Skip to main content

Protein Therapeutics

Mouse, Humanized, and Human Antibodies

  • Protocol
Medical Biomethods Handbook

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 2023 Accesses

Abstract

Antibodies play a vital role in immune defense against pathogens. They are globular glycoproteins produced by plasma cells in response to the antigenic stimulation of B-lymphocytes. Their circulation in blood and lymph contributes to the humoral component of the vertebrate immune system. Each plasma cell secretes a single clone of antibodies that bind a unique epitope of an antigen. Cooperations exist between antibodies and other immune effectors such as macrophages and complement to facilitate the removal of antigens from the body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leder, P. (1982) The genetics of antibody diversity. Sci. Am. 246, 102–115.

    Article  PubMed  CAS  Google Scholar 

  2. Honjo, T. (1983) Immunoglobulin genes. Annu. Rev. Immunol. 1, 499–528.

    Article  PubMed  CAS  Google Scholar 

  3. Lansford, R., Okada, A., Chen, J., et al. (1996) Mechanism and control of immunoglobulin gene rearrangement, in Molecular Immunology, (Hames, B. D. and Glover, D. M., eds.), 2nd ed. IRL, Oxford.

    Google Scholar 

  4. Papavasiliou, F. N. and Schatz, D. G. (2002) Somatic hypermutation of immunoglobulin genes: merging mechanisms for genetic diversity. Cell 109, S35–S44.

    Article  PubMed  CAS  Google Scholar 

  5. Diaz, M. and Casali, P. (2002) Somatic immunoglobulin hypermutation. Curr. Opin. Immunol. 14, 235–240.

    Article  PubMed  CAS  Google Scholar 

  6. Stavnezer, J. (1996) Immunoglobulin class switching. Curr. Opin. Immunol. 8, 199–205.

    Article  PubMed  CAS  Google Scholar 

  7. Burton, D. R. and Woof, J. M. (1992) Human antibody effector functions. Adv. Immunol. 51, 1–84.

    Article  PubMed  CAS  Google Scholar 

  8. Alzari, P. M., Lascombe, M.-B., and Poljak, R. J. (1988) Three-dimensional structure of antibodies. Annu. Rev. Immunol. 6, 555–580.

    Article  PubMed  CAS  Google Scholar 

  9. Padlan, E. A. (1994) Anatomy of the antibody molecule. Mol. Immunol. 31, 169–217.

    Article  PubMed  CAS  Google Scholar 

  10. Köhler, G. and Milstein, C. (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497.

    Article  PubMed  Google Scholar 

  11. Harlow, E. and Lane, D. (1988) Antibodies-a Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  12. De Prada, P. and Landry, D. W. (2004) Production and characterization of anti-cocaine catalytic antibodies. Methods Mol. Biol. 248, 495–501.

    PubMed  Google Scholar 

  13. Schroff, R. W., Foon, K. A., Beatty, S. M., Oldham, R. K., and Morgan, A. C., Jr. (1985) Human antimurine immunoglobulin responses in patients receiving monoclonal antibody therapy. Cancer Res. 45, 879–885.

    PubMed  CAS  Google Scholar 

  14. Shawler, D. L., Bartholomew, R. M., Smith, L. M., and Dillman, R. O. (1985) Human immune response to multiple injections of murine monoclonal IgG. J. Immunol. 135, 1530–1535.

    PubMed  CAS  Google Scholar 

  15. Caroll, W. L., Thielemans, K., Dilley, J., and Levy, R. (1986) Mouse. human heterohybridomas as fusion partners with human B cell tumours. J. Immunol. Methods 89, 61–72.

    Article  Google Scholar 

  16. Borrebaeck, C. A. K. (1989) Strategy for the production of human monoclonal antibodies using in vitro activated B cells. J. Immunol. Methods 123, 157–165.

    Article  PubMed  CAS  Google Scholar 

  17. Carson, D. A. and Freimark, B. D. (1986) Human lymphocyte hybridomas and monoclonal antibodies. Adv. Immunol. 38, 275–311.

    Article  PubMed  CAS  Google Scholar 

  18. Cole, S. P., Campling, B. G., Atlaw, T., Kozbor, D., and Roder, J. C. (1984) Human monoclonal antibodies. Mol. Cell Biochem. 62, 109–120.

    Article  PubMed  CAS  Google Scholar 

  19. Niedbala, W. G. and Stott, D. I. (1998) A comparison of three methods for production of human hybridomas secreting autoantibodies. Hybridoma 17, 299–304.

    Article  PubMed  CAS  Google Scholar 

  20. Neuberger, M. S. (1983) Expression and regulation of immunoglobulin heavy chain gene transfected into lymphoid cells. EMBO J. 2, 1373–1378.

    PubMed  CAS  Google Scholar 

  21. Oi, V. T., Morrison, S. L., Herzenberg, L. A., and Berg, P. (1983) Immunoglobulin gene expression in transformed lymphoid cells. Proc. Natl. Acad. Sci. USA 80, 825–829.

    Article  PubMed  CAS  Google Scholar 

  22. Larrick, J. W., Danielsson, L., Brenner, C. A., Abrahamson, M., Fry, K. E., and Borrebaeck, C. A. (1989) Rapid cloning of rearranged immunoglobulin genes from human hybridoma cells using mixed primers and the polymerase chain reaction. Biochem. Biophys. Res. Commun. 160, 1250–1256.

    Article  PubMed  CAS  Google Scholar 

  23. Orlandi, R., Gussow, D. H., Jones, P. T., and Winter, G. (1989) Cloning immunoglobulin variable domains for expression by the polymerase chain reaction. Biotechnology 24, 527–531.

    Google Scholar 

  24. Jones, S. T. and Bendig, M. M. (1991) Rapid PCR-cloning of full-length mouse immunoglobulin variable regions. Biotechnology 9, 88–89.

    Article  PubMed  CAS  Google Scholar 

  25. Boulianne, G. L., Hozumi, N., and Shulman, M. J. (1984) Production of functional chimeric mouse/ human antibodies. Nature 312, 643–646.

    Article  PubMed  CAS  Google Scholar 

  26. Morrison, S. L., Johnson, M. J., Herzenberg, L. A., and Oi, V. T. (1984) Chimaeric human antibody molecules: mouse antigen binding domains. Proc. Natl. Acad. Sci. USA 82, 6851–6855.

    Article  Google Scholar 

  27. Neuberger, M. S., Williams, G. T., Mitchell, E. B., Jouhal, S. S., Flanagan, J. G., and Rabbitts, T. H. (1985) A hapten-specific chimaeric IgE antibody with human physiological effector function. Nature 314, 268–270.

    Article  PubMed  CAS  Google Scholar 

  28. Dyer, M. J. S., Hale, G., Hayhoe, F. G. J., and Waldmann, H. (1989) Effects of CAMPATH-1 antibodies in vivo in patients with lymphoid malignancies: influence of antibody isotype. Blood 73, 1431–1439.

    PubMed  CAS  Google Scholar 

  29. Khazaeli, M. B., Conry, R. M., and LoBuglio, A. F. (1994) Human immune response to monoclonal antibodies. J. Immunother. 15, 42–52.

    Article  CAS  Google Scholar 

  30. Jones, P. T., Dear, P. H., Foote, J., Neuberger, M. S., and Winter, G. (1986) Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321, 522–525.

    Article  PubMed  CAS  Google Scholar 

  31. Verhoeyen, M., Milstein, C., and Winter, G. (1988) Reshaping human antibodies: grafting an antilysozyme activity. Science 239, 1534–1536.

    Article  PubMed  CAS  Google Scholar 

  32. Riechmann, L., Clark, M., Waldmann, H., and Winter, G. (1988) Reshaping human antibodies for therapy. Nature 332, 323–327.

    Article  PubMed  CAS  Google Scholar 

  33. Kalofonos, H. P., Kosmas, C., Hird, V., Snook, D. E., and Epenetos, A. A. (1994) Targeting of tumours with murine and reshaped human monoclonal antibodies against placental alkaline phosphatase: immunolocalisation, pharmacokinetics and immune response. Eur. J. Cancer 30A, 1842–1850.

    Article  PubMed  CAS  Google Scholar 

  34. Sharkey, R. M., Juweid, M., Shevitz, J., et al. (1995) Evaluation of a complementarity-determining region-grafted (humanized) anti-carcinoembryonic antigen monoclonal antibody in preclinical and clinical studies. Cancer Res. 55, 5935s–5945s.

    PubMed  CAS  Google Scholar 

  35. Rebello, P. R., Hale, G., Friend, P. J., Cobbold, S. P., and Waldmann, H. (1999) Anti-globulin responses to rat and humanized CAMPATH-1 monoclonal antibody used to treat transplant rejection. Transplantation 68, 1417–1420.

    Article  PubMed  CAS  Google Scholar 

  36. Woodle, E. S., Xu, D., Zivin, R. A., Auger, J., Charette, J., and O’Laughlin, R. (1999) Phase I trial of a humanized, Fc receptor nonbinding OKT3 antibody huOKT3gamma1(Ala-Ala) in the treatment of acute renal allograft rejection. Transplantation 68, 608–616.

    Article  PubMed  CAS  Google Scholar 

  37. Padlan, E. A. (1991) A possible procedure for reducing the immunogenicity of antibody variable domains while preserving their ligand-binding properties. Mol. Immunol. 28, 489–498.

    Article  PubMed  CAS  Google Scholar 

  38. Roguska, M. A., Pedersen, J. T., Keddy, C. A., et al. (1994) Humanization of murine monoclonal antibodies through variable domain resurfacing. Proc. Natl. Acad. Sci. USA 91, 969–973.

    Article  PubMed  CAS  Google Scholar 

  39. Jespers, L. S., Roberts, A., Mahler, S. M., Winter, G., and Hoogenboom, H. R. (1994) Guiding the selection of human antibodies from phage display repertoires to a single epitope of an antigen. Biotechnology 12, 899–903.

    Article  PubMed  CAS  Google Scholar 

  40. Lo, B. K. C. (2004) Antibody humanization by CDR grafting. Methods Mol. Biol. 248, 135–159.

    PubMed  CAS  Google Scholar 

  41. Smith, G. P. (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315–1317.

    Article  PubMed  CAS  Google Scholar 

  42. Better, M., Chang, C. P., Robinson, R. R., and Horwitz, A. H. (1988) Escherichia coli secretion of an active chimeric antibody fragment. Science 240, 1041–1043.

    Article  PubMed  CAS  Google Scholar 

  43. Skerra, A. and Pluckthun, A. (1988) Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 240, 1038–1041.

    CAS  Google Scholar 

  44. Bird, R. E., Hardman, K. D., Jacobson, J. W., et al. (1988) Single chain antigen binding proteins. Science 242, 423–426.

    Article  PubMed  CAS  Google Scholar 

  45. Huston, J. S., Levinson, D., Mudgett-Hunter, M., Tai, M., Novotny, J., and Margolies, M. N. (1988) Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single chain Fv analogue produced in Escherichia coli. Proc. Natl. Acad. Sci. USA 85, 5879–5883.

    Article  CAS  Google Scholar 

  46. McCafferty, J., Griffiths, A. D., Winter, G., and Chiswell, D. (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552–554.

    Article  PubMed  CAS  Google Scholar 

  47. Clackson, T., Hoogenboom, H. R., Griffiths, A. D., and Winter, G. (1991) Making antibody fragments using phage display libraries. Nature 352, 624–628.

    Article  PubMed  CAS  Google Scholar 

  48. Barbas, C. F. III, Kang, A. S., Lerner, R A., and Benkovic, S. J. (1991) Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc. Natl. Acad. Sci. USA 88, 7978–7982.

    Article  PubMed  CAS  Google Scholar 

  49. Burton, D. R., Barbas, C. F., III, Persson, M. A., Koenig, S., Chanock, R. M., and Lerner, R. A. (1991) A large array of human monoclonal antibodies to type 1 human immunodeficiency virus from combinatorial libraries of asymptomatic seropositive individuals. Proc. Natl. Acad. Sci. USA 88, 10,134–10,137.

    Article  PubMed  CAS  Google Scholar 

  50. Cai, X. and Garen, A. (1995) Anti-melanoma antibodies from melanoma patients immunized with genetically modified autologous tumor cells: selection of specific antibodies from single-chain Fv fusion phage libraries. Proc. Natl. Acad. Sci. USA 92, 6537–6541.

    Article  PubMed  CAS  Google Scholar 

  51. Marks, J. D., Hoogenboom, H. R., Bonnert, T. P., McCafferty, J., Griffiths, A. D., and Winter, G. (1991) By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J. Mol. Biol. 222, 581–597.

    Article  PubMed  CAS  Google Scholar 

  52. Barbas, C. F., III, Bain, J. D., Hoekstra, D. M., and Lerner, R. A. (1992) Semisynthetic combinatorial antibody libraries: a chemical solution to the diversity problem. Proc. Natl. Acad. Sci. USA 89, 4457–4461.

    Article  PubMed  CAS  Google Scholar 

  53. Hoogenboom, H. R. and Winter, G. (1992) By-passing immunisation. Human antibodies from synthetic repertoires of germline VH gene segments rearranged in vitro. J. Mol. Biol. 227, 381–388.

    Article  PubMed  CAS  Google Scholar 

  54. Hoogenboom, H. R. (1997) Designing and optimizing library selection strategies for generating high-affinity antibodies. Trends Biotechnol. 15, 62–70.

    Article  PubMed  CAS  Google Scholar 

  55. Griffiths, A. D. and Duncan, A. R. (1998) Strategies for selection of antibodies by phage display. Curr. Opin. Biotechnol. 9, 102–108.

    Article  PubMed  CAS  Google Scholar 

  56. Glennie, M. J. and Johnson, P. W. M. (2000) Clinical trials of antibody therapy. Immunol. Today 21, 403–410.

    Article  PubMed  CAS  Google Scholar 

  57. Reichert, J. M. (2002) Therapeutic monoclonal antibodies: trends in development and approval in the US. Curr. Opin. Mol. Ther. 4, 110–116.

    PubMed  CAS  Google Scholar 

  58. Hanes, J. and Plückthun, A. (1997) In vitro selection and evolution of functional proteins by using ribosome display. Proc. Natl. Acad. Sci. USA 94, 4937–4942.

    Article  PubMed  CAS  Google Scholar 

  59. He, M. and Taussig, M. J. (1997) Antibody-ribosome-mRNA (ARM) complexes as efficient selection particles for in vitro display and evolution of antibody combining sites. Nucl. Acids Res. 25, 5132–5134.

    Article  PubMed  CAS  Google Scholar 

  60. Feldhaus, M. J., Siegel, R. W., Opresko, L. K., et al. (2003) Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nature Biotechnol. 21, 163–170.

    Article  CAS  Google Scholar 

  61. Marks, J. D. and Bradbury, A. (2004) PCR cloning of human immunoglobulin genes. Methods Mol. Biol. 248, 117–134.

    PubMed  CAS  Google Scholar 

  62. Marks, J. D. and Bradbury, A. (2004) Selection of human antibodies from phage display libraries. Methods Mol. Biol. 248, 161–176.

    PubMed  CAS  Google Scholar 

  63. Neuberger, M. S. and Gruggermann, M. (1997) Monoclonal antibodies. Mice perform a human repertoire. Nature 386, 25–26.

    Article  PubMed  CAS  Google Scholar 

  64. Tomizuka, K., Shinohara, T., Yoshida, H., et al. (2000) Double transchromosomic mice: maintenance of two individual human chromosome fragments containing immunoglobulin heavy and kappa loci and expression of fully human antibodies. Proc. Natl. Acad. Sci. USA 97, 722–727.

    Article  PubMed  CAS  Google Scholar 

  65. Green, L. L. (1999) Antibody engineering via genetic engineering of the mouse: XenoMouse strains are a vehicle for the facile generation of therapeutic human monoclonal antibodies. J. Immunol. Methods 231, 11–23.

    Article  PubMed  CAS  Google Scholar 

  66. Fishwild, D. M., O’Donnell, S. L., Bengoechea, T., et al. (1996) High-avidity human IgG kappa monoclonal antibodies from a novel strain of minilocus transgenic mice. Nature Biotechnol. 14, 845–851.

    Article  CAS  Google Scholar 

  67. Ishida, I., Tomizuka, K., Yoshida, H., et al. (2002) Production of human monoclonal and polyclonal antibodies in TransChromo animals. Cloning Stem Cells 4, 91–102.

    Article  PubMed  CAS  Google Scholar 

  68. Davis, C. G., Gallo, M. L., and Corvalan, J. R. (1999) Transgenic mice as a source of fully human antibodies for the treatment of cancer. Cancer Metastasis Rev. 18, 421–425.

    Article  PubMed  CAS  Google Scholar 

  69. Kuroiwa, Y., Kasinathan, P., Choi, Y. J., et al. (2002) Cloned transchromosomic calves producing human immunoglobulin. Nature Biotechnol. 20, 889–894.

    Article  CAS  Google Scholar 

  70. Davis, C. G., Jia, X.-C., Feng, X., and Haak-Frendscho, M. (2004) Production of human antibodies from transgenic mice. Methods Mol. Biol. 248, 191–200.

    PubMed  CAS  Google Scholar 

  71. Von Mehren, M., Adams, G. P., and Weiner, L. M. (2003) Monoclonal antibody therapy for cancer. Annu. Rev. Med. 54, 343–369.

    Article  CAS  Google Scholar 

  72. Glennie, M. J. and Van de Winkel, J. G. J. (2003) Renaissance of cancer therapeutic antibodies. Drug Discov. Today 8, 503–510.

    Article  PubMed  CAS  Google Scholar 

  73. Tedder, T. F., Boyd, A. W., Freedman, A. S., Nadler, L. M., and Schlossman, S. F. (1985) The B cell surface molecule B1 is functionally linked with B cell activation and differentiation. J. Immunol. 135, 973–979.

    PubMed  CAS  Google Scholar 

  74. Anderson, K. C., Bates, M. P., Slaughenhoupt, B. L., Pinkus, G. S., Schlossman, S. F., and Nadler, L. M. (1984) Expression of human B cell-associated antigens on leukemias and lymphomas: a model of human B cell differentiation. Blood 63, 1424–1433.

    PubMed  CAS  Google Scholar 

  75. Reff, M. E., Carner, K., Chambers, K. S., et al. (1994) Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood 83, 435–445.

    PubMed  CAS  Google Scholar 

  76. Demidem, A., Lam, T., Alas, S., Hariharan, K., Hanna, N., and Bonavida, B. (1997) Chimeric anti-CD20 (IDEC-C2B8) monoclonal antibody sensitizes a B cell lymphoma cell line to cell killing by cytotoxic drugs. Cancer Biother. Radiopharm. 12, 177–186.

    Article  PubMed  CAS  Google Scholar 

  77. McLaughlin, P., Grillo-Lopez, A. J., Link, B. K., et al. (1998) Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J. Clin. Oncol. 16, 2825–2833.

    PubMed  CAS  Google Scholar 

  78. Piro, L. D., White, C. A., Grillo-Lopez, A. J., et al. (1999) Extended Rituximab (anti-CD20 monoclonal antibody) therapy for relapsed or refractory low-grade or follicular non-Hodgkin’s lymphoma. Ann. Oncol. 10, 655–661.

    Article  PubMed  CAS  Google Scholar 

  79. Witzig, T. E., Flinn, I. W., Gordon, L. I., Emmanouilides, C., Czuczman, M. S., and Saleh, M. N. (2002) Treatment with ibritumomab tiuxetan radioimmunotherapy in patients with rituximab-refractory follicular non-Hodgkin’s lymphoma. J. Clin. Oncol. 20, 3262–3269.

    Article  PubMed  CAS  Google Scholar 

  80. Xia, M. Q., Hale, G., Lifely, M. R., et al. (1993) Structure of the CAMPATH-1 antigen, a glycosylphosphatidylinositol-anchored glycoprotein which is an exceptionally good target for complement lysis. Biochem. J. 293, 633–640.

    PubMed  CAS  Google Scholar 

  81. Xia, M. Q., Hale, G., and Waldmann, H. (1993) Efficient complement-mediated lysis of cells containing the CAMPATH-1 (CDw52) antigen. Mol. Immunol. 30, 1089–1096.

    Article  PubMed  CAS  Google Scholar 

  82. Tzakis, A. G., Kato, T., Nishida, S., et al. (2003) Alemtuzumab (Campath-1H) combined with tacrolimus in intestinal and multivisceral transplantation. Transplantation 75, 1512–1517.

    Article  PubMed  CAS  Google Scholar 

  83. Chakrabarti, S., MacDonald, D., Hale, G., et al. (2003) T-cell depletion with Campath-1H “in the bag” for matched related allogeneic peripheral blood stem cell transplantation is associated with reduced graft-versus-host disease, rapid immune constitution and improved survival. Br. J. Haematol. 121, 109–118.

    Article  PubMed  Google Scholar 

  84. Alvarado, Y., Tsimberidou, A., Kantarjian, H., et al. (2003) Pilot study of Mylotarg, idarubicin and cytarabine combination regimen in patients with primary resistant or relapsed acute myeloid leukemia. Cancer Chemother. Pharmacol. 51, 87–90.

    Article  PubMed  CAS  Google Scholar 

  85. Slamon, D. J., Godolphin, W., Jones, L. A., et al. (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244, 707–712.

    Article  PubMed  CAS  Google Scholar 

  86. Sjogren, S., Inganas, M., Lindgren, A., Holmberg, L., and Bergh, J. (1998) Prognostic and predictive value of c-erbB-2 overexpression in primary breast cancer, alone and in combination with other prognostic markers. J. Clin. Oncol. 16, 462–469.

    PubMed  CAS  Google Scholar 

  87. Sundaresan, S., Penuel, E., and Sliwkowski, M. X. (1999) The biology of human epidermal growth factor receptor 2. Curr. Oncol. Rep. 1, 16–22.

    Article  PubMed  CAS  Google Scholar 

  88. Hynes, N. E. and Stern, D. F. (1994) The biology of erbB-2/neu/HER-2 and its role in cancer. Biochim. Biophys. Acta 1198, 165–184.

    PubMed  Google Scholar 

  89. Sliwkowski, M. X., Lofgren, J. A., Lewis, G. D., Hotaling, T. E., Fendly, B. M., and Fox, J. A. (1999) Nonclinical studies addressing the mechanism of action of trastuzumab (Herceptin). Semin. Oncol. 26(4 Suppl 12), 60–70.

    PubMed  CAS  Google Scholar 

  90. Lewis, G. D., Figari, I., Fendly, B., et al. (1993) Differential responses of human tumor cell lines to anti-p185HER2 monoclonal antibodies. Cancer Immunol. Immunother. 37, 255–263.

    Article  PubMed  CAS  Google Scholar 

  91. Pietras, R. J., Fendly, B. M., Chazin, V. R., Pegram, M. D., Howell, S. B., and Slamon, D. J. (1994) Antibody to HER-2/neu receptor blocks DNA repair after cisplatin in human breast and ovarian cancer cells. Oncogene 9, 1829–1838.

    PubMed  CAS  Google Scholar 

  92. Tan, A. R. and Swain, S. M. (2003) Ongoing adjuvant trials with trastuzumab in breast cancer. Semin. Oncol. 30(5 Suppl. 16), 54–64.

    Article  PubMed  CAS  Google Scholar 

  93. Genentech, Inc. website, http://www.gene.com/gene/pipeline/trials/.

  94. Agus, D. B., Akita, R. W., Fox, W. D., et al. (2002) Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell 2, 127–137.

    Article  PubMed  CAS  Google Scholar 

  95. Cragg, M. S., French, R. R., and Glennie, M. J. (1999) Signaling antibodies in cancer therapy. Curr. Opin. Immunol. 11, 541–547.

    Article  PubMed  CAS  Google Scholar 

  96. Targan, S. R., Hanauer, S. B., van Deventer, S. J., et al. (1997) A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha for Crohn’s disease. Crohn’s Disease cA2 Study Group. N. Engl. J. Med. 337, 1029–1035.

    Article  PubMed  CAS  Google Scholar 

  97. Hanauer, S. B., Feagan, B. G., Lichtenstein, G. R., et al. (2002) Maintenance infliximab for Crohn’s disease: the ACCENT I randomised trial. Lancet 359, 1541–1549.

    Article  PubMed  CAS  Google Scholar 

  98. Present, D. H., Rutgeerts, P., Targan, S., et al. (1999) Infliximab for the treatment of fistulas in patients with Crohn’s disease. N. Engl. J. Med. 340, 1398–1405.

    Article  PubMed  CAS  Google Scholar 

  99. Storms, W. (2002) Allergens in the pathogenesis of asthma: potential role of anti-immunoglobulin E therapy. Am. J. Respir. Med. 1, 361–368.

    PubMed  CAS  Google Scholar 

  100. MacGlashan, D. W. Jr, Bochner, B. S., Adelman, D. C., et al. (1997) Down-regulation of Fc(epsilon)RI expression on human basophils during in vivo treatment of atopic patients with anti-IgE antibody. J. Immunol. 158, 1438–1445.

    PubMed  CAS  Google Scholar 

  101. Prussin, C., Griffith, D. T., Boesel, K. M., Lin, H., Foster, B., and Casale, T. B. (2003) Omalizumab treatment downregulates dendritic cell FcepsilonRI expression. J. Allergy Clin. Immunol. 112, 1147–1154.

    Article  PubMed  CAS  Google Scholar 

  102. Gordon, K. B., Papp, K. A., Hamilton, T. K., et al. (2003) Efalizumab for patients with moderate to severe plaque psoriasis: a randomized controlled trial. JAMA 290, 3073–3080.

    Article  PubMed  CAS  Google Scholar 

  103. Weinberg, J. M. (2003) An overview of infliximab, etanercept, efalizumab, and alefacept as biologic therapy for psoriasis. Clin. Ther. 25, 2487–2505.

    Article  PubMed  CAS  Google Scholar 

  104. Ortho Multi-center Transplant Study Group (1985) A randomized clinical trial of OKT3 monoclonal antibody for acute rejection of cadaveric renal transplants. N. Engl. J. Med. 313, 337–342.

    Article  Google Scholar 

  105. Leader, S. and Kohlhase, K. (2003) Recent trends in severe respiratory syncytial virus (RSV) among US infants, 1997 to 2000. J. Pediatr. 143(5 Suppl.), S127–132.

    PubMed  Google Scholar 

  106. Malley, R., DeVincenzo, J., Ramilo, O., et al. (1998) Reduction of respiratory syncytial virus (RSV) in tracheal aspirates in intubated infants by use of humanized monoclonal antibody to RSV F protein. J. Infect. Dis. 178, 1555–1561.

    Article  PubMed  CAS  Google Scholar 

  107. The IMpact-RSV Study Group (1998) Palivizumab, a humanized RSV monoclonal antibody, reduces hospitalization from RSV infection in high-risk infants. Pediatrics 102, 531–537.

    Article  Google Scholar 

  108. Feltes, T. F., Cabalka, A. K., Meissner, H. C., et al. (2003) Palivizumab prophylaxis reduces hospitalization due to respiratory syncytial virus in young children with hemodynamically significant congenital heart disease. J. Pediatr. 143, 532–540.

    Article  PubMed  CAS  Google Scholar 

  109. Ibbotson, T., McGavin, J. K., and Goa, K. L. (2003) Spotlight on abciximab in patients with ischemic heart disease undergoing percutaneous coronary revascularization. Am. J. Cardiovasc. Drugs 3, 381–386.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Lo, B.K.C. (2005). Protein Therapeutics. In: Walker, J.M., Rapley, R. (eds) Medical Biomethods Handbook. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1385/1-59259-870-6:429

Download citation

  • DOI: https://doi.org/10.1385/1-59259-870-6:429

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-288-9

  • Online ISBN: 978-1-59259-870-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics