Skip to main content

Dioxygen-Dependent Metabolism of Nitric Oxide

  • Protocol
Nitric Oxide Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 279))

Abstract

Nitric oxide (NO) serves critical signaling, energetic, and toxic functions throughout the biosphere. NO steady-state levels and functions are controlled in part by NO metabolism or degradation. Dioxygen-dependent NO dioxygenases (EC 1.14.12.17) and dioxygen-independent NO reductases (EC 1.7.99.7) are being identified as major routes for NO metabolism in various life forms. Here we describe the use of the Clark-type NO electrode, mechanistic inhibitors, and nitrate/nitrite assays to measure, characterize, and identify major NO metabolic pathways and enzymes in bacteria, fungi, plants, mammalian cells, and organelles. The methods may prove to be particularly useful for mechanistic investigations and the development of inhibitors, inducers, and other novel NO-modulating therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gardner, A. M., Gessner, C. R., and Gardner, P. R. (2003) Regulation of the nitric oxide reduction operon (norRVW) in Escherichia coli. Role of NorR and σ54 in the nitric oxide stress response. J. Biol. Chem. 278, 10,081–10,086.

    Article  PubMed  CAS  Google Scholar 

  2. Zumft, W. (1997) Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61, 533–616.

    PubMed  CAS  Google Scholar 

  3. Gardner, A. M., Helmick, R. A., and Gardner, P. R. (2002) Flavorubredoxin: an inducible catalyst for nitric oxide reduction and detoxification in Escherichia coli. J. Biol. Chem. 277, 8172–8177.

    Article  PubMed  CAS  Google Scholar 

  4. Gardner, P. R., Gardner, A. M., Martin, L. A., et al. (1998) Nitric oxide dioxygenase: an enzymic function for flavohemoglobin. Proc. Natl. Acad. Sci. USA 95, 10,378–10,383.

    Article  PubMed  CAS  Google Scholar 

  5. Gardner, P. R., Gardner, A. M., Martin, L. A., et al. (2000) Nitric oxide dioxygenase activity and function of flavohemoglobins. Sensitivity to nitric oxide and carbon monoxide inhibition. J. Biol. Chem. 275, 31,581–31,587.

    Article  PubMed  CAS  Google Scholar 

  6. Gardner, A. M., Martin, L. A., Gardner, P. R., et al. (2000) Steady-state and transient kinetics of Escherichia coli nitric oxide dioxygenase (flavohemoglobin): the tyrosine B10 hydroxyl is essential for dioxygen binding and catalysis. J. Biol. Chem. 275, 12,581–12,589.

    Article  PubMed  CAS  Google Scholar 

  7. Hausladen, A., Gow, A. J., and Stamler, J. S. (1998) Nitrosative stress: metabolic pathway involving the flavohemoglobin. Proc. Natl. Acad. Sci. USA 95, 14,100–14,105.

    Article  PubMed  CAS  Google Scholar 

  8. Liu, L., Zeng, M., Hausladen, A., et al. (2000) Protection from nitrosative stress by yeast flavohemoglobin. Proc. Natl. Acad. Sci. USA 97, 4672–4676.

    Article  PubMed  CAS  Google Scholar 

  9. Mills, C. E., Sedelnikova, S., Søballe, B., et al. (2001) Escherichia coli flavohaemoglobin (Hmp) with equistoichiometric FAD and haem contents has a low affinity for dioxygen in the absence or presence of nitric oxide. Biochem. J. 353, 207–213.

    Article  PubMed  CAS  Google Scholar 

  10. Ouellet, H., Ouellet, Y., Richard, C., et al. (2002) Truncated hemoglobin HbN protects Mycobacterium bovis from nitric oxide. Proc. Natl. Acad. Sci. USA 99, 5902–5907.

    Article  PubMed  CAS  Google Scholar 

  11. Pathania, R., Navani, N. K., Gardner, A. M., et al. (2002) Nitric oxide scavenging and detoxification by the Mycobacterium tuberculosis haemoglobin, HbN in Escherichia coli. Mol. Microbiol. 45, 1303–1314.

    Article  PubMed  CAS  Google Scholar 

  12. Frey, A. D., Farrés, J., Bollinger, C. J. T., et al. (2002) Bacterial hemoglobins and flavohemoglobins for alleviation of nitrosative stress in Escherichia coli. Appl. Environ. Microbiol. 68, 4835–4840.

    Article  PubMed  CAS  Google Scholar 

  13. Flögel, U., Merx, M. W., Gödecke, A., et al. (2001) Myoglobin: a scavenger of bioactive NO. Proc. Natl. Acad. Sci. USA 98, 735–740.

    Article  PubMed  Google Scholar 

  14. Brunori, M. (2001) Nitric oxide moves myoglobin center stage. Trends Biochem. Sci. 26, 209–210.

    Article  PubMed  CAS  Google Scholar 

  15. Dou, Y., Maillett, D. M., Eich, R. F., et al. (2002) Myoglobin as a model system for designing heme protein based blood substitutes. Biophys. Chem. 98, 127–148.

    Article  PubMed  CAS  Google Scholar 

  16. Hallstrom, C. K., Gardner, A. M., and Gardner, P. R. (2003) Nitric oxide metabolism in mammalian cells: substrate and inhibitor profiles of a microsomal NO dioxygenase. Free Radical Biol. Med. 35, S98 (abstract).

    Google Scholar 

  17. Nakahara, K., Tanimoto, T., Hatano, K.-I., et al. (1993) Cytochrome P-450 55A1 (P-450dNIR) acts as nitric oxide reductase employing NADH as the direct electron donor. J. Biol. Chem. 268, 8350–8355.

    PubMed  CAS  Google Scholar 

  18. Poock, S. R., Leach, E. R., Moir, J. W. B., et al. (2002) Respiratory detoxification of nitric oxide by the cytochrome c nitrite reductase of Escherichia coli. J. Biol. Chem. 277, 23664–23669.

    Article  PubMed  CAS  Google Scholar 

  19. Sarti, P., Giuffré, A., Barone, M. C., et al. (2003) Nitric oxide and cytochrome oxidase. Reaction mechanisms from the enzyme to the cell. Free Radical Biol. Med. 34, 509–520.

    Article  CAS  Google Scholar 

  20. Borutaité, V. and Brown, G. C. (1996) Rapid reduction of nitric oxide by mitochondria, reversible inhibition of mitochondrial respiration by nitric oxide. Biochem. J. 315, 295–299.

    PubMed  Google Scholar 

  21. O’Donnell, V. B., Taylor, K. B., Parthasarathy, S., et al. (1999) 15-Lipoxygenase consumes nitric oxide and impairs activation of guanylate cyclase. J. Biol. Chem. 274, 20,083–20,091.

    Article  CAS  Google Scholar 

  22. O’Donnell, V. B., Coles, B., Lewis, M. J., et al. (2000) Catalytic consumption of nitric oxide by prostaglandin H synthase-1 regulates platelet function. J. Biol. Chem. 275, 38,239–38,244.

    Article  CAS  Google Scholar 

  23. Abu-Soud, H. M. and Hazen, S. L. (2000) Nitric oxide is a physiological substrate for mammalian peroxidases. J. Biol. Chem. 275, 37,524–37,532.

    Article  PubMed  CAS  Google Scholar 

  24. Eiserich, J. P., Baldus, S., Brennan, M.-L., et al. (2002) Myeloperoxidase, a leukocyte-derived vascular NO oxidase. Science 296, 2391–2394.

    Article  PubMed  CAS  Google Scholar 

  25. Pearce, L. L., Pitt, B. R., and Peterson, J. (1999) The peroxynitrite reductase activity of cytochrome c oxidase involves a two-electron redox reaction at the heme a3-CuB site. J. Biol. Chem. 274, 35,763–35,767.

    Article  PubMed  CAS  Google Scholar 

  26. Torres, J., Sharpe, M. A., Rosquist, A., et al. (2000) Cytochrome c oxidase rapidly metabolises nitric oxide to nitrite. FEBS Lett. 475, 263–266.

    Article  PubMed  CAS  Google Scholar 

  27. Pryor, W. A. and Squadrito, G. L. (1995) The chemistry of peroxynitrite: a product from the reaction of nitric oxide with superoxide. Am. J. Physiol. 268, L699–L722.

    PubMed  CAS  Google Scholar 

  28. Liu, X., Miller, M. J. S., Joshi, M. S., et al. (1998) Accelerated reaction of nitric oxide with O2 within the hydrophobic interior of biological membranes. Proc. Natl. Acad. Sci. USA 95, 2175–2179.

    Article  PubMed  CAS  Google Scholar 

  29. Gardner, P. R., Martin, L. A., Hall, D., et al. (2001) Dioxygen-dependent metabolism of nitric oxide in mammalian cells. Free Radical Biol. Med. 31, 191–204.

    Article  CAS  Google Scholar 

  30. Liochev, S. I. and Fridovich, I. (2002) Superoxide and nitric oxide: consequences of varying rates of production and consumption: a theoretical treatment. Free Radical Biol. Med. 33, 137–141.

    Article  CAS  Google Scholar 

  31. Schmidt, K. and Mayer, B. (1998) Determination of NO with a Clark-type NO electrode, in Nitric Oxide Protocols (Titheradge, M. A., ed.), Humana, Brighton, UK, Vol. 100, pp. 101–109.

    Google Scholar 

  32. Zhang, X., Lin, J., Cardoso, L., et al. (2002) A novel microchip nitric oxide sensor with sub-nM detection limit. Electroanalysis 14, 697–703.

    Article  CAS  Google Scholar 

  33. Kelm, M. and Schrader, J. (1990) Control of coronary vascular tone by nitric oxide. Circ. Res. 66, 1561–1575.

    PubMed  CAS  Google Scholar 

  34. Clarkson, R. B., Norby, S. W., Smirnov, A., et al. (1995) Direct measurement of the accumulation and mitochondrial conversion of nitric oxide within Chinese hamster ovary cells using an intracellular electron paramagnetic resonance technique. Biochim. Biophys. Acta 1243, 496–502.

    PubMed  Google Scholar 

  35. Taha, Z., Kiechle, F., and Malinski, T. (1992) Oxidation of nitric oxide by oxygen in biological systems monitored by porphyrinic sensor. Biochem. Biophys. Res. Commun. 188, 734–739.

    Article  PubMed  CAS  Google Scholar 

  36. Stitt, J. T., Dubois, A. B., Douglas, J. S., et al. (1997) Exhalation of gaseous nitric oxide by rats in response to endotoxin and its absorption by the lungs. J. Appl. Physiol. 82, 305–316.

    PubMed  CAS  Google Scholar 

  37. Thomas, D. D., Liu, X., Kantrow, S. P., et al. (2001) The biological lifetime of nitric oxide: implications for the perivascular dynamics of NO and O2. Proc. Natl. Acad. Sci. USA 98, 355–360.

    Article  PubMed  CAS  Google Scholar 

  38. Griffiths, C. and Garthwaite, J. (2001) The shaping of nitric oxide signals by a cellular sink. J. Physiol. 536, 855–862.

    Article  PubMed  CAS  Google Scholar 

  39. Griffiths, C., Yamini, B., Hall, C., et al. (2002) Nitric oxide inactivation in brain by a novel O2-dependent mechanism resulting in the formation of nitrate ions. Biochem. J. 362, 459–464.

    Article  PubMed  CAS  Google Scholar 

  40. Han, T. H., Hyduke, D. R., Vaughn, M. W., et al. (2002) Nitric oxide reaction with red blood cells and hemoglobin under heterogeneous conditions. Proc. Natl. Acad. Sci. USA 99, 7763–7768.

    Article  PubMed  CAS  Google Scholar 

  41. Aslan, M., Ryan, T. M., Adler, B., et al. (2001) Oxygen radical inhibition of nitric oxide-dependent vascular function in sickle cell disease. Proc. Natl. Acad. Sci. USA 98, 15,215–15,220.

    Article  PubMed  CAS  Google Scholar 

  42. Coffey, M. J., Natarajan, R., Chumley, P. H., et al. (2001) Catalytic consumption of nitric oxide by 12/15-lipoxygenase: inhibition of monocyte soluble guanylate cyclase activation. Proc. Natl. Acad. Sci. USA 98, 8006–8011.

    Article  PubMed  CAS  Google Scholar 

  43. Gardner, A. M. and Gardner, P. R. (2002) Flavohemoglobin detoxifies nitric oxide in aerobic, but not anaerobic, Escherichia coli: evidence for a novel inducible anaerobic nitric oxide scavenging activity. J. Biol. Chem. 277, 8166–8171.

    Article  PubMed  CAS  Google Scholar 

  44. Gardner, P. R., Martin, L. A., and Gardner, A. M. (1999) Nitric oxide detoxification by an O2-dependent cyanide-sensitive pathway in mammalian cells: protection of the aconitases. Free Radical Biol. Med. 27, S75 (abstract).

    Article  Google Scholar 

  45. Yoshida, K., Kasama, K., Kitabatake, M., et al. (1980) Metabolic fate of nitric oxide. Int. Arch. Occup. Environ. Health 46, 71–77.

    Article  PubMed  CAS  Google Scholar 

  46. Westfelt, U. N., Benthin, G., Lundin, S., et al. (1995) Conversion of inhaled nitric oxide to nitrate in man. Br. J. Pharmacol. 114, 1621–1624.

    PubMed  CAS  Google Scholar 

  47. Gardner, P. R., Costantino, G., and Salzman, A. L. (1998) Constitutive and adaptive detoxification of nitric oxide in Escherichia coli. Role of nitric oxide dioxygenase in the protection of aconitase. J. Biol. Chem. 273, 26,528–26,533.

    Article  PubMed  CAS  Google Scholar 

  48. Green, L. C., Wagner, D. A., Glogowski, J., et al. (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal. Biochem. 126, 131–138.

    Article  PubMed  CAS  Google Scholar 

  49. Titheradge, M. A. (1998) The enzymatic measurement of nitrate and nitrite, in Nitric Oxide Protocols (Titheradge, M. A., ed.), Humana, Brighton, UK, Vol. 100, pp. 83–91.

    Google Scholar 

  50. Gardner, P. R., Raineri, I., Epstein, L. B., et al. (1995) Superoxide radical and iron modulate aconitase activity in mammalian cells. J. Biol. Chem. 270, 13,399–13,405.

    Article  PubMed  CAS  Google Scholar 

  51. Peterson, G. L. (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal. Biochem. 83, 346–356.

    Article  PubMed  CAS  Google Scholar 

  52. Nozaki, Y. (1986) Determination of the concentration of protein by dry weight—a comparison with spectrophotometric methods. Arch. Biochem. Biophys. 249, 437–446.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc.

About this protocol

Cite this protocol

Gardner, P.R., Gardner, A.M., Hallstrom, C.K. (2004). Dioxygen-Dependent Metabolism of Nitric Oxide. In: Hassid, A. (eds) Nitric Oxide Protocols. Methods in Molecular Biology™, vol 279. Humana Press. https://doi.org/10.1385/1-59259-807-2:133

Download citation

  • DOI: https://doi.org/10.1385/1-59259-807-2:133

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-237-7

  • Online ISBN: 978-1-59259-807-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics