Skip to main content

High-Throughput Screening of Phosphodiesterase Activity in Living Cells

  • Protocol
Phosphodiesterase Methods and Protocols

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 307))

  • 693 Accesses

Abstract

Phosphodiesterases (PDEs) hydrolyze the second messengers cyclic adenosine monophosphate (cAMP) and cyclic guanosine 5′-monophosphate (cGMP) and play a crucial role in the termination and spatial segregation of cyclic nucleotide signals. Despite a wealth of molecular information, very little is known about how PDEs regulate cAMP and cGMP signals in living cells because conventional methods lack the necessary spatial and temporal resolution. We present here a sensitive optical method for monitoring cAMP levels and PDE activity near the membrane, using cyclic nucleotide-gated (CNG) ion channels as sensors. These channels are directly opened by the binding of cyclic nucleotides and allow cations to cross the membrane. The olfactory channel A subunit (CNGA2) has been genetically modified to improve its cAMP sensitivity and specificity. Channel activity is assessed by measuring Ca2+ influx using standard fluorometric techniques. In addition to studying PDEs in their native setting, the approach should be particularly useful in high-throughput screening assays to test for compounds that affect PDE activity, as well as the activities of the many G protein-coupled receptors that cause changes in intracellular cAMP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Drummond, G. I. and Perrot-Yee, S. (1961) Enzymatic hydrolysis of adenosine 3′,5′-phosphoric acid. J. Biol. Chem. 236, 1126–1129.

    PubMed  CAS  Google Scholar 

  2. Beavo, J. A. (1988) Multiple isozymes of cyclic nucleotide phosphodiesterase. Adv. Second Messenger Phosphoprotein Res. 22, 1–38.

    PubMed  CAS  Google Scholar 

  3. Beavo, J. A. (1995) Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol. Rev. 75, 725–748.

    PubMed  CAS  Google Scholar 

  4. Conti, M. and Jin, S. L. (1999) The molecular biology of cyclic nucleotide phosphodiesterases. Prog. Nucleic Acid Res. Mol. Biol. 63, 1–38.

    Article  PubMed  CAS  Google Scholar 

  5. Mehats, C., Andersen, C. B., Filopanti, M., Jin, S. L., and Conti, M. (2002) Cyclic nucleotide phosphodiesterases and their role in endocrine cell signaling. Trends Endocrinol. Metab. 13, 29–35.

    Article  PubMed  CAS  Google Scholar 

  6. Houslay, M. D., Sullivan, M., and Bolger, G. B. (1998) The multienzyme PDE4 cyclic adenosine monophosphate-specific phosphodiesterase family: intracellular targeting, regulation, and selective inhibition by compounds exerting anti-inflammatory and antidepressant actions. Adv. Pharmacol. 44, 225–342.

    Article  PubMed  CAS  Google Scholar 

  7. Rich, T. C., Tse, T. E., Rohan, J. G., Schaack, J., and Karpen, J. W. (2001) In vivo assessment of local phosphodiesterase activity using tailored cyclic nucleotide-gated channels as cAMP sensors. J. Gen. Physiol. 118, 63–77.

    Article  PubMed  CAS  Google Scholar 

  8. Rich, T. C. and Karpen, J. W. (2002) Cyclic AMP sensors in living cells: what signals can they actually measure? Ann. Biomed. Eng. 30, 1088–1099.

    Article  PubMed  Google Scholar 

  9. Fagan, K. A., Schaack, J., Zweifach, A., and Cooper, D. M. F. (2001) Adenovirus encoded cyclic nucleotide-gated channels: a new methodology for monitoring cAMP in living cells. FEBS Lett. 500, 85–90.

    Article  PubMed  CAS  Google Scholar 

  10. Rich, T. C., Fagan, K. A., Nakata, H., Schaack, J., Cooper, D. M. F., and Karpen, J. W. (2000) Cyclic nucleotide-gated channels colocalize with adenylyl cyclase in regions of restricted cAMP diffusion. J. Gen. Physiol. 116, 147–161.

    Article  PubMed  CAS  Google Scholar 

  11. Rich, T. C., Fagan, K. A., Tse, T. E., Schaack, J., Cooper, D. M. F., and Karpen, J. W. (2001) A uniform extracellular stimulus triggers distinct cAMP signals in different compartments of a simple cell. Proc. Natl. Acad. Sci. USA 98, 13,049–13,054.

    Article  PubMed  CAS  Google Scholar 

  12. Varnum, M. D., Black, K. D., and Zagotta, W. N. (1995) Molecular mechanism for ligand discrimination of cyclic nucleotide-gated channels. Neuron 15, 619–625.

    Article  PubMed  CAS  Google Scholar 

  13. Brown, R. L., Snow, S. D., and Haley, T. L. (1998) Movement of gating machinery during the activation of rod cyclic nucleotide-gated channels. Biophys. J. 75, 825–833.

    Article  PubMed  CAS  Google Scholar 

  14. Gordon, S. E., Varnum, M. D., and Zagotta, W. N. (1997) Direct interaction between amino-and carboxyl-terminal domains of cyclic nucleotide-gated channels. Neuron 19, 431–441.

    Article  PubMed  CAS  Google Scholar 

  15. Zong, X., Zucker, H., Hofmann, F., and Biel, M. (1998) Three amino acids in the C-linker are major determinants of gating in cyclic nucleotide-gated channels. EMBO J. 17, 353–362.

    Article  PubMed  CAS  Google Scholar 

  16. Liu, M., Chen, T. Y., Ahamed, B., Li, J., and Yau, K.-W. (1994) Calcium-calmodulin modulation of the olfactory cyclic nucleotide-gated cation channel. Science 266, 1348–1354.

    Article  PubMed  CAS  Google Scholar 

  17. Frings, S., Seifert, R., Godde, M., and Kaupp, U. B. (1995) Profoundly different calcium permeation and blockage determine the specific function of distinct cyclic nucleotide-gated channels. Neuron 15, 169–179.

    Article  PubMed  CAS  Google Scholar 

  18. Grynkiewicz, G., Poenie, M., and Tsien, R. Y. (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440–3450.

    PubMed  CAS  Google Scholar 

  19. Stryer, L. (1991) Visual excitation and recovery. J. Biol. Chem. 26, 10,711–10,714.

    Google Scholar 

  20. Yau, K.-W. (1994) Phototransduction mechanism in retinal rods and cones: The Friedenwald Lecture. Invest. Ophthalmol. Vis. Sci. 35, 9–32.

    PubMed  CAS  Google Scholar 

  21. Molday, R. S. (1998) Photoreceptor membrane proteins, phototransduction, and retinal degenerative diseases: The Friedenwald Lecture. Invest. Ophthalmol. Vis. Sci. 39, 2493–2513.

    Google Scholar 

  22. Jordan, M., Schallhorn, A., and Wurm, F. M. (1996) Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucleic Acids Res. 24, 596–601.

    Article  PubMed  CAS  Google Scholar 

  23. Sakmann, B. and Neher, E. (1995) Single Channel Recording, Plenum, New York.

    Google Scholar 

  24. Gordon, S. E. (2000) Using site-directed mutagenesis and modification of cGMP-gated ion channels expressed in Xenopus oocytes to study the structural basis of their functional properties. Methods Enzymol. 316, 772–785.

    Article  Google Scholar 

  25. Hille, B. (2001) Ionic Channels of Excitable Membranes, Sinauer, Sunderland, MA.

    Google Scholar 

  26. Brown, R. L., Haley, T. L., West, K. A., and Crabb, J. W. (1999) Pseudechetoxin: a peptide blocker of cyclic nucleotide-gated channels. Proc. Natl. Acad. Sci. USA 96, 754–759.

    Article  PubMed  CAS  Google Scholar 

  27. Fagan, K. A., Mahey, R., and Cooper, D. M. F. (1996) Functional co-localization of transfected Ca2+-stimulated adenylyl cyclases with capacitative Ca2+ entry sites. J. Biol. Chem. 271, 12,438–12,444.

    Article  PubMed  CAS  Google Scholar 

  28. Villalobos, C. and Garcia-Sancho, J. (1996) Caffeine-induced oscillations of cytosolic Ca2+ in GH3 pituitary cells are not due to Ca2+ release from intracellular stores but to enhanced Ca2+ influx through voltage-gated Ca2+ channels. Pflügers Arch. Eur. J. Physiol. 431, 371–378.

    Article  CAS  Google Scholar 

  29. Taylor, S. C., Green, K. N., Carpenter, E., and Peers, C. (2000) Protein kinase C evokes quantal catecholamine release from PC12 cells via activation of L-type Ca2+ channels. J. Biol. Chem. 275, 26,786–26,791.

    PubMed  CAS  Google Scholar 

  30. Byron, K. L. and Taylor, C. W. (1993) Spontaneous Ca2+ spiking in a vascular smooth muscle cell line is independent of the release of intracellular Ca2+ stores. J. Biol. Chem. 268, 6945–6952.

    PubMed  CAS  Google Scholar 

  31. Purdy, K. E. and Arendshorst, W. J. (1999) Prostaglandins buffer ANG II-mediated increases in cytosolic calcium in preglomerular VSMC. Am. J. Physiol. 277, F850–F858.

    PubMed  CAS  Google Scholar 

  32. Olschewski, A., Hong, Z., Nelson, D. P., and Weir, E. K. (2002) Graded response of K+ current, membrane potential, and [Ca2+]i to hypoxia in pulmonary arterial smooth muscle. Am. J. Physiol. 283, L1143–L1150.

    CAS  Google Scholar 

  33. Eble, D. M., Qi, M., Waldschmidt, S., Lucchesi, P. A., Byron, K. L., and Samarel, A. M. (1998) Contractile activity is required for sarcomeric assembly in phenylephrine-induced cardiac myocyte hypertrophy. Am. J. Physiol. 274, C1226–C1237.

    PubMed  CAS  Google Scholar 

  34. Wang, H. X., Lau, S. Y., Huang, S. J., Kwan, C. Y., and Wong, T. M. (1997) Cobra venom cardiotoxin induces perturbations of cytosolic calcium homeostasis and hypercontracture in adult rat ventricular myocytes. J. Mol. Cell. Cardiol. 29, 2759–2770.

    Article  PubMed  CAS  Google Scholar 

  35. Yoshida, H., Tanonaka, K., Miyamoto, Y., Abe, T., Takahashi, M., Anand-Srivastava, M. B., and Takeo, S. (2001) Characterization of cardiac myocyte and tissue beta-adrenergic signal transduction in rats with heart failure. Cardiovasc. Res. 50, 34–45.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Rich, T.C., Karpen, J.W. (2005). High-Throughput Screening of Phosphodiesterase Activity in Living Cells. In: Lugnier, C. (eds) Phosphodiesterase Methods and Protocols. Methods In Molecular Biology™, vol 307. Humana Press. https://doi.org/10.1385/1-59259-839-0:045

Download citation

  • DOI: https://doi.org/10.1385/1-59259-839-0:045

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-314-5

  • Online ISBN: 978-1-59259-839-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics