Peintner L, Krumschnabel G, Bock F, Labi V, Drach M, Newbold A, Johnstone R et al (2012) PIDDosome-independent tumor suppression by caspase-2. Cell Death Differ 19:1722–1732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez MM, Reif RD, Pappas D (2010) Detection of apoptosis: a review of conventional and novel techniques. Anal Methods 2:996–1004

    Article  CAS  Google Scholar 

  • Maxwell SA, Capp D, Acosta SA (1997) Telomerase activity in immortalized endothelial cells undergoing p53-mediated apoptosis. Biochem Biophys Res Commun 241:642–645

    Article  CAS  PubMed  Google Scholar 

  • McCoy F, Eckard L, Nutt LK (2012) Janus-faced PIDD: a sensor for DNA damage-induced cell death or survival ? Mol. Cell 47:667–668

    CAS  Google Scholar 

  • Mérino D, Giam M, Hughes PD, Siggs OM, Heger K, O’Reilly LA, Adams JM, Strasser A et al (2009) The role of BH3-only protein Bim extends beyond inhibiting Bcl-2-like prosurvival proteins. J Cell Biol 186:355–362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mertens JC, Fingas CD, Christensen JD, Smoot RL, Bronk SF, Werneburg NW et al (2013) Therapeutic effects of deleting cancer-associated fibroblasts in cholangiocarcinoma. Cancer Res 73:897–907

    Article  CAS  PubMed  Google Scholar 

  • Miao HL, Lei CJ, Qiu ZD, Liu ZK, Li R, Bao ST, Li MY (2014) MicroRNA-520c-3p inhibits hepatocellular carcinoma cell proliferation and invasion through induction of cell apoptosis by targeting glypican-3. Hepatol Res 44:338–348

    Article  CAS  PubMed  Google Scholar 

  • Mille F, Thibert C, Fombonne J, Rama N, Guix C, Hayashi H, Corset V, Reed JC et al (2009) The Patched dependence receptor triggers apoptosis through a DRAL-caspase-9 complex. Nat Cell Biol 11:739–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mondal S, Ghosh-Roy S, Loison F, Li Y, Jia Y, Harris C, Williams DA, Luo HR (2011) PTEN negatively regulates engulfment of apoptotic cells by modulating activation of RAC GTPase. J Immunol 187:5783–5794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon WS, Tarnawski AS (2003) Nuclear translocation of survivin in hepatocellular carcinoma: a key to cancer cell growth? Hum Pathol 34:1119–1126

    Article  CAS  PubMed  Google Scholar 

  • Motshwene PG, Moncrieffe MC, Grossmann JG, Kao C, Ayaluru M, Sanderock AM et al (2009) An oligomeric signaling platform formed by the Toll-like receptor signal transducers MyD88 and IRAK-4. J Biol Chem 284:25404–25411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakajima W, Tanaka N (2011) Noxa induces apoptosis in oncogene-expressing cells through catch-and-release mechanism operating between Puma and Mcl-1. Biochem Biophys Res Commun 413:643–648

    Article  CAS  PubMed  Google Scholar 

  • Natoli G, Ianni A, Costanzo A, De Petrillo G, Ilari I, Chirillo P, Balsano C, Levrero M (1995) Resistance to Fas-mediated apoptosis in human hepatoma cells. Oncogene 11:1157–1164

    CAS  PubMed  Google Scholar 

  • Nguyen KQ, Tsou WI, Kotenko S, Birge RB (2013) TAM receptors in apoptotic cell clearance, autoimmunity, and cancer. Autoimmunity 46:294–297

    Article  CAS  PubMed  Google Scholar 

  • Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N (2013) Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta 1833:3448–3459

    Article  CAS  PubMed  Google Scholar 

  • Notarbartolo M, Cervello M, Giannitrapani L, Meli M, Poma P, Dusonchet L, Montalto G, D’Alessandro N (2004) Expression of IAPs and alternative splice variants in hepatocellular carcinoma tissues and cells. Ann N Y Acad Sci 1028:289–293

    Article  CAS  PubMed  Google Scholar 

  • Okano H, Shiraki K, Inoue H, Kawakita T, Saitou Y, Enokimura N, Yamamoto N, Sugimoto K et al (2003) Over-expression of Smac promotes TRAIL-induced cell death in human hepatocellular carcinoma. Int J Mol Med 12:25–28

    CAS  PubMed  Google Scholar 

  • Okaro AC, Deery AR, Hutchins RR, Davidson BR (2001) The expression of antiapoptotic proteins Bcl-2, Bcl-X(L), and Mcl-1 in benign, dysplastic, and malignant biliary epithelium. J Clin Pathol 54:927–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Op de Beeck K, Van Camp G, Thys S, Cools N, Callebaut I, Vrijens K, Van Nassauw L et al (2011) The DFNA5 gene, responsible for hearing loss and involved in cancer, encodes a novel apoptosis-inducing protein. Eur J Hum Genet 19:965–973

    Article  CAS  PubMed  Google Scholar 

  • Ormsby T, Schlecker E, Ferdin J, Tessarz AS, Angelisova P, Köprülü AD, Borte M, Warnatz K, Schulze I, Ellmeier W et al (2011) Btk is a positive regulator in the TREM-1/DAP12 signaling pathway. Blood 118:936–945

    Article  CAS  PubMed  Google Scholar 

  • Otera, Mihara 2012. http://www.ncbi.nlm.nih.gov/pubmed/22536251

  • Ozaki I, Hamajima H, Matsuhashi S, Mizuta T (2011) Regulation of TGF-b1-induced pro-apoptotic signaling by growth factor receptors and extracellular matrix receptor integrins in the liver. Front Physiol 2:78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paiva C, Oshima CT, Lanzoni VP, Forones NM (2002) Apoptosis, PCNA and p53 in hepatocellular carcinoma. Hepatogastroenterology 49:1058–1061

    PubMed  Google Scholar 

  • Palani S, Maksimow M, Miiluniemi M, Auvinen K, Jalkanen S, Salmi M (2011) Stabilin-1/CLEVER-1 a type 2 macrophage marker, is an adhesion and scavenging molecule on human placental macrophages. Eur J Immunol 41:2052–2063

    Article  CAS  PubMed  Google Scholar 

  • Pan G, Vickers SM, Pickens A, Phillips JO, Ying W, Thompson JA, Siegal GP, McDonald JM (1999) Apoptosis and tumorigenesis in human cholangiocarcinoma cells. Involvement of Fas/APO-1 (CD95) and calmodulin. Am J Pathol 155:193–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan Z, Chen C, Long H, Lei C, Tang G, Li L, Feng J, Chen F (2013) Overexpression of GPC3 inhibits hepatocellular carcinoma cell proliferation and invasion through induction of apoptosis. Mol Med Rep 7:969–974

    CAS  PubMed  Google Scholar 

  • Park HH (2012) Structural features of caspase-activating complexes. Int J Mol Sci 13:4807–4818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park SY, Kang KB, Thapa N, Kim SY, Lee SJ, Kim IS (2008) Requirement of adaptor protein GULP during stabilin-2-mediated cell corpse engulfment. J Biol Chem 283:10593–10600

    Article  CAS  PubMed  Google Scholar 

  • Park SY, Jung MY, Lee SJ, Kang KB, Gratchev A, Riabov V, Kzhyshkowska J, Kim IS (2009) Stabilin-1 mediates phosphatidylserine-dependent clearance of cell corpses in alternatively activated macrophages. J Cell Sci 122:3365–3373

    Article  CAS  PubMed  Google Scholar 

  • Park SY, Kim SY, Kang KB, Kim IS (2010) Adaptor protein GULP is involved in stabilin-1-mediated phagocytosis. Biochem Biophys Res Commun 398:467–472

    Article  CAS  PubMed  Google Scholar 

  • Peeters CF, de Waal RM, Wobbes T, Westphal JR, Ruers TJ (2006) Outgrowth of human liver metastases after resection of the primary colorectal tumor: a shift in the balance between apoptosis and proliferation. Int J Cancer 119:1249–1253

    Article  CAS  PubMed  Google Scholar 

  • Persad R, Liu C, Wu TT, Houlihan PS, Hamilton SR, Diehl AM, Rashid A (2004) Overexpression of caspase-3 in hepatocellular carcinomas. Mod Pathol 17:861–867

    Article  CAS  PubMed  Google Scholar 

  • Pontisso P (2014) Role of SERPINB3 in hepatocellular carcinoma. Ann Hepatol 13:722–727

    CAS  PubMed  Google Scholar 

  • Preaux AM, D’Ortho MP, Bralet MP, Laperche Y, Mavier P (2002) Apoptosis of human hepatic myofibroblasts promotes activation of matrix metalloproteinase-2. Hepatology 36:615–622

    Article  CAS  PubMed  Google Scholar 

  • Qi JH, Anand-Apte B (2015) Tissue inhibitor of metalloproteinase-3 (TIMP3) promotes endothelial apoptosis via a caspase-independent mechanism. Apoptosis 20:523–534

    Google Scholar 

  • Ravichandran KS, Lorenz U (2007) Engulfment of apoptotic cells: signals for a good meal. Nat Rev Immunol 7:964–974

    Article  CAS  PubMed  Google Scholar 

  • Rawat S, Clippinger AJ, Bouchard MJ (2012) Modulation of apoptotic signaling by the hepatitis B virus X protein. Viruses 4:2945–2972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Razon MJ, Kräling BM, Mulliken JB, Bischoff J (1998) Increased apoptosis coincides with onset of involution in infantile hemangioma. Microcirculation 5:189–195

    Article  CAS  PubMed  Google Scholar 

  • Resch U, Schichl YM, Winsauer G, Gudi R, Prasad K, de Martin R (2009) Siva1 is a XIAP-interacting protein that balances NFkappaB and NK signaling to promote apoptosis. J Cell Sci 122:2651–2661

    Article  CAS  PubMed  Google Scholar 

  • Reubold TF, Eschenburg S (2012) A molecular view on signal transduction by the apoptosome. Cell Signal 24:1420–1425

    Article  CAS  PubMed  Google Scholar 

  • Rizvi S, Mertens JC, Bronk SF, Hirsova P, Dai H, Roberts LR, Kaufmann SH, Gores GJ (2014) Platelet-derived growth factor primes cancer-associated fibroblasts for apoptosis. J Biol Chem 289:22835–22849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rocha Lima H (1912) Zur pathologischen Anatomie des Gelbfiebers. Verh Dtsch Ges Pathol 15:163–182

    Google Scholar 

  • Rong GH, Yang GX, Ando Y, Zhang W, He XS, Leung PS, Coppel RL, Ansari AA et al (2013) Human intrahepatic biliary epithelial cells engulf blebs from their apoptotic peers. Clin Exp Immunol 172:95–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roskams T, Libbrecht L, Van Damme B, Desmet V (2000) Fas and Fas ligand: strong co-expression in human hepatocytes surrounding hepatocellular carcinoma; can cancer induce suicide in peritumoral cells? J Pathol 191:150–153

    Article  CAS  PubMed  Google Scholar 

  • Saile B, Knittel T, Matthes N, Schott P, Ramadori G (1997) CD95/CD95L-mediated apoptosis of the hepatic stellate cell. A mechanism terminating uncontrolled hepatic stellate cell proliferation during hepatic tissue repair. Am J Pathol 151:1265–1272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sandilos JK, Bayliss DA (2012) Physiological mechanisms for the modulation of pannexin 1 channel activity. J Physiol 590:6257–6266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saraste A (1999) Morphologic criteria and detection of apoptosis. Herz 24:189–195

    Article  CAS  PubMed  Google Scholar 

  • Saraste A, Pulkki K (2000) Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res 45:528–537

    Article  CAS  PubMed  Google Scholar 

  • Sato F, Nagata C, Liu Y, Suzuki T, Kondo J, Morohashi S, Imaizumi T, Kato Y, Kijima H (2009) PERIOD1 is an anti-apoptotic factor in human pancreatic and hepatic cancer cells. J Biochem 146:833–838

    Article  CAS  PubMed  Google Scholar 

  • Schleich K, Krammer PH, Lavrik IN (2013) The chains of death: a new view on caspase-8 activation at the DISC. Cell Cycle 12:193–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seong J, Cho JH, Yang WI, Chung EJ, Kim NK (2004) Apoptosis and proliferation in paired primary colorectal adenocarcinomas and liver metastases. Yonsei Med J 45:187–192

    Article  PubMed  Google Scholar 

  • Shaposhinikov D, Descot A, Schilling J, Posern G (2012) Myocardin-related transcription factor A regulates expression of Bok and Noxa and is involved in apoptotic signalling. Cell Cycle 11:141–150

    Article  CAS  Google Scholar 

  • Shen YC, Hu FC, Jeng YM, Chang YT, Lin ZZ, Chang MC, Hsu C, Cheng AL (2009) Nuclear overexpression of mitotic regulatory proteins in biliary tract cancer: correlation with clinicopathologic features and patient survival. Cancer Epidemiol Biomarkers Prev 18:417–423

    Article  CAS  PubMed  Google Scholar 

  • Shi M, Yan SG, Xie ST, Wang HN (2008) Tip30-induced apoptosis requires translocation of Bax and involves mitochondrial release of cytochrome c and Smac/DIABLO in hepatocellular carcinoma cells. Biochim Biophys Acta 1783:263–274

    Article  CAS  PubMed  Google Scholar 

  • Shimoda HK, Shide K, Kameda T, Matsunaga T, Shimoda K (2010) Tyrosine kinase 2 interacts with the proapoptotic protein Shiva-1 and augments its apoptotic functions. Biochem Biophys Res Commun 400:252–257

    Article  CAS  PubMed  Google Scholar 

  • Shimonishi T, Isse K, Shibata F, Aburatani I, Tsuneyama K, Sabit H, Harada K, Miyazaki K et al (2000) Up-regulation of fas ligand at early stages and down-regulation of Fas at progressed stages of intrahepatic cholangiocarcinoma reflect evasion from immune surveillance. Hepatology 32:761–769

    Article  CAS  PubMed  Google Scholar 

  • Shin EC, Shin JS, Park JH, Kim JJ, Kim H, Kim SJ (1998) Expression of Fas-related genes in human hepatocellular carcinomas. Cancer Lett 134:155–162

    Article  CAS  PubMed  Google Scholar 

  • Shin EC, Shin JS, Park JH, Kim H, Kim SJ (1999) Expression of fas ligand in human hepatoma cell lines: role of hepatitis-B virus X (HBX) in induction of Fas ligand. Int J Cancer 82:587–591

    Article  CAS  PubMed  Google Scholar 

  • Shin EC, Seong YR, Kim CH, Ahn YS, Kim K, Kim SJ, Hong SS, Park JH (2002) Human hepatocellular carcinoma cells resist to TRAIL-induced apoptosis, and the resistance is abolished by cisplatin. Exp Mol Med 34:114–122

    Article  CAS  PubMed  Google Scholar 

  • Shirabe K, Mano Y, Muto J, Matono R, Motomura T, Toshima T, Takeishi K, Uchiyama H, Yoshizumi T, Taketomi A et al (2012) Role of tumor-associated macrophages in the progression of hepatocellular carcinoma. Surg Today 42:1–7

    Article  CAS  PubMed  Google Scholar 

  • Shiraki K, Yamanaka T, Inoue H, Kawakita T, Enokimura N, Okano H, Sugimoto K et al (2005) Expression of TNF-related apoptosis-inducing ligand in human hepatocellular carcinoma. Int J Oncol 26:1273–1281

    CAS  PubMed  Google Scholar 

  • Shklyar B, Levy-Adam F, Mishnaevski K, Kurant E (2013) Caspase activity is required for engulfment of apoptotic cells. Mol Cell Biol 33:3191–3201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shu G, Xie B, Ren F, Liu DC, Zhou J, Li Q, Chen J, Yuan L, Zhou J (2013) Restoration of klotho expression induces apoptosis and autophagy in hepatocellular carcinoma cells. Cell Oncol (Dordr) 36:121–129

    Article  CAS  Google Scholar 

  • Sirach E, Bureau C, Péron JM, Paradayol L, Vinel JP, Buscail L, Cordeiler P (2007) KLF6 transcription factor protects hepatocellular carcinoma-derived cells from apoptosis. Cell Death Differ 14:1202–1210

    Article  CAS  PubMed  Google Scholar 

  • Sirica AE (2011) The role of cancer-associated myofibroblasts in intrahepatic cholangiocarcinoma. Nat Rev Gastroenterol Hepatol 9:44–54

    Article  PubMed  CAS  Google Scholar 

  • Stilo R, Leonardi A, Formisano L, Di Jeso B, Vito P, Liguoro D (2002) TUCAN/CARDINAL and DRAL participate in a common pathway for modulation of NF-kappaB activation. FEBS Lett 521:165–169

    Article  CAS  PubMed  Google Scholar 

  • Su HP, Nakada-Tsukui K, Tosello-Trampont AC, Li Y, Bu G, Henson PM, Ravichandran KS (2002) Interaction of CED-6/GULP, an adapter protein involved in engulfment of apoptotic cells with CED-1 and CD91/low density lipoprotein receptor-related protein (LRP). J Biol Chem 277:11772–11779

    Article  CAS  PubMed  Google Scholar 

  • Sullivan CS, Scheib JL, Ma Z, Dang RP, Schafer JM, Hickman FE, Brodsky FM et al (2014) The adaptor protein GULP promotes Jedi-1-mediated phagocytosis through a clathrin-dependent mechanism. Mol Biol Cell 25:1925–1936

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun BH, Zhao XP, Wang BJ, Yang DL, Hao LJ (2000) FADD and TRADD expression and apoptosis in primary hepatocellular carcinoma. World J Gastroenterol 6:223–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun GG, Lu YF, Cheng YJ, Yang CR, Liu Q, Jing SW, Han XC (2014) Expression of BTG1 in hepatocellular carcinoma and its correlation with cell cycles, cell apoptosis, and cell metastasis. Tumour Biol 35:11771–11779

    Article  CAS  PubMed  Google Scholar 

  • Taimr P, Higuchi H, Kocova E, Rippe RA, Friedman S, Gores GJ (2003) Activated stellate cells express the TRAIL receptor-2/death receptor-5 and undergo TRAIL-mediated apoptosis. Hepatology 37:87–95

    Article  CAS  PubMed  Google Scholar 

  • Tanaka S, Sugimachi K, Shirabe K, Shimada M, Wands JR (2000) Expression and antitumor effects of TRAIL in human cholangiocarcinoma. Hepatology 32:523–527

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Xue R, Weng S, Wu J, Fang Y, Wang Y, Ji L, Hu T, Liu T, Huang X, Chen S, Shen X, Zhang S et al (2015) BIRC6 promotes hepatocellular carcinogenesis: interaction of BIRC6 with p53 facilitating p53 degradation. Int J Cancer 136:E475–E487

    Article  CAS  PubMed  Google Scholar 

  • Tatebe S, Ishida M, Kasagi N, Tsujitani S, Kaibara N, Ito H (1996) Apoptosis occurs more frequently in metastatic foci than in primary lesions of human colorectal carcinomas: analysis by terminal-deoxynucleotidyl-transferase-mediated dUTP-biotin nick end labeling. Int J Cancer 65:173–177

    Article  CAS  PubMed  Google Scholar 

  • Tenev T, Bianchi K, Darding M, Broemer M, Langlais C, Wallberg F, Zachariou A, Lopez J et al (2011) The ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IPAs. Mol Cell 43:432–448

    Article  CAS  PubMed  Google Scholar 

  • Terada T, Nakanuma Y (1996) Expression of apoptosis, proliferating cell nuclear antigen, and apoptosis-related antigens (bcl-2, c-myc, Fas, Lewis(y) and p53) in human cholangiocarcinomas and hepatocellular carcinomas. Pathol Int 46:764–770

    Article  CAS  PubMed  Google Scholar 

  • Tessarz AS, Cerwenka A (2008) The TREM-1/DAP12 pathway. Immunol Lett 116:111–116

    Article  CAS  PubMed  Google Scholar 

  • Thirunavukkarasu C, Watkins S, Harvey SA, Gandhi CR (2004) Superoxide-induced apoptosis of activated rat hepatic stellate cells. J Hepatol 41:567–575

    Article  CAS  PubMed  Google Scholar 

  • Thorburn A (2004) Death receptor-induced cell killing. Cell Signal 16:139–144

    Article  CAS  PubMed  Google Scholar 

  • Tinel A, Tschopp J (2004) The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science 304:843–846

    Article  CAS  PubMed  Google Scholar 

  • Toda S, Hanayama R, Nagata S (2012) Two-step engulfment of apoptotic cells. Mol Cell Biol 32:118–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran J, Rak J, Sheehan C, Saibil SD, LaCasse E, Korneluk RG, Kerbel RS (1999) Marked induction of the IAP family antiapoptotic proteins survivin and XIAP by VEGF in vascular endothelial cells. Biochem Biophys Res Commun 264:781–788

    Article  CAS  PubMed  Google Scholar 

  • Uesugi K, Hiasa Y, Tokumoto Y, Mashiba T, Koizumi Y, Hirooka M, Abe M, Matsuura B et al (2013) Wilms’ tumor 1 gene modulates Fas-related death signals and anti-apoptotic functions in hepatocellular carcinoma. J Gastroenterol 48:1069–1080

    Article  CAS  PubMed  Google Scholar 

  • Vakifahmetoglu-Norberg H, Norberg E, Perdomo AB, Olsson M, Ciccosanti F, Orrenius S et al (2013) Caspase-2 promotes cytoskeleton protein degradation during apoptotic cell death. Cell Death Dis 4:e940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valentino T, Palmieri D, Vitiello M, Pierantoni GM, Fusco A, Fedele M (2013) PATZ1 interacts with p53 and regulates expression of p53-target genes enhancing apoptosis or cell survival based on the cellular context. Cell Death Dis 4:e963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CJ, Tang L, Shen DW, Wang C, Yuan QY, Gao W, Wang YK, Xu RH, Zhang H (2013a) The expression and regulation of DFNA5 in human hepatocellular carcinoma DFNA5 in hepatocellular carcinoma. Mol Biol Rep 40:6525–6531

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Yang C, Mao K, Chen S, Meng G, Sun B (2013b) Cellular localization of NLRP3 inflammasome. Protein Cell 4:425–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe et al. 2004. http://www.ncbi.nlm.nih.gov/pubmed/15179366

  • Wensveen FM, Derks IA, van Gisbergen KP, de Bruin AM, Meijers JC, Yigittop H et al (2011) BH3-only protein Noxa regulates apoptosis in activated B cells and controls high-affinity antibody formation. Blood 119:1440–1449

    Article  PubMed  CAS  Google Scholar 

  • Willingham MC (1999) Cytochemical methods for the detection of apoptosis. J Histochem Cytochem 47:1101–1109

    Article  CAS  PubMed  Google Scholar 

  • Willis SN, Fletcher JI, Kaufmann T, van Delft MF, Chen L, Czabotar PE, Ierino H et al (2007) Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 315:856–859

    Article  CAS  PubMed  Google Scholar 

  • Wong CM, Lee JM, Ching YP, Jin DY, Ng IO (2003) Genetic and epigenetic alterations of DLC-1 gene in hepatocellular carcinoma. Cancer Res 63:7646–7651

    CAS  PubMed  Google Scholar 

  • Wu Y, Zhao Q, Peng C, Sun L, Li XF, Kuang DM (2011) Neutrophils promote motility of cancer cells via a hyaluronan-mediated TLR4/PI3K activation loop. J Pathol 225:438–447

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Li J, Salcedo R, Mivechi NF, Trinchieri G, Horuzsko A (2012) The proinflammatory myeloid cell receptor TREM-1 controls Kupffer cell activation and development of hepatocellular carcinoma. Cancer Res 72:3977–3986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia YH, Wang ZM, Chen RX, Ye SL, Sun RX, Xue Q, Huang Y (2013) T-cell apoptosis induced by intratumoral activated hepatic stellate cells is associated with lung metastasis in hepatocellular carcinoma. Oncol Rep 30:1175–1184

    CAS  PubMed  Google Scholar 

  • Xiao CX, Yang XN, Huang QW, Zhang YQ, Lin BY, Liu JJ, Liu YP, Jazag A, Guleng B et al (2013) ECHS1 acts as a novel HBsAg-binding protein enhancing apoptosis through the mitochondrial pathway in HepG2 cells. Cancer Lett 330:67–73

    Article  CAS  PubMed  Google Scholar 

  • Xie S, Zhu M, Lv G, Zhang Q, Wang G (2012) The role of RhoC in the proliferation and apoptosis of hepatocellular carcinoma cells. Med Oncol 29:1802–1809

    Article  CAS  PubMed  Google Scholar 

  • Xing SQ, Zhang CG, Yuan JF, Yang HM, Zhao SD, Zhang H (2015) Adiponectin induces apoptosis in hepatocellular carcinoma through differential modulation of thioredoxin proteins. Biochem Pharmacol 93:221–231

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Kim SO, Li Y, Han J (2006) Autophagy contributes to caspase-independent macrophage cell death. J Biol Chem 281:19179–19187

    Article  CAS  PubMed  Google Scholar 

  • Yano H, Fukuda K, Haramaki M, Momosaki S, Ogasawara S, Higaki K, Kojiro M (1996) Expression of Fas and anti-Fas-mediated apoptosis in human hepatocellular carcinoma cell lines. J Hepatol 25:454–464

    Article  CAS  PubMed  Google Scholar 

  • Yano Y, Hayashi Y, Nakaji M, Nagano H, Seo Y, Ninomiya T, Yoon S, Wada A, Hirai M et al (2003) Different apoptotic regulation of TRAIL-caspase pathway in HBV- and HCV-related hepatocellular carcinoma. Int J Mol Med 11:499–504

    CAS  PubMed  Google Scholar 

  • Yao Z, Zhang P, Guo H, Shi J, Liu S, Liu Y, Zheng D (2014) RIP1 modulates death receptor mediated apoptosis and autophagy in macrophages. Mol Oncol pii:S1571-7891(14)00289-0

    Google Scholar 

  • Ye CP, Qiu CZ, Huang ZX, Su QC, Zhuang W, Wu RL, Li XF (2007) Relationship between surviving expression and recurrence, and prognosis in hepatocellular carcinoma. World J Gastroenterol 13:6264–6268

    Article  PubMed  PubMed Central  Google Scholar 

  • Yi HC, Liu YL, You P, Pan JS, Zhou JY, Liu ZJ, Zhang ZY (2015) Overexpression of DEK gene is correlated with poor prognosis in hepatocellular carcinoma. Mol Med Rep 11:1318–1323

    CAS  PubMed  Google Scholar 

  • Yuan S, Akey CW (2013) Apoptosome structure, assembly, and procaspase activation. Structure 21:501–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan S, Yu X, Topf M, Ludtke SJ, Wang X, Akey CW (2010) Structure of an apoptosome-procaspase-9 CRAD complex. Structure 18:571–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan S, Yu X, Asara JM, Heuser JE, Ludtke SJ, Akey CW (2011) The holo-apoptosome: activation of procaspase-9 and interactions with caspase-3. Structure 19:1084–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan Z, Syed MA, Panchal D, Joo M, Colonna M, Brantly M, Sadikot RT (2014) Triggering receptor expressed on myeloid cells 1 (TREM-1)-mediated Bcl-2 induction prolongs macrophage survival. J Biol Chem 289:15118–15129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yunqiao L, Vanke H, Jun X, Tangmeng G (2014) MicroRNA-206, down-regulated in hepatocellular carcinoma, suppresses cell proliferation and promotes apoptosis. Hepatogastroenterology 61:1302–1307

    Google Scholar 

  • Zhang HY, Phan SH (1999) Inhibition of myofibroblast apoptosis by transforming growth factor beta(1). Am J Respir Cell Mol Biol 21:658–665

    Article  CAS  PubMed  Google Scholar 

  • Zhang YY, Zhou LM (2013) Omentin-1, a new adipokine, promotes apoptosis through regulating Sirt1-dependent p53 deacetylation in hepatocellular carcinoma cells. Eur J Pharmacol 698:137–144

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Liang X, Gao L, Ma H, Liu X, Pan Y, Yan W, Shan H, Wang Z, Chen YH et al (2014) TIPE1 induces apoptosis by negatively regulating Rac1 activation in hepatocellular carcinoma cells. Oncogene. doi:10.1038/onc.2014.208

    Google Scholar 

  • Zhao M, Zimmermann A (1997a) Apoptosis in human hepatocellular carcinoma and in liver cell dysplasia is correlated with p53 protein immunoreactivity. J Clin Pathol 50:394–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao M, Zimmermann A (1997b) Apoptosis in hepatocellular carcinomas with neuroendocrine differentiation. Histol Histopathol 12:973–980

    CAS  PubMed  Google Scholar 

  • Zheng T, Wang J, Song X, Meng X, Pan S, Jiang H, Liu L (2010) Nutlin-3 cooperates with doxorubicin to induce apoptosis of human hepatocellular carcinoma cells through p53 or p73 signaling pathways. J Cancer Res Clin Oncol 136:1597–1604

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Thorgeirsson SS, Popescu NC (2004) Restoration of DLC-1 gene expression induces apoptosis and inhibits both cell growth and tumorigenicity in human hepatocellular carcinoma cells. Oncogene 23:1308–1313

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann A, Kappeler A, Friess H, Büchler MW (2002) Hepatocellular carcinoma with an unusual medullary-like histology and signs of regression (“medullary-like hepatocellular carcinoma”). Dig Liver Dis 34:748–763

    Article  CAS  PubMed  Google Scholar 

  • Zou C, Chen J, Chen K, Wang S, Cao Y, Zhang J, Sheng Y, Huang A, Tang H (2014) Functional analysis of miR-181a and Fas involved in hepatitis B virus-related hepatocellular carcinoma pathogenesis. Exp Cell Res pii:S0014-4827(14)00503-5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Zimmermann .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Zimmermann, A. (2017). Necrobiology of Liver Cancer: Apoptosis and Related Forms of Cell Death. In: Tumors and Tumor-Like Lesions of the Hepatobiliary Tract. Springer, Cham. https://doi.org/10.1007/978-3-319-26956-6_176

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26956-6_176

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26954-2

  • Online ISBN: 978-3-319-26956-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics