Skip to main content

Determination of Phosphoproteins in Higher Plant Thylakoids

  • Protocol
Photosynthesis Research Protocols

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 274))

Abstract

Redox-dependent thylakoid protein phosphorylation regulates both short- and long-term acclimation of the photosynthetic apparatus to changes in environmental conditions. The major thylakoid phosphoproteins belong to photosystem (PS)II (D1, D2, CP43, PsbH) and its lightharvesting antenna (Lhcb1, Lhcb2, CP29) but a number of minor phosphoproteins have also been identified. The detection methods traditionally include the radiolabeling techniques, electrophoretic separation of the phosphorylated and unphosphorylated forms of the protein, and the use of phosphoamino acid antibodies. The recent progress in mass spectrometry (MS) techniques and methods of proteomics allow for successful identification and analyses of protein phosphorylation. In mass spectrometry approaches, exogenous tracer is not needed and natural phosphorylation of proteins can be characterized with high sensitivity yielding the mapping of exact phosphorylation sites in the proteins as well. Various methods for detection of thylakoid phosphoproteins, including the preparation of phosphopeptides for mass spectrometric analyses and techniques for phosphopeptide identification by electrospray ionization MS are described. The experimental protocols for simultaneous identification of multiple phosphopeptides in complex peptide mixtures and for assess of stoichiometry for in vivo phosphorylation of multiple proteins are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aro, E.-M. and Ohad, I. (2003) Redox regulation of thylakoid protein phosphorylation. Antioxidants & Redox Signaling 5, 55–67.

    Article  CAS  Google Scholar 

  2. Bennet, J. (1991) Protein phosphorylation in green plant chloroplasts. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 281–311.

    Article  Google Scholar 

  3. Bergantino, E., Dainese, P., Cerovic, Z., Sechi, S., and Bassi, R. (1995) A posttranslational modification of the photosystem II subunit CP29 protects maize from cold stress. J. Biol. Chem. 270, 8474–8481.

    Article  PubMed  CAS  Google Scholar 

  4. Carlberg, I., Hansson, M., Kieselbach, T., Schroder, W. P., Andersson, B., and Vener, A. V. (2003) A novel plant protein undergoing light-induced phosphorylation and release from the photosynthetic thylakoid membranes. Proc. Natl. Acad. Sci. USA 100, 757–762.

    Article  PubMed  CAS  Google Scholar 

  5. Rintamäki, E. and Aro, E.-M. (2001) Phosphorylation of photosystem II proteins, in Regulation of Photosynthesis (Aro, E.-M. and Andersson, B., eds.), Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 394–418.

    Google Scholar 

  6. Vener, A. V., Harms, A., Sussman, M. R., and Vierstra, R. D. (2001) Mass spectrometric resolution of reversible protein phosphorylation in photosynthetic membranes of Arabidopsis thaliana. J. Biol. Chem. 276, 6959–6966.

    Article  PubMed  CAS  Google Scholar 

  7. Gómez, S. M., Nishio, J. N., Faull, K. F., and Whitelegge, J. P. (2002) The chloroplast grana proteome defined by intact mass measurements from liquid chromatography mass spectrometry. Mol. Cell Proteomics 1, 46–59.

    Article  PubMed  Google Scholar 

  8. Laemmli, U. K. (1970) Cleavage of structural proteins during assembly of head of bacteriophage-T4. Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  9. Rintamäki, E., Salonen, M., Suoranta, U.-M., Carlberg, I., Andersson, B., and Aro, E.-M. (1997) Phosphorylation of light-harvesting complex II and photosystem II core proteins shows different irradiance-dependent regulation in vivo. Application of phosphothreonine antibodies to analysis of thylakoid phosphoproteins. J. Biol. Chem. 272, 30,476–30,482.

    Article  PubMed  Google Scholar 

  10. Bergo, E., Pursiheimo, S., Paakkarinen, V., et al. (2002) Rapid and highly specific monitoring of reversible thylakoid protein phosphorylation by polyclonal antibody to phosphothreonine-containing proteins. J. Plant. Phys. 159, 371–377.

    Article  CAS  Google Scholar 

  11. Porra, R. J., Thompson, W. A., and Kriedemann, P. E. (1989) Determination of accurate exitation coefficients and simultaneous-equations for assaying chlorophyll-a and chlorophyll-b extracted with 4 different solvents—Verification of the concentration of chlorophyll standards by atomic-absorbtion spectroscopy. Biochim. Biophys. Acta 975, 384–394.

    Article  CAS  Google Scholar 

  12. Callahan, F. E., Ghirardi, M. L., Sopory, S. K., Mehta, A. M., Edelman, M., and Mattoo, A. K. (1990) A novel matabolic form of the 32 kDa-D1 protein in granalocalized reaction center of Photosystem II. J. Biol. Chem. 265, 15,357–15,360.

    PubMed  CAS  Google Scholar 

  13. de Vitry, C., Diner, B. A., and Popot, J. L. (1991) Photosystem II particles from Chlamydomonas reinhardtii. Purification, molecular weight, small subunit composition, and protein phosphorylation. J. Biol. Chem. 266, 16,614–16,621.

    PubMed  Google Scholar 

  14. Rintamäki, E., Salo, R., Lehtonen, E., and Aro, E.-M. (1995) Regulation of D1 protein degradation during photoinhibition of Photosystem II in vivo: phosphorylation of the D1 protein in various plant groups. Planta 195, 379–386.

    Article  Google Scholar 

  15. Rokka, A., Aro, E.-M., Herrmann, R. G., Andersson, B., and Vener, A. V. (2000) Dephosphorylation of photosystem II reaction center proteins in plant photosynthetic membranes as an immediate response to abrupt elevation of temperature. Plant Physiol. 123, 1525–1536.

    Article  PubMed  CAS  Google Scholar 

  16. Andersson, L. and Porath, J. (1986) Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal. Biochem. 154, 250–254.

    Article  PubMed  CAS  Google Scholar 

  17. Posewitz, M. C. and Tempst, P. (1999) Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal. Chem. 71, 2883–2892.

    Article  PubMed  CAS  Google Scholar 

  18. Ficarro, S. B., McCleland, M. L., Stukenberg, P. T., et al. (2002) Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol. 20, 301–305.

    Article  PubMed  CAS  Google Scholar 

  19. Steen, H., Kuster, B., and Mann, M. (2001) Quadrupole time-of-flight versus triple-quadrupole mass spectrometry for the determination of phosphopeptides by precursor ion scanning. J. Mass Spectrom. 36, 782–790.

    Article  PubMed  CAS  Google Scholar 

  20. Shou, W., Verma, R., Annan, R. S., et al. (2002) Mapping phosphorylation sites in proteins by mass spectrometry. Methods Enzymol. 351, 279–296.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Aro, EM., Rokka, A., Vener, A.V. (2004). Determination of Phosphoproteins in Higher Plant Thylakoids. In: Carpentier, R. (eds) Photosynthesis Research Protocols. Methods In Molecular Biology™, vol 274. Humana Press. https://doi.org/10.1385/1-59259-799-8:271

Download citation

  • DOI: https://doi.org/10.1385/1-59259-799-8:271

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-232-2

  • Online ISBN: 978-1-59259-799-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics