Skip to main content

Targeting of Antibodies Using Aptamers

  • Protocol
Antibody Engineering

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 248))

Abstract

Antibodies are traditionally viewed as targeting entities that are used to specifically recognize and target other molecules, antigens, or receptors. However, there are occasions in which cognate ligands are generated against the antibodies themselves. The number of useful applications that rely on the recognition and targeting of antibodies extends to various diseases, including cancer, inflammation, and autoimmune disorders. For example, anti-idiotypic antibodies have been generated to target surface immunoglobulins on neoplastic B-lymphocytes and plasma cells for the treatment of lymphomas and leukaemias (1,2). Such idiotypic determinants are tumor-specific, and have been exploited in a number of immunotherapeutic approaches, either in the form of vaccines (311) or as the target of anti-idiotypic antibodies (1224). The latter, in particular, have been used successfully both in the unconjugated mono- and bi-specific forms (13,14,17), or as conjugates to other agents such as interleukin-2 (1820), cytotoxic drugs (23), or radioisotopes (12,22). In addition to haematological malignancies, antibodies are also implicated in autoimmune disorders and transplant rejection, and they could become possible targets in the management of these conditions. On the other hand, antigenmimics, whether structural, functional or both, can be produced against a target antibody. Such mimics have been used in raising antibodies (25) and as anti-inflammatory and anti-tumor agents (26).In addition, RNA aptamers have recently been used as antigen mimics to elude patient autoantibodies from binding to acetylcholine receptors in the control of myasthenia gravis (27). Finally, molecules with binding specificity for antibodies could also be used in the generation of immunoaffinity matrices for the purification of antibodies. To fulfill the promise of antibody targeting, significant interest has emerged in the generation of peptide ligands against antibody targets using phage-display generated peptide libraries (28). However, the structural freedom of peptides and the resulting entropic cost upon target binding limit the use of peptide libraries in which high-affinity and specificity are required (29, 30). Moreover, amino acids are not interactive with each other in the way that nucleotides are, causing most small peptides to be unstructured in solution, whereas structurally stable proteins are large (31)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Terness, P., Welschof, M., Moldenhauer, G., Jung, M., Moroder, L., Kirchhoff, F., et al. (1997) Idiotypic vaccine for treatment of human B-cell lymphoma. Construction of IgG variable regions from single malignant B-cells Hum. Immunol. 56, 17–27.

    Article  PubMed  CAS  Google Scholar 

  2. Wurflein, D., Dechant, M., Stockmeyer, B., Tutt, A. L., Hu, P. S., Repp, R., et al. (1998) Evaluating antibodies for their capacity to induce cell-mediated lysis of malignant B cells Cancer Res. 58, 3051–3058.

    PubMed  CAS  Google Scholar 

  3. Bohlen, H., Thielemanns, K., Tesch, H., Engert, A., Wolf, H. J., vanCamp, B., et al. (1996) Idiotype vaccination strategies against a murine B-cell lymphoma: dendritic cells loaded with idiotype and bispecific idiotype X anti-class II antibodies can protect against tumor growth. Cytokines and Molecular Therapy 2, 231–238.

    PubMed  CAS  Google Scholar 

  4. Hsu, F. J., Caspar, C. B., Czerwinski, D., Kwak, L. W., Liles, T. M., Syrengelas, A., et al. (1997) Tumor-specific idiotype vaccines in the treatment of patients with B-cell lymphoma—Long-term results of a clinical trial. Blood 89, 3129–3135.

    PubMed  CAS  Google Scholar 

  5. Caspar, C. B., Levy, S., and Levy, R. (1997) “Idiotype vaccines for non-Hodgkin’s lymphoma induce polyclonal immune responses that cover mutated tumor idio-types: comparison of different vaccine formulations” Blood 90, 3699–3706.

    PubMed  CAS  Google Scholar 

  6. Bianchi, A. and Massaia, M. (1997) Idiotypic vaccination in B-cell malignancies Mol. Med. Today 3, 435–441.

    Article  PubMed  CAS  Google Scholar 

  7. Okada, C. Y., Wong, C. P., Denney, D. W., and Levy, R. (1997) TCR vaccines for active immunotherapy of T cell malignancies. J. Immunol. 159, 5516–5527.

    PubMed  CAS  Google Scholar 

  8. Schultze, J. L. (1997) Vaccination as immunotherapy for B cell lymphoma. Hematol. Oncol. 15, 129–139.

    Article  PubMed  CAS  Google Scholar 

  9. Haimovich, J., Kukulansky, T., Weissman, B., and Hollander, N. (1999) Rejection of tumors of the B cell lineage by idiotype-vaccinated mice. Cancer Immunol. Immunother. 47, 330–336.

    Article  PubMed  CAS  Google Scholar 

  10. Reichardt, V. L., Okada, C. Y., Liso, A., Benike, C. J., Stockerl-Goldstein, K. E., Engleman, E. G., et al. (1999) Idiotype vaccination using dendritic cells after autologous peripheral blood stem cell transplantation for multiple myeloma — A feasibility study. Blood 93, 2411–2419.

    PubMed  CAS  Google Scholar 

  11. Hefty, P. S. and Kennedy, R. C. (1999) Immunoglobulin variable regions as idiotype vaccines. Infectuous Disease Clinics of North America 13, 27–39.

    Article  CAS  Google Scholar 

  12. Hansen, H. J., Ong, G. L., Diril, H., Valdez, A., Roche, P. A., Griffiths, G. L., et al. (1996) Internalization and catabolism of radiolabelled antibodies to the MHC class-II invariant chain by B-cell lymphomas. Biochem. J. 320, 293–300.

    PubMed  CAS  Google Scholar 

  13. DeJonge, J., Heirman, C., DeVeerman, M., VanMeirvenne, S., Demanet, C., Brissinck, J., et al. (1997) Bispecific antibody treatment of murine B cell lymphoma. Cancer Immunol. Immunother. 45, 162–165.

    Article  CAS  Google Scholar 

  14. Honeychurch, J., Cruise, A., Tutt, A. L., and Glennie, M. J. (1997) Bispecific Ab therapy of B-cell lymphoma: target cell specificity of antibody derivatives appears critical in determining therapeutic outcome. Cancer Immunol. Immunother. 45, 171–173.

    Article  PubMed  CAS  Google Scholar 

  15. DeNardo, S. J., Kroger, L. A., MacKenzie, M. R., Mirick, G. R., Shen, S., and DeNardo, G. L. (1998) Prolonged survival associated with immune response in a patient treated with Lym-1 mouse monoclonal antibody. Cancer Biother. Radiopharm. 13, 1–12.

    Article  Google Scholar 

  16. Kohler, S., Prietl, G., Schmolling, J., Grunn, U., Fischer, H. P., Schlebusch, H., et al. (1998) Immunotherapy of ovarian carcinoma with the monoclonal anti-idiotype antibody ACA125—Results of the Phase Ib study. Geburtsh Frauenheilk. 58, 180–186.

    Article  Google Scholar 

  17. De Jonge, J., Heirman, C., de Veerman, M., Van Meirvenne, S., Moser, M., Leo, O., et al. (1998) In vivo retargeting of T cell effector function by recombinant bispecific single chain Fv (anti-CD3 × anti-idiotype) induces long-term survival in the murine BCL1 lymphoma model. J. Immunol. 161, 1454–1461.

    PubMed  Google Scholar 

  18. Davis, T. A., Maloney, D. G., Czerwinski, D. K., Liles, T. M., and Levy, R. (1998) Anti-idiotype antibodies can induce long-term complete remissions in non-Hodgkin’s lymphoma without eradicating the malignant clone. Blood 92, 1184–1190.

    PubMed  CAS  Google Scholar 

  19. Penichet, M. L., Harvill, E. T., and Morrison, S. L. (1998) An IgG3-IL-2 fusion protein recognizing a murine B cell lymphoma exhibits effective tumor imaging and antitumor activity. Journal of Interferon and Cytokine Res. 18, 597–607.

    Article  CAS  Google Scholar 

  20. Liu, S. J., Sher, Y. P., Ting, C. C., Liao, K. W., Yu, C. P., and Tao, M. H. (1998) Treatment of B-cell lymphoma with chimeric IgG and single-chain Fv antibody interleukin-2 fusion proteins. Blood 92, 2103–2112.

    PubMed  CAS  Google Scholar 

  21. Maloney, D. G. and Press, O. W. (1998) Newer treatments for non-Hodgkin’s lymphoma: Monoclonal antibodies. Oncology-N. Y. 12, 63–76.

    CAS  Google Scholar 

  22. Link, B. K. and Weiner, G. L. (1998) Monoclonal antibodies in the treatment of human B-cell malignancies. Leuk. Lymphoma 31, 237–249.

    PubMed  CAS  Google Scholar 

  23. Tseng, Y. L., Hong, R. L., Tao, M. H., and Chang, F. H. (1999) Sterically stabilized anti-idiotype immunoliposomes improve the therapeutic efficacy of doxorubicin in a murine B-cell lymphoma model. Int. J. Cancer 80, 723–730.

    Article  PubMed  CAS  Google Scholar 

  24. Reinartz, S., Boerner, H., Koehler, S., Von Ruecker, A., Schlebusch, H., and Wagner, U. (1999) Evaluation of immunological responses in patients with ovarian cancer treated with the anti-idiotype vaccine ACA125 by determination of intracellular cytokines—a preliminary report. Hybridoma 18, 41–45.

    Article  PubMed  CAS  Google Scholar 

  25. Connolly, L., Fodey, T. L., Crooks, S.R.H., Delahaut, P., and Elliott, C. T. (2002) The production and characterisation of dinitrocarbanilide antibodies raised using antigen mimics. Journal of Immunol. Methods 264, 45–51.

    Article  CAS  Google Scholar 

  26. Thurin, M. and Kieber-Emmons, T. (2002) SA-Le(a) and tumor metastasis: the old prediction and recent findings. Hybridoma and Hybridomics 21, 111–116.

    Article  PubMed  CAS  Google Scholar 

  27. Deitiker, P., Ashizawa, T., and Atassi, M. Z. (2000) Antigen mimicry in autoimmune disease. Can immune responses to microbial antigens that mimic acetylcholine receptor act as initial triggers of myasthenia gravis? Hum. Immunol. 61, 255–265.

    Article  PubMed  CAS  Google Scholar 

  28. Hwang, B. and Lee, S. W. (2002) Improvement of RNA aptamer activity against myasthenic autoantibodies by extended sequence selection. Biochem. Biophys. Res. Commun. 290(2), 656–662.

    Article  PubMed  CAS  Google Scholar 

  29. Smith, G. P. and Petrenko, V. A. (1997) Phage display. Chem. Rev. 97(2), 391–410.

    Article  PubMed  CAS  Google Scholar 

  30. Ciesiolka, J., Illangasekare, M., Majerfeld, I., Nickles, T., Welch, M., Yarus, M., et al. (1996) Affinity selection-amplification from randomized ribooligonucleotide pools. Methods in Enzymology. 267, 315–335.

    Article  PubMed  CAS  Google Scholar 

  31. Conrad, R. C., Giver, L., Tian, Y., and Ellington, A. D. (1996) In vitro selection of nucleic acid aptamers that bind proteins. Methods Enzymol. 267, 336–367.

    Article  PubMed  CAS  Google Scholar 

  32. Bacher, J. M. and Ellington, A. D. (1998) Nucleic Acid Selection as a Tool for Drug Discovery. Drug Discov. Today 3(6), 265–273.

    Article  CAS  Google Scholar 

  33. Jayasena, S. D. (1999) Aptamers: An emerging class of molecules that rival antibodies in diagnostics. Clin. Chem. 45(9), 1628–1650.

    PubMed  CAS  Google Scholar 

  34. Hesselberth, J., Robertson, M. P., Jhaveri, S., and Ellington, A. D. (2000) In vitro selection of nucleic acids for diagnostic applications. J. Biotechnol. 74, 15–25.

    PubMed  CAS  Google Scholar 

  35. Bell, C., Lynam, E., Landfair, D. J., Janjic, N., and Wiles, M. E. (1999) Oligonucleotide NX1838 inhibits EGF165-mediated cellular responses in vitro. In Vitro Cell. Dev. Biol. Anim. 9, 533–542.

    Article  Google Scholar 

  36. Ohlmeyer, M.H.J., Swanson, R. N., Dillard, L. W., Reader, J. C., Asuline, G., Kobayashi, R., et al. (1993) Complex synthetic chemical libraries indexed with molecular tags. Proc. Natl. Acad. Sci. USA 90, 10,922–10,926.

    Article  PubMed  CAS  Google Scholar 

  37. Marshall, K. A., Robertson, M. P., and Ellington, A. D. (1997) A biopolymer by any other name would bind as well: a comparision of the ligand-binding pockets of nucleic acids and proteins. Curr. Biol. 5, 729–734.

    CAS  Google Scholar 

  38. Macaya, R. F., Waldron, J. A., Beutel, B. A., Gao, H., Joesten, M. E., Yang, M., et al. (1995) Structural and functional characterization of potent antothrombotic oligonucleotides possessing both quadruplex and duplex motifs. Biochemistry 34, 4478–4492.

    Article  PubMed  CAS  Google Scholar 

  39. Wiegand, T. W., Williams, P. B., Dreskin, S. C., Jouvin, M. H., Kinet, J. P., and Tasset, D. (1996) High-affinity oligonucleotide ligands to human IgE inhibit binding to fce receptor I. J. Immunol. 157, 221–230.

    PubMed  CAS  Google Scholar 

  40. Spencer, D.I.R., Missailidis, S., Denton, G., Murray, A., Brady, K., De Matteis, C. I., et al. (1999) Structure/activity studies of the anti-MUC1 monoclonal antibody C595 and synthetic MUC1 mucin-core-related peptides and glycopeptides. Biospectroscopy 5, 79–91.

    Article  PubMed  CAS  Google Scholar 

  41. Dougan, H., Lyster, D. M., Vo, C. V., Stafford, A., Weitz, J. I., and Hobbs, J. B. (2000) Extending the lifetime of Anticoagulant oligodeoxynucleotide Aptamers in Blood. Nucl. Med. Biol. 27, 286–297.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Missailidis, S. (2004). Targeting of Antibodies Using Aptamers. In: Lo, B.K.C. (eds) Antibody Engineering. Methods in Molecular Biology™, vol 248. Humana Press. https://doi.org/10.1385/1-59259-666-5:547

Download citation

  • DOI: https://doi.org/10.1385/1-59259-666-5:547

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-092-2

  • Online ISBN: 978-1-59259-666-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics