Skip to main content
Log in

Oligonucleotide NX1838 inhibits VEGF165-mediated cellular responses in vitro

  • Growth, Differentiation, And Senescence
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

VEGF (vascular endothelial growth factor) overproduction has been identified as a major factor underlying pathological angiogenesis in vivo, including such conditions as psoriasis, macular degeneration, and tumor proliferation. Endothelial cell tyrosine kinase receptors, KDR and Flt-1, have been implicated in VEGF responses including cellular migration, proliferation, and modulation of vascular permeability. Therefore, agents that limit VEGF-cellular interaction are likely therapeutic candidates for VEGF-mediated disease states (particularly agents blocking activity of VEGF165, the most frequently occurring VEGF isoform). To that end, a nuclease-resistant, VEGF165-specific aptamer NX1838 (2′-fluoropyrimidine, RNA-based oligonucleotide/40-kDa-PEG) was developed. We have assessed NX1838 inhibition of a variety of cellular events associated with VEGF, including cellular binding, signal transduction, calcium mobilization, and induction of cellular proliferation. Our data indicate that NX1838 inhibits binding of VEGF to HUVECs (human umbilical vein endothelial cells) and dose-dependently prevents VEGF-mediated phosphorylation of KDR and PLCγ, calcium flux, and ultimately VEGF-induced cell proliferation. NX1838-inhibition of VEGF-mediated cellular events was comparable to that observed with anti-VEGF monoclonal antibody, but was ineffective as an inhibitor of VEGF121-induced HUVEC proliferation. These findings, coupled with nuclease stability of the molecule, suggest that NX1838 may provide therapeutic utility in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berridge, M. J. Inositol triphosphate and calcium signalling. Nature (Lond) 361:315–325; 1993.

    Article  CAS  Google Scholar 

  2. Brown, L. F.; Detmar, M.; Claffey, K.; Nagy, J. A.; Feng, D.; Dvorak, A. M.; Dvorak, H. F. Vascular permeability factor/vascular endothelial growth factor: a multifunctional angiogenic cytokine. Exper. Suppl. (Basel) 79:233–269; 1997.

    CAS  Google Scholar 

  3. Claffey, K. P.; Robinson, G. S. Expression of vascular permeability factor/vascular endothelial growth factor by melanoma cells increases tumor growth, angiogenesis, and experimental metastasis. Cancer Res. 56:172–181; 1996.

    PubMed  CAS  Google Scholar 

  4. Claffey, K. P.; Wilkison, W. O.; Spiegelman, B. M. Vascular endothelial growth factor: regulation by cell differentiation and activated second messenger pathways. J. Biol. Chem. 267:16317–16321; 1992.

    PubMed  CAS  Google Scholar 

  5. Clauss, M.; Gerlach, M.; Gerlach, H.; Brett, J.; Wang, F.; Familletti, P. C.; Pan, Y. C.; Olander, J. V.; Connolly, D. T.; Stern, D. Vascular permeability factor: a tumor-derived polypeptide that induces endothelial cell and monocyte procoagulant activity, and promotes monocyte migration. J. Exp. Med. 172:1535–1545; 1990.

    Article  PubMed  CAS  Google Scholar 

  6. Clauss, M.; Weich, H.; Breier, G.; Knies, U.; Rockl, W.; Waltenberger, J.; Risau, W. The vascular endothelial growth factor receptor Flt-1 mediates biological activities. Implications for a functional role of placenta growth factor in monocyte activation and chemotaxis. J. Biol. Chem. 271:17629–17634; 1996.

    Article  PubMed  CAS  Google Scholar 

  7. Conn, G.; Soderman, D. D.; Shaeffer, M.-T.; Wile, M.; Hatcher, V. B.; Thomas, K. A. Amino acid and cDNA sequences of a vascular endothelial cell mitogen from a rat glioma-derived cell line. Proc. Natl. Acad. Sci. USA 87:1323–1327; 1990.

    Article  PubMed  CAS  Google Scholar 

  8. D’Angelo, G.; Lee, H.; Weiner, R. I. cAmp-dependent protein kinase inhibits the mitogenic action of vascular endothelial growth factor and fibroblast growth factor in capillary endothelial cells by blocking Raf activation. J. Cell. Biochem. 67:353–366; 1997.

    Article  PubMed  CAS  Google Scholar 

  9. D’Angelo, G.; Struman, I.; Martial, J.; Weiner, R. I. Activation of mitogen-activated protein kinases by vascular endothelial growth factor and basic fibroblast growth factor in capillary endothelial cells is inhibited by the antiangiogenic factor 16-kDa N-terminal fragment of prolactin. Proc. Natl. Acad. Sci. USA 92:6374–6378; 1995.

    Article  PubMed  CAS  Google Scholar 

  10. deVries, C.; Escobendo, J. A.; Ueno, H.; Houck, K.; Ferrara, N.; Williams, L. T. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science (Wash DC) 255:989–991; 1992.

    Article  CAS  Google Scholar 

  11. Eriksson, A.; Rorsman, C.; Ernlund, A.; Claesson-Welsh, L.; Heldin, C. H. Ligand-induced homo- and hetero-dimerization of platelet-derived growth factor alpha- and beta-receptors in intact cells. Growth Factors 6:1–14; 1992.

    PubMed  CAS  Google Scholar 

  12. Ferrara, N.; Houck, K. A.; Jakeman, L. B.; Winer, J.; Leung, D. W. The vascular endothelial growth factor family of polypeptides. J. Cell. Biochem. 47:211–218; 1991.

    Article  PubMed  CAS  Google Scholar 

  13. Fukumura, D.; Xavier, R.; Sugiura, T.; Chen, Y.; Park, E. C.; Lu, N.; Selig, M.; Nielsen, G.; Taksir, T.; Jain, R. K.; Seed, B. Tumor induction of VEGF promoter activity in stromal cells. Cell 94:715–725; 1998.

    Article  PubMed  CAS  Google Scholar 

  14. Gitay-Goren, H.; Soker, S.; Vlodavsky, I.; Neufeld, G. The binding of vascular endothelial growth factor to its receptors is dependent on cell surface-associated heparin-like molecules. J. Biol. Chem. 267:6093–6098; 1992.

    PubMed  CAS  Google Scholar 

  15. Green, L. S.; Jellinek, D.; Bell, C.; Beebe, L. A.; Feistner, B. D.; Gill, S. C.; Jucker, F. M.; Janjic, N. Nuclease-resistant nucleic acid ligands to vascular permeability factor/vascular endothelial growth factor. Chem. Biol. 2:683–695; 1995.

    Article  PubMed  CAS  Google Scholar 

  16. Heldin, C.-H. Dimerization of cell surface receptors in signal transduction. Cell 80:213–223; 1995.

    Article  PubMed  CAS  Google Scholar 

  17. Hill, C. S.; Treisman, R. Transcriptional regulation by extracellular signals: mechanisms and specificity. Cell 80:199–211; 1995.

    Article  PubMed  CAS  Google Scholar 

  18. Jellinek, D.; Green, L. S.; Bell, C.; Janjic, N. Inhibition of receptor binding by high-affinity RNA ligands to vascular endothelial growth factor. Biochemistry 33:10450–10456; 1994.

    Article  PubMed  CAS  Google Scholar 

  19. Kanakaraj, P.; Raj, S.; Khan, S. A.; Bishayee, S. Ligand-induced interaction between alpha- and beta-type platelet-derived growth factor (PEGF) receptors: role of receptor heterodimers in kinase activation. Biochemistry 30:1761–1767; 1991.

    Article  PubMed  CAS  Google Scholar 

  20. Kanner, S. B.; Grosmaire, L. S.; Ledbetter, J. A.; Damle, N. K. Beta 2-integrin LFA-1 signaling through phospholipase C-gamma 1. Proc. Natl. Acad. Sci. USA 90:7099–7103; 1993.

    Article  PubMed  CAS  Google Scholar 

  21. Kendall, R. L. and Thomas, K. A. Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc. Natl. Acad. Sci. USA 90:10705–10709; 1993.

    Article  PubMed  CAS  Google Scholar 

  22. Keyt, B. A.; Berleau, L. T.; Nguyen, H. V.; Chen, H.; Heinsohn, H.; Vandlen, R.; Ferrara, N. The carboxyl-terminal domain (111–165) of vascular endothelial growth factor is critical for its mitogenic potency. J. Biol. Chem. 271:7788–7795; 1996.

    Article  PubMed  CAS  Google Scholar 

  23. Koch, A. E.; Harlow, L. A.; Haines, G. K.; Amento, E. P.; Unemori, E. N.; Wong, W. L.; Pope, R. M.; Ferrara, N. Vascular endothelial growth factor. A cytokine modulating endothelial function in rheumatoid arthritis. J. Immunol. 152:4149–4156; 1994.

    PubMed  CAS  Google Scholar 

  24. Leung, D. W.; Cachianes, G.; Guang, W. J.; Goeddel, D. V.; Ferrara, N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science (Wash DC) 246:1306–1309; 1989.

    Article  CAS  Google Scholar 

  25. Millauer, B.; Wizigman-Voos, S.; Schnurch, H.; Martinez, R.; Moller, N. P. H.; Risau, W.; Ullrich, A. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72:835–846; 1993.

    Article  PubMed  CAS  Google Scholar 

  26. Motulsky, H. Intuitive biostatistics. New York: Oxford University Press; 1995.

    Google Scholar 

  27. Nemerson, Y. Tissue factor and hemostasis. Blood. 71:1–8; 1988.

    PubMed  CAS  Google Scholar 

  28. Omura, T.; Miyazawa, K.; Ostman, A.; Heldin, C. H. Identification of a 190-kDa vascular endothelial growth factor 165 cell surface binding protein on a human glioma cell line. J. Biol. Chem. 272:23317–23322; 1997.

    Article  PubMed  CAS  Google Scholar 

  29. Park, J. E.; Keller, G. A.; Ferrara, N. The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol. Biol. Cell. 4:1317–1326; 1993.

    PubMed  CAS  Google Scholar 

  30. Plate, K. H.; Breier, G.; Weich, H. A.; Risau, W. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature (Lond) 359:845–848; 1992.

    Article  CAS  Google Scholar 

  31. Ruckman, J.; Green, L. S.; Beeson, J.; Waugh, S.; Gillette, W. L.; Henninger, D. D.; Claesson-Welsh, L.; Janjic, N. 2′-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J. Biol. Chem. 273:20556–20567; 1998.

    Article  PubMed  CAS  Google Scholar 

  32. Schlessinger, J. Direct binding and activation of receptor tyrosine kinases by collagen. Cell 91:869–872; 1997.

    Article  PubMed  CAS  Google Scholar 

  33. Senger, D. R.; Claffey, K. P.; Benes, J. E.; Perruzzi, C. A.; Sergiou, A. P.; Detmar, M. Angiogenesis promoted by vascular endothelial growth factor: regulation through alpha1beta1 and alpha2beta1 integrins. Proc. Natl. Acad. Sci. USA 94:13612–13617; 1997.

    Article  PubMed  CAS  Google Scholar 

  34. Senger, D. R.; Galli, S. J.; Dvorak, A. M.; Perruzzi, C. A.; Harvey, V. S.; Dvorak, H. F. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science (Wash DC) 219:983–985; 1983.

    Article  CAS  Google Scholar 

  35. Sioussat, T.; Dvorak, H. F.; Brock, T. A.; Senger, D. R. Inhibition of vascular permeability factor (vascular endothelial growth factor) with antipeptide antibodies. Arch. Biochem. Biophys. 301:15–20; 1993.

    Article  PubMed  CAS  Google Scholar 

  36. Soker, S.; Fidder, H.; Neufeld, G.; Klagsbrun, M. Characterization of novel vascular endothelial growth factor (VEGF) receptors on tumor cells that bind VEGF165 via its exon 7-encoded domain. J. Biol. Chem. 271:5761–5767; 1996.

    Article  PubMed  CAS  Google Scholar 

  37. Soker, S.; Gollamudi-Payne, S.; Fidder, H.; Charmahelli, H.; Klagsbrun, M. Inhibition of vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation by a peptide corresponding to the exon 7-encoded domain of VEGF165. J. Biol. Chem. 272:31582–31588; 1997.

    Article  PubMed  CAS  Google Scholar 

  38. Soker, S.; Takashima, S.; Miao, H. Q.; Neufeld, G.; Klagsbrun, M. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 92:735–745; 1998.

    Article  PubMed  CAS  Google Scholar 

  39. Strawn, L. M.; McMahon, G.; App, H.; Schreck, R.; Kuchler, W. R.; Longhi, M. P.; Hui, T. H.; Tang, C.; Levitzki, A.; Gazit, A.; Chen, I.; Keri, G.; Orfi, L.; Risau, W.; Flamme, I.; Ullrich, A.; Hirth, K. P.; Shawver, L. K. Flk-1 as a target for tumor growth inhibition. Cancer Res. 56:3540–3545; 1996.

    PubMed  CAS  Google Scholar 

  40. Takahashi, T.; Shibuya, M. The 230 kDa mature form of KDR/Flk-1 (VEGF receptor-2) activates the PLC-gamma pathway and partially induces mitotic signals in NIH3T3 fibroblasts. Oncogene 14:2079–2089; 1997.

    Article  PubMed  CAS  Google Scholar 

  41. Terman, B. I.; Dougher-Vermazen, M. Biological properties of VEGF/VPF receptors. Cancer Metastasis Rev. 15:159–163; 1996.

    Article  PubMed  CAS  Google Scholar 

  42. Terman, B. I.; Dougher-Vermazen, M.; Carrion, M. E.; Dimitrov, D.; Armellino, D. C.; Gospodarowicz, D.; Bohlen, P. Identification of the KDR tyrosine kinase as a receptor for vascular endothelial growth factor. Biochem. Biophys. Res. Commun. 187:1579–1586; 1992.

    Article  PubMed  CAS  Google Scholar 

  43. Tuerk, C. and Gold, L.; Systematic evolution of ligands by exponential enrichment: RNA ligands. Science (Wash DC) 249:505–510; 1990.

    Article  CAS  Google Scholar 

  44. Vaisman, N.; Gospodarowicz, D.; Neufeld, G. Characterization of the receptors for vascular endothelial growth factor. J. Biol. Chem. 265:19461–19466; 1990.

    PubMed  CAS  Google Scholar 

  45. Waltenberger, J.; Claesson-Welsh, L.; Siegbahn, A.; Shibuya, M.; Heldin, C.-H. Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J. Biol. Chem. 269:26988–26995; 1994.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bell, C., Lynam, E., Landfair, D.J. et al. Oligonucleotide NX1838 inhibits VEGF165-mediated cellular responses in vitro . In Vitro Cell.Dev.Biol.-Animal 35, 533–542 (1999). https://doi.org/10.1007/s11626-999-0064-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-999-0064-y

Key words

Navigation