Skip to main content

Nucleosynthesis in Hypernovae Associated with Gamma Ray Bursts

  • Living reference work entry
  • First Online:
Handbook of Supernovae

Abstract

We present nucleosynthesis in very energetic hypernovae, whose kinetic energy (KE) is more than 10 times the KE of normal core-collapse supernovae (SNe). The light curve and spectra fitting of individual SN are used to estimate the mass of the progenitor, explosion energy, and produced56Ni mass. Comparison with the abundance patterns of extremely metal-poor (EMP) stars has made it possible to determine the model parameters of core-collapse SNe. Nucleosynthesis in hypernovae is characterized by larger abundance ratios (Zn, Co, V, Ti)/Fe and smaller (Mn, Cr)/Fe than normal SNe, which can explain the observed trends of these ratios in EMP stars. Hypernovae are also jet-induced explosions, so that their nucleosynthesis yields can well reproduce the large C/Fe ratio observed in carbon-enhanced metal-poor (CEMP) stars if a small fraction of Fe-peak elements is mixed into the C-rich ejecta in the form of a jet while the bulk of Fe undergoes fallback from equatorial direction (faint supernovae/hypernovae).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Argast D, Samland M, Gerhard OE et al (2000) Metal-poor halo stars as tracers of ISM mixing processes during halo formation. A&A 356:873

    ADS  Google Scholar 

  • Arnett WD (1996) Supernovae and nucleosynthesis. Princeton University Press, Princeton

    Google Scholar 

  • Audouse J, Silk J (1995) The first generation of stars: first steps toward chemical evolution of galaxies. ApJ 451:L49

    ADS  Google Scholar 

  • Beers T, Christlieb N (2005) The discovery and analysis of very metal-poor stars in the galaxy. ARAA 43:531

    Article  ADS  Google Scholar 

  • Campana S et al (2006) The association of GRB 060218 with a supernova and the evolution of the shock wave. Nature 442:1008

    Article  ADS  Google Scholar 

  • Cayrel R et al (2004) First stars V – abundance patterns from C to Zn and supernova yields in the early galaxy. A&A 416:1117

    Article  ADS  Google Scholar 

  • Christlieb N et al (2002) A stellar relic from the early milky way. Nature 419:904

    Article  ADS  Google Scholar 

  • Della Valle M et al (2006) An enigmatic long-lasting gamma ray burst not accompanied by a bright supernova. Nature 444:1050

    Article  ADS  Google Scholar 

  • Depagne E et al (2002) First stars. II. Elemental abundances in the extremely metal-poor star CS 22949–037. A diagnostic of early massive supernovae. A&A 390:187

    Google Scholar 

  • Frebel A et al (2005) Nucleosynthetic signatures of the first stars. Nature 434:871

    Article  ADS  Google Scholar 

  • Fröhlich C, Hauser P, Liebendörfer M et al (2006) Composition of the innermost core-collapse supernova ejecta. ApJ 637:415

    Article  ADS  Google Scholar 

  • Fynbo JPU et al (2006) No supernovae associated with two long-duration gamma-ray bursts. Nature 444:1047

    Article  ADS  Google Scholar 

  • Galama T et al (1998) An unusual supernova in the error box of the gamma-ray burst of 25 April 1998. Nature 395:670

    Article  ADS  Google Scholar 

  • Gal-Yam A et al (2006) A novel explosive process is required for the gamma-ray burst GRB 060614. Nature 444:1053

    Article  ADS  Google Scholar 

  • Gal-Yam A (2012) Luminous supernovae. Science 337:927

    Article  ADS  Google Scholar 

  • Gehrels N et al (2006) A new gamma-ray burst classification scheme from GRB060614. Nature 444:1044

    Article  ADS  Google Scholar 

  • Hamuy M (2003) Observed and physical properties of core-collapse supernovae. ApJ 582:905

    Article  ADS  Google Scholar 

  • Hill V, François P, Primas F (eds) (2005) IAU symposium 228, from lithium to uranium: elemental tracers of early cosmic evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Hjorth J et al (2003) A very energetic supernova associated with the gamma-ray burst of 29 March 2003. Nature 423:847

    Article  ADS  Google Scholar 

  • Iwamoto K, Mazzali PA, Nomoto K et al (1998) A hypernova model for the supernova associated with the gamma-ray burst of 25 April 1998. Nature 395:672

    Article  ADS  Google Scholar 

  • Iwamoto K, Nakamura T, Nomoto K et al (2000) The peculiar Type Ic supernova 1997EF: another hypernova. ApJ 534:660

    Article  ADS  Google Scholar 

  • Iwamoto N, Umeda H, Tominaga N, Nomoto K, Maeda K (2005) The first chemical enrichment in the universe and the formation of hyper metal-poor stars. Science 309:451

    Article  ADS  Google Scholar 

  • Kawabata K et al (2010) A massive star origin for an unusual helium-rich supernova in an elliptical galaxy. Nature 465:326

    Article  ADS  Google Scholar 

  • Maeda K, Nakamura T, Nomoto K et al (2002) Explosive nucleosynthesis in aspherical hypernova explosions and late-time spectra of SN 1998bw. ApJ 565:405

    Article  ADS  Google Scholar 

  • Malesani J et al (2006) SN 2003lw and GRB 031203: a bright supernova for a faint gamma-ray burst. ApJ 609:L5

    Article  ADS  Google Scholar 

  • Mazzali PA, Deng J, Maeda K, Nomoto K et al (2002) The Type Ic hypernova SN 2002ap. ApJ 572:L61

    Article  ADS  Google Scholar 

  • Mazzali PA, Kawabata KS, Maeda K, Nomoto K et al (2005) An asymmetric energetic Type Ic supernova viewed off-axis, and a link to gamma ray bursts. Science 308:1284

    Article  ADS  Google Scholar 

  • Mazzali PA, Deng J, Nomoto K et al (2006) A neutron-star-driven X-ray flash associated with supernova SN 2006aj. Nature 442:1018

    Article  ADS  Google Scholar 

  • McWilliam A, Preston GW, Sneden C, Searle L (1995) Spectroscopic analysis of 33 of the most metal poor stars. II. AJ 109:2757

    Article  Google Scholar 

  • Meynet G, Maeder A, (2007) Wind anisotropies and GRB progenitors. A&A 464:L11

    Article  ADS  Google Scholar 

  • Modjaz M et al (2006) Early-time photometry and spectroscopy of the fast evolving SN 2006aj associated with GRB 060218. ApJ 645:L21

    Article  ADS  Google Scholar 

  • Nakamura TK (1998) A model for non high energy gamma ray bursts and sources of ultra high energy cosmic rays – super strongly magnetized milli-second pulsar formed from a (C + O) star and a neutron star (black hole) close binary system. Prog Theor Phys 100:921

    Article  ADS  Google Scholar 

  • Nakamura T, Umeda K, Nomoto K, Thielemann F-K, Burrows A (1999) Nucleosynthesis in Type II supernovae and the abundances in metal-poor stars. ApJ 517:193

    Article  ADS  Google Scholar 

  • Nakamura T, Umeda K, Iwamoto K, Nomoto K, Hashimoto M, Hix WR, Thielemann F-K (2001) Explosive nucleosynthesis in hypernovae. ApJ 555:880

    Article  ADS  Google Scholar 

  • Nomoto K, Suzuki T, Shigeyama T, Kumagai S, Yamaoka H, Saio H (1993) A Type IIb model for supernova 1993J. Nature 364:507

    Article  ADS  Google Scholar 

  • Nomoto K et al (1994a) A carbon-oxygen star as progenitor of the Type Ic supernova 1994I. Nature 371:227

    Article  ADS  Google Scholar 

  • Nomoto K, Shigeyama T, Kumagai S et al (1994b) Supernova 1987A: from progenitor to remnant. In: Bludmann S et al (ed) Supernovae. NATO ASI series C, proceedings of session LIV held in Les Houche. North-Holland, p 489

    Google Scholar 

  • Nomoto K, Mazzali PA, Nakamura T et al (2001) The properties of hypernovae: SNe Ic 1998bw, 1997ef, and SN IIn 1997cy. In: Livio M et al (eds) Supernovae and gamma ray bursts. Cambridge University Press, p 144. astro-ph/0003077

    Google Scholar 

  • Nomoto K et al (2003) Hypernovae and their nucleosynthesis. In: Hucht V et al (eds) IAU symposium 212, a massive star odyssey, from main sequence to supernova. ASP, p 395. astro-ph/0209064

    Google Scholar 

  • Nomoto K et al (2004) Hypernovae and other black-hole-forming supernovae. In: Fryer CL (ed) Stellar collapse. Astrophysics and Space Science, Kluwer, p 277. astro-ph/0308136

    Google Scholar 

  • Nomoto K, Tominaga N, Umeda H, Kobayashi C, Maeda K (2006) Nucleosynthesis yields of core-collapse supernovae and hypernovae, and galactic chemical evolution. Nucl Phys A 777:424. astro-ph/0605725

    Google Scholar 

  • Nomoto K et al (2007) Diversity of the supernova – gamma-ray burst connection. Nuovo Cinento B121:1207. astro-ph/0702472

    Google Scholar 

  • Nomoto K, Kobayashi C, Tominaga N (2013) Nucleosynthesis in stars and the chemical enrichment of galaxies. ARAA 51:457

    Article  ADS  Google Scholar 

  • Pian E et al (2006) An optical supernova associated with the X-ray flash XRF 060218. Nature 442:1011

    Article  ADS  Google Scholar 

  • Quimby RM (2012) Superluminous supernovae. In: Roming P et al (ed) IAU symposium 279, death of massive stars: supernovae and gamma-ray bursts, p 22

    Google Scholar 

  • Ryan SG, Norris JE, Beers TC (1996) Extremely metal-poor stars. II. Elemental abundances and the early chemical enrichment of the galaxy. ApJ 471:254

    Google Scholar 

  • Soderberg AM et al (2006) Relativistic ejecta from X-ray flash XRF 060218 and the rate of cosmic explosions. Nature 442:1014

    Article  ADS  Google Scholar 

  • Stanek KZ et al (2003) Spectroscopic discovery of the supernova 2003dh associated with GRB 030329. ApJ 591:L17

    Article  ADS  Google Scholar 

  • Thielemann F-K, Nomoto K, Hashimoto M (1996) Core-collapse supernovae and their ejecta. ApJ 460:408

    Article  ADS  Google Scholar 

  • Thielemann F-K, Rauscher T, Freiburghaus C, Nomoto K et al (1998) Nucleosynthesis basics and applications to supernovae. In: Hirsch J, Page D (eds) Nuclear and particle astrophysics. Cambridge University Press, Cambridge, p 27

    Chapter  Google Scholar 

  • Thornton K, Gaudlitz M, Janka H-Th et al (1998) Energy input and mass redistribution by supernovae in the interstellar medium. ApJ 500:95

    Article  ADS  Google Scholar 

  • Tominaga N, Tanaka M, Nomoto K et al (2005) The unique Type Ib supernova 2005bf: a WN star explosion model for peculiar light curves and spectra. ApJ 633:L97

    Article  ADS  Google Scholar 

  • Tominaga N, Maeda K, Umeda H, Nomoto K, Tanaka M et al (2007a) The connection between gamma-ray bursts and extremely metal-poor stars: black hole-forming supernovae with relativistic jets. ApJ 657:L77

    Article  ADS  Google Scholar 

  • Tominaga N, Umeda H, Nomoto K (2007b) Supernova nucleosynthesis in population III 13-50 M ⊙ stars and abundance patterns of extremely metal-poor stars. ApJ 660:516

    Article  ADS  Google Scholar 

  • Tumlinson J (2006) Chemical evolution in hierarchical models of cosmic structure. I. Constraints on the early stellar initial mass function. ApJ 641:1

    Google Scholar 

  • Umeda H, Nomoto K (2002) Nucleosynthesis of zinc and iron peak elements in population III Type II supernovae: comparison with abundances of very metal poor halo stars. ApJ 565:385

    Article  ADS  Google Scholar 

  • Umeda H, Nomoto K (2005) Variations in the abundance pattern of extremely metal-poor stars and nucleosynthesis in population III supernovae. ApJ 619:427

    Article  ADS  Google Scholar 

  • Umeda H, Nomoto K (2008) How much56Ni can be produced in core-collapse supernovae? Evolution and explosions of 30–100 M ⊙ stars. ApJ 673:1014

    Article  ADS  Google Scholar 

  • Woosley SE, Heger A (2006) The progenitor stars of gamma-ray bursts. ApJ 637:914

    Article  ADS  Google Scholar 

  • Yoon S-C, Langer N (2006) Evolution of rapidly rotating metal-poor massive stars towards gamma-ray bursts. A&A 443:643

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported in part by Grants-in-Aid for Scientific Research (JP26400222, JP16H02168, JP17K05382) from the Japan Society for the Promotion of Science and by the WPI Initiative, MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken’ichi Nomoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Nomoto, K. (2017). Nucleosynthesis in Hypernovae Associated with Gamma Ray Bursts. In: Alsabti, A., Murdin, P. (eds) Handbook of Supernovae. Springer, Cham. https://doi.org/10.1007/978-3-319-20794-0_86-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20794-0_86-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20794-0

  • Online ISBN: 978-3-319-20794-0

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics