Skip to main content

Subtilisin-Catalyzed Glycopeptide Condensation

  • Protocol
Bioconjugation Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 283))

  • 1544 Accesses

Abstract

This method describes the use of subtilisin-catalyzed peptide condensation to form a 15-residue glycopeptide from two smaller synthetic peptides. A 12-residue peptide ester is synthesized by solid-phase peptide synthesis using a PAM-modified Rink amide resin that allows the formation of a peptide ester suitable for subtilisin ligation. The 12-residue acyl donor peptide ester is then ligated to a 3-residue acyl acceptor glycopeptide amide using subtilisin (EC 3.4.21.62) in a buffered mixture of water and DMF (1:9).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moree, W. J., Sears, P., Kawashiro, K., et al. (1997) Exploitation of subtilisin BPN’ as catalyst for the synthesis of peptides containing noncoded amino acids, peptide mimetics and peptide conjugates. J. Am. Chem. Soc. 119, 3942–3947.

    Article  CAS  Google Scholar 

  2. Liu, C.-F. and Tam, J. P. (2001) Subtilisin-catalyzed synthesis of amino acid and peptide esters. Application in a two-step enzymatic ligation strategy. Organic Lett. 3, 4157–4159.

    Article  CAS  Google Scholar 

  3. Wong, C. H., Schuster, M., Wang, P., and Sears, P. (1993) Enzymic synthesis of N-and O-linked glycopeptides. J. Am. Chem. Soc. 115, 5893–5901.

    Article  CAS  Google Scholar 

  4. Witte, K., Seitz, O., and Wong, C.-H. (1998) Solution-and solid-phase synthesis of N-protected glycopeptide esters of the benzyl type as substrates for subtilisin-catalyzed glycopeptide couplings. J. Am. Chem. Soc. 120, 1979–1989.

    Article  CAS  Google Scholar 

  5. Vogel, K. and Chmielewski, J. (1994) Rapid and efficient resynthesis of proteolyzed triose phosphate isomerase. J. Am. Chem. Soc. 116, 11,163–11,164.

    Article  CAS  Google Scholar 

  6. Jackson, D. Y., Burnier, J., Quan, C., et al. (1994) A designed peptide ligase for total synthesis of ribonuclease A with unnatural catalytic residues. Science 266, 243–247.

    Article  PubMed  CAS  Google Scholar 

  7. Witte, K., Sears, P., and Wong, C.-H. (1997) Enzymic glycoprotein synthesis: preparation of ribonuclease glycoforms via enzymic glycopeptide condensation and glycosylation. J. Am. Chem. Soc. 119, 2114–2118.

    Article  CAS  Google Scholar 

  8. Dawson, P. E., Muir, T. W., Clark-Lewis, I., and Kent, S. B. H. (1994) Synthesis of proteins by native chemical ligation. Science 266, 776–779.

    Article  PubMed  CAS  Google Scholar 

  9. Barbas, C. F., III, Matos, J. R., West, J. B., and Wong, C.-H. (1988) A search for peptide ligase: cosolvent-mediated conversion of proteases to esterases for irreversible synthesis of peptides. J. Am. Chem. Soc. 110, 5162–5166.

    Article  CAS  Google Scholar 

  10. Nakatsuka, T., Sasaki, T., and Kaiser, E. T. (1987) Peptide segment synthesis catalyzed by the semisynthetic enzyme thiolsubtilisin. J. Am. Chem. Soc. 109, 3808–3810.

    Article  CAS  Google Scholar 

  11. Abrahmsen, L., Tom, J., Burnier, J., et al. (1991) Engineering subtilisin and its substrates for efficient ligation of peptide bonds in aqueous solution. Biochemistry 30, 4151–4159.

    Article  PubMed  CAS  Google Scholar 

  12. Sears, P., Schuster, M., Wang, P., et al. (1994) Engineering subtilisin for peptide coupling: studies on the effects of counterions and site-specific modifications on the stability and specificity of the enzyme. J. Am. Chem. Soc. 116, 6521–6530.

    Article  CAS  Google Scholar 

  13. Zhong, Z. Z. and Wong, C. H. (1991) Development of new enzymic catalysts for peptide synthesis in aqueous and organic solvents. Biomed. Biochim. Acta 50, S9–S14.

    PubMed  CAS  Google Scholar 

  14. Seitz, O. and Wong, C.-H. (1997) Chemoenzymic solution-and solid-phase synthesis of O-glycopeptides of the Mucin domain of MAdCAM-1. A general route to O-LacNAc, O-Sialyl-LacNAc, and O-Sialyl-Lewis-X peptides. J. Am. Chem. Soc. 119, 8766–8776.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Tolbert, T.J., Wong, CH. (2004). Subtilisin-Catalyzed Glycopeptide Condensation. In: Niemeyer, C.M. (eds) Bioconjugation Protocols. Methods in Molecular Biology™, vol 283. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-813-7:267

Download citation

  • DOI: https://doi.org/10.1385/1-59259-813-7:267

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-098-4

  • Online ISBN: 978-1-59259-813-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics