Skip to main content

The Biology of Cyclins and Cyclin-Dependent Protein Kinases

An Introduction

  • Protocol
Cell Cycle Control and Dysregulation Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 285))

Abstract

In the 20 yr since the discovery of proteins whose levels oscillate during the cell cycle in marine invertebrate embryos (1), the study of cyclins and their cognate protein kinases has revealed a wealth of information on how eukaryotic cells control cyclical functions connected with cell proliferation and growth. The picture that has emerged from two decades of investigation is intricate and still incomplete. In the simplest possible model, cyclins are critical regulatory subunits of cyclin-dependent protein kinases (CDKs). When cyclin levels rise, they form stable complexes with CDKs, generating enzymatically active heterodimeric complexes. When cyclin levels fall, CDKs lose catalytic activity and are unable to phosphorylate their substrates. This simple model remains fundamentally valid, but it is now clear that the regulation of cyclin/CDKs is exquisitely complex throughout the cell cycle. Moreover, it is now widely recognized that cyclins and CDKs do much more than simply control cell cycle progression. The relatively simple mechanisms discovered in yeast cells, which have one G1 cyclin, one G2 cyclin, and a single CDK, are replaced in mammalian cells by a richly redundant molecular network, including multiple cyclins, CDKs, and regulatory pathways that cross-talk with a dizzying array of cell fate determination molecules. Thus, it is hardly surprising that initial hopes for quick discovery and therapeutic development of highly specific pharmacological inhibitors of cyclin/CDK complexes have not yet been fully realized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evans, T., Rosenthal, E. T., Youngblom, J., Distel, D., and Hunt, T. (1983) Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33, 389–396.

    Article  PubMed  CAS  Google Scholar 

  2. Blagosklonny, M. V. and Pardee, A. B. (2002) The restriction point of the cell cycle. Cell Cycle 1, 103–110.

    PubMed  CAS  Google Scholar 

  3. Sherr, C. J. (1995). D-type cyclins. Trends Biochem. Sci. 20, 187–190.

    Article  PubMed  CAS  Google Scholar 

  4. Hunter, T. and Pines, J. (1994) Cyclins and cancer II: Cyclin D and CDK inhibitors come of age. Cell 79, 573–582.

    Article  PubMed  CAS  Google Scholar 

  5. Coqueret, O. (2002) Linking cyclins to transcriptional control. Gene 299, 35–55.

    Article  PubMed  CAS  Google Scholar 

  6. Morgan, D. O. (1997) Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu. Rev. Cell Dev. Biol. 13, 261–291.

    Article  PubMed  CAS  Google Scholar 

  7. Morgan, D. O. (1995) Principles of CDK regulation. Nature 374, 131–134.

    Article  PubMed  CAS  Google Scholar 

  8. Russell, P. and Nurse, P. (1987) Negative regulation of mitosis by wee1+, a gene encoding a protein kinase homolog. Cell 49, 559–567.

    Article  PubMed  CAS  Google Scholar 

  9. Russell, P. and Nurse, P. (1986) cdc25+ functions as an inducer in the mitotic control of fission yeast. Cell 45, 145–153.

    Article  PubMed  CAS  Google Scholar 

  10. Harbour, J. W. and Dean, D. C. (2000) Chromatin remodeling and Rb activity. Curr. Opin. Cell Biol. 12, 685–689.

    Article  PubMed  CAS  Google Scholar 

  11. Harbour, J. W. and Dean, D. C. (2001) Corepressors and retinoblastoma protein function. Curr. Top. Microbiol. Immunol. 254, 137–144.

    PubMed  CAS  Google Scholar 

  12. Harbour, J. W., Luo, R. X., Dei, S. A., Postigo, A. A., and Dean, D. C. (1999) Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell 98, 859–869.

    Article  PubMed  CAS  Google Scholar 

  13. Harbour, J. W. and Dean, D. C. (2000) Rb function in cell-cycle regulation and apoptosis. Nat. Cell Biol. 2, E65–E67.

    Article  PubMed  CAS  Google Scholar 

  14. Harbour, J. W. and Dean, D. C. (2000) The Rb/E2F pathway: expanding roles and emerging paradigms. Genes Dev. 14, 2393–2409.

    Article  PubMed  CAS  Google Scholar 

  15. Sherr, C. J. (2000) The Pezcoller lecture: cancer cell cycles revisited. Cancer Res. 60, 3689–3695.

    PubMed  CAS  Google Scholar 

  16. Sherr, C. J. and Roberts, J. M. (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512.

    Article  PubMed  CAS  Google Scholar 

  17. Enders, G. H. (2003) The INK4a/ARF locus and human cancer. Methods Mol. Biol. 222, 197–209.

    PubMed  CAS  Google Scholar 

  18. Ortega, S., Malumbres, M., and Barbacid, M. (2002) Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochim. Biophys. Acta 1602, 73–87.

    PubMed  CAS  Google Scholar 

  19. Shapiro, G. I. and Harper, J. W. (1999) Anticancer drug targets: cell cycle and checkpoint control. J. Clin. Invest. 104, 1645–1653.

    Article  PubMed  CAS  Google Scholar 

  20. Lowe, S. W. and Sherr, C. J. (2003) Tumor suppression by Ink4a-Arf: progress and puzzles. Curr. Opin. Genet. Dev. 13, 77–83.

    Article  PubMed  CAS  Google Scholar 

  21. Sherr, C. J. and McCormick, F. (2002) The RB and p53 pathways in cancer. Cancer Cell 2, 103–112.

    Article  PubMed  CAS  Google Scholar 

  22. Tetsu, O. and McCormick, F. (2003) Proliferation of cancer cells despite CDK2 inhibition. Cancer Cell 3, 233–245.

    Article  PubMed  CAS  Google Scholar 

  23. Nickoloff, B. J., Osborne, B. A., and Miele, L. (2003) Notch signaling as a therapeutic target in cancer: a new approach to the development of cell fate modifying agents. Oncogene 22, 6598–6608.

    Article  PubMed  CAS  Google Scholar 

  24. Yu, Z. K., Gervais, J. L., and Zhang, H. (1998) Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21(CIP1/WAF1) and cyclin D proteins. Proc. Natl. Acad. Sci. USA 95, 11,324–11,329.

    Article  PubMed  CAS  Google Scholar 

  25. Diehl, J. A., Cheng, M., Roussel, M. F., and Sherr, C. J. (1998) Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 12, 3499–3511.

    Article  PubMed  CAS  Google Scholar 

  26. Diehl, J. A., Zindy, F., and Sherr, C. J. (1997) Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquitin-proteasome pathway. Genes Dev. 11, 957–972.

    Article  PubMed  CAS  Google Scholar 

  27. Lustig, B. and Behrens, J. (2003) The Wnt signaling pathway and its role in tumor development. J. Cancer Res. Clin. Oncol. 129, 199–221.

    PubMed  CAS  Google Scholar 

  28. Manoukian, A. S. and Woodgett, J. R. (2002) Role of glycogen synthase kinase-3 in cancer: regulation by Wnts and other signaling pathways. Adv. Cancer Res. 84, 203–229.

    Article  PubMed  CAS  Google Scholar 

  29. Raught, B., Gingras, A. C., and Sonenberg, N. (2001) The target of rapamycin (TOR) proteins. Proc. Natl. Acad. Sci. USA 98, 7037–7044.

    Article  PubMed  CAS  Google Scholar 

  30. Schmelzle, T. and Hall, M. N. (2000) TOR, a central controller of cell growth. Cell 103, 253–262.

    Article  PubMed  CAS  Google Scholar 

  31. Thomas, G. and Hall, M. N. (1997) TOR signalling and control of cell growth. Curr. Opin. Cell Biol. 9, 782–787.

    Article  PubMed  CAS  Google Scholar 

  32. Duman-Scheel, M., Weng, L., Xin, S., and Du, W. (2002) Hedgehog regulates cell growth and proliferation by inducing cyclin D and cyclin E. Nature 417, 299–304.

    Article  PubMed  CAS  Google Scholar 

  33. Shoker, B. S., Jarvis, C., Davies, M. P., Iqbal, M., Sibson, D. R., and Sloane, J. P. (2001) Immunodetectable cyclin D(1)is associated with oestrogen receptor but not Ki67 in normal, cancerous and precancerous breast lesions. Br. J. Cancer 84, 1064–1069.

    Article  PubMed  CAS  Google Scholar 

  34. Zwijsen, R. M., Buckle, R. S., Hijmans, E. M., Loomans, C. J., and Bernards, R. (1998) Ligand-independent recruitment of steroid receptor coactivators to estrogen receptor by cyclin D1. Genes Dev. 12, 3488–3498.

    Article  PubMed  CAS  Google Scholar 

  35. McMahon, C., Suthiphongchai, T., DiRenzo, J., and Ewen, M. E. (1999) P/CAF associates with cyclin D1 and potentiates its activation of the estrogen receptor. Proc. Natl. Acad. Sci. USA 96, 5382–5387.

    Article  PubMed  CAS  Google Scholar 

  36. Lin, H. M., Zhao, L., and Cheng, S. Y. (2002) Cyclin D1 is a ligand-independent co-repressor for thyroid hormone receptors. J. Biol. Chem. 277, 28,733–28,741.

    Article  PubMed  CAS  Google Scholar 

  37. Adnane, J., Shao, Z., and Robbins, P. D. (1999) Cyclin D1 associates with the TBP-associated factor TAF(II)250 to regulate Sp1-mediated transcription. Oncogene 18, 239–247.

    Article  PubMed  CAS  Google Scholar 

  38. Sicinski, P. and Weinberg, R. A. (1997) A specific role for cyclin D1 in mammary gland development. J. Mammary Gland. Biol. Neoplasia. 2, 335–342.

    Article  PubMed  CAS  Google Scholar 

  39. Sicinski, P., Donaher, J. L., Parker, S. B., Li, T., Fazeli, A., Gardner, H., et al. (1995) Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell 82, 621–630.

    Article  PubMed  CAS  Google Scholar 

  40. Geng, Y., Whoriskey, W., Park, M. Y., Bronson, R. T., Medema, R. H., Li, T., Weinberg, R. A., et al. (1999) Rescue of cyclin D1 deficiency by knockin cyclin E. Cell 97, 767–777.

    Article  PubMed  CAS  Google Scholar 

  41. Ye, X., Wei, Y., Nalepa, G., and Harper, J. W. (2003) The cyclin E/Cdk2 substrate p220(NPAT) is required for S-phase entry, histone gene expression, and cajal body maintenance in human somatic cells. Mol. Cell Biol. 23, 8586–8600.

    Article  PubMed  CAS  Google Scholar 

  42. Zhao, J., Kennedy, B. K., Lawrence, B. D., Barbie, D. A., Matera, A. G., Fletcher, J. A., et al. (2000) NPAT links cyclin E-Cdk2 to the regulation of replication-dependent histone gene transcription. Genes Dev. 14, 2283–2297.

    Article  PubMed  CAS  Google Scholar 

  43. Yam, C. H., Fung, T. K., and Poon, R. Y. (2002) Cyclin A in cell cycle control and cancer. Cell Mol. Life Sci. 59, 1317–1326.

    Article  PubMed  CAS  Google Scholar 

  44. Nevins, J. R., Chellappan, S. P., Mudryj, M., Hiebert, S., Devoto, S., Horowitz, J., et al. (1991) E2F transcription factor is a target for the RB protein and the cyclin A protein. Cold Spring Harb. Symp. Quant. Biol. 56, 157–162.

    PubMed  CAS  Google Scholar 

  45. O’Farrell, P. H. (2001) Triggering the all-or-nothing switch into mitosis. Trends Cell Biol. 11, 512–519.

    Article  PubMed  Google Scholar 

  46. Mueller, P. R., Coleman, T. R., Kumagai, A., and Dunphy, W. G. (1995) Myt1: a membrane-associated inhibitory kinase that phosphorylates cdc2 on both threonine-14 and tyrosine-15. Science 270, 86–90.

    Article  PubMed  CAS  Google Scholar 

  47. Nigg, E. A. (2001) Mitotic kinases as regulators of cell division and its checkpoints. Nat. Rev. Mol. Cell Biol. 2, 21–32.

    Article  PubMed  CAS  Google Scholar 

  48. Nigg, E. A. (2001) Cell cycle regulation by protein kinases and phosphatases. Ernst. Schering. Res. Found. Workshop 19–46.

    Google Scholar 

  49. Lim, H. H. and Surana, U. (2003) Tome-1, wee1, and the onset of mitosis: coupled destruction for timely entry. Mol. Cell 11, 845–846.

    Article  PubMed  CAS  Google Scholar 

  50. Ayad, N. G., Rankin, S., Murakami, M., Jebanathirajah, J., Gygi S., and Kirschner, M. W. (2003) Tome-1, a trigger of mitotic entry, is degraded during G1 via the APC. Cell 113, 101–113.

    Article  PubMed  CAS  Google Scholar 

  51. Dai, W., Huang, X., and Ruan, Q. (2003) Polo-like kinases in cell cycle checkpoint control. Front Biosci. 8, d1128–d1133.

    Article  PubMed  CAS  Google Scholar 

  52. Dai, W., Wang, Q., and Traganos, F. (2002) Polo-like kinases and centrosome regulation. Oncogene 21, 6195–6200.

    Article  PubMed  CAS  Google Scholar 

  53. Fry, A. M. (2002) The Nek2 protein kinase: a novel regulator of centrosome structure. Oncogene 21, 6184–6194.

    Article  PubMed  CAS  Google Scholar 

  54. Ye, X. S. and Osmani, S. A. (1997) Regulation of p34cdc2/cyclinB H1 and NIMA kinases during the G2/M transition and checkpoint responses in Aspergillus nidulans. Prog. Cell Cycle Res. 3, 221–232.

    PubMed  CAS  Google Scholar 

  55. Ke, Y. W., Dou, Z., Zhang, J., and Yao, X. B. (2003) Function and regulation of Aurora/Ipl1p kinase family in cell division. Cell Res. 13, 69–81.

    Article  PubMed  CAS  Google Scholar 

  56. Adams, R. R., Carmena, M., and Earnshaw, W. C. (2001) Chromosomal passengers and the (aurora) ABCs of mitosis. Trends Cell Biol. 11, 49–54.

    Article  PubMed  CAS  Google Scholar 

  57. Goepfert, T. M. and Brinkley, B. R. (2000) The centrosome-associated aurora/Ipl-like kinase family. Curr. Top. Dev. Biol. 49, 331–342.

    Article  PubMed  CAS  Google Scholar 

  58. Shiekhattar, R., Mermelstein, F., Fisher, R. P., Drapkin, R., Dynlacht, B., Wessling, H. C., et al. (1995) Cdk-activating kinase complex is a component of human transcription factor TFIIH. Nature 374, 283–287.

    Article  PubMed  CAS  Google Scholar 

  59. Lin, X., Taube, R., Fujinaga, K., and Peterlin, B. M. (2002) P-TEFb containing cyclin K and Cdk9 can activate transcription via RNA. J. Biol. Chem. 277, 16,873–16,878.

    Article  PubMed  CAS  Google Scholar 

  60. Taube, R., Lin, X., Irwin, D., Fujinaga, K., and Peterlin, B. M. (2002) Interaction between P-TEFb and the C-terminal domain of RNA polymerase II activates transcriptional elongation from sites upstream or downstream of target genes. Mol. Cell Biol. 22, 321–331.

    Article  PubMed  CAS  Google Scholar 

  61. Buolamwini, J. K. (2000) Cell cycle molecular targets in novel anticancer drug discovery. Curr. Pharm. Des. 6, 379–392.

    Article  PubMed  CAS  Google Scholar 

  62. Senderowicz, A. M. (2003) Small-molecule cyclin-dependent kinase modulators. Oncogene 22, 6609–6620.

    Article  PubMed  CAS  Google Scholar 

  63. Fischer, P. M. (2001) Recent advances and new directions in the discovery and development of cyclin-dependent kinase inhibitors. Curr. Opin. Drug Dis. Dev. 4, 623–634.

    CAS  Google Scholar 

  64. Chen, Y. N., Sharma, S. K., Ramsey, T. M., Jiang, L., Martin, M. S., Baker, K., et al. (1999) Selective killing of transformed cells by cyclin/cyclin-dependent kinase 2 antagonists. Proc. Natl. Acad. Sci. USA 96, 4325–4329.

    Article  PubMed  CAS  Google Scholar 

  65. Castedo, M., Perfettini, J. L., Roumier, T., and Kroemer, G. (2002) Cyclin-dependent kinase-1: linking apoptosis to cell cycle and mitotic catastrophe. Cell Death Differ. 9, 1287–1293.

    Article  PubMed  CAS  Google Scholar 

  66. Seong, Y. S., Min, C., Li, L., Yang, J. Y., Kim, S. Y., Cao, X., et al. (2003) Characterization of a novel cyclin-dependent kinase 1 inhibitor, BMI-1026. Cancer Res. 63, 7384–7391.

    PubMed  CAS  Google Scholar 

  67. Dragnev, K. H., Freemantle, S. J., Spinella, M. J., and Dmitrovsky, E. (2001) Cyclin proteolysis as a retinoid cancer prevention mechanism. Ann. N.Y. Acad. Sci. 952, 13–22.

    Article  PubMed  CAS  Google Scholar 

  68. Rolfe, M., Chiu, M. I., and Pagano, M. (1997) The ubiquitin-mediated proteolytic pathway as a therapeutic area. J. Mol. Med. 75, 5–17.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Miele, L. (2004). The Biology of Cyclins and Cyclin-Dependent Protein Kinases. In: Giordano, A., Romano, G. (eds) Cell Cycle Control and Dysregulation Protocols. Methods in Molecular Biology™, vol 285. Humana Press. https://doi.org/10.1385/1-59259-822-6:003

Download citation

  • DOI: https://doi.org/10.1385/1-59259-822-6:003

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-949-0

  • Online ISBN: 978-1-59259-822-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics